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The specific shape of the squark, slepton and gaugino mass spectra, if measured with sufficient

accuracy, can provide invaluable information not only about the dynamics underpinning their origin at

some very high scale such as the unification scale MG, but also about the intermediate scale physics

encountered throughout their renormalization group equations evolution down to the energy scale

accessible for the LHC. In this work, we study general features of the TeV scale soft supersymmetry

breaking parameters stemming from a generic mSugra configuration within certain classes of supersym-

metry SOð10Þ GUTs with different intermediate symmetries below MG. We show that particular

combinations of soft masses show characteristic deviations from the mSugra limit in different models

and thus, potentially, allow to distinguish between these, even if the new intermediate scales are outside

the energy range probed at accelerators. We also compare our results to those obtained for the three

minimal seesaw models with mSugra boundary conditions and discuss the main differences between those

and our SOð10Þ based models.
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All proposed supersymmetry (SUSY) breaking schemes
have to introduce some high-energy scale, where soft terms
are generated. This scale could be as high as the scale of
grand unification (GUT), or even the Planck scale in grav-
ity mediated schemes [1,2], or as low as a 100 TeV, for
example, in gauge mediated SUSY breaking (GMSB) [3].
SUSY particle masses at the electro-weak (TeV) scale then
have to be calculated from the fundamental parameters of
the models using renormalization group equations (RGEs).
Although those fundamental parameters are a priori un-
known, at least in minimal schemes there exist certain sum
rules for SUSY particle masses, which allow to test the
different SUSY-breaking mechanisms, as has been shown
for the example of minimal supergravity (mSugra) already
some time ago [4]. Based on the detailed studies of the
capabilities of the LHC and ILC experiments to measure
SUSY particle masses [5–7], the accuracy with which
different SUSY-breaking schemes can be tested has since
then been calculated by a number of authors, for a few
examples see [8–12].

However, most of these studies concentrated on models
in which the particle spectrum between the electroweak
and the SUSY-breaking scale was exactly that of the mini-
mal supersymmetric extension of the standard model
(MSSM). Evolution under RGEs is, however, sensitive to
the particle content of the theory. Thus, in principle, any
superfield beyond the MSSM (with mass below the SUSY-
breaking scale) will leave its imprint on the soft parame-
ters. The specific shape of the squark, slepton and gaugino
mass spectra, if measured with sufficient precision, can
therefore provide invaluable information not only about the

dynamics underpinning their origin, but also about physics
at intermediate scales. In this paper, we study soft SUSY-
breaking masses within certain classes of SUSY SOð10Þ
theories with different intermediate symmetries below the
GUT scaleMG. Our main motivation to study these models
comes from the observed neutrino masses [13–15] and the
possibility that supersymmetry might be discovered soon
at the LHC.
In theMSSM, if SUSYparticles have TeV-scalemasses,1

the gauge couplings unify (nearly) perfectly at around
MG � 2� 1016 GeV. Adding new particles beyond the
MSSM spectrum can easily spoil this attractive feature
and, thus, the requirement of gauge coupling unification
(GCU) imposes a severe constraint on SUSY model build-
ing. However, neutrino oscillation experiments [13–15,18]
have shown that at least two neutrino masses are non-
zero [19,20] and at least one neutrino must have a mass
mAtm � 0:05 eV. If neutrinos are Majorana particles, this
value indicates that the scale of lepton number violation
(LNV), �LNV, cannot be larger (but could potentially be
much smaller, see below) than roughly�LNV � 1015 GeV.
This value is significantly belowMG.
In the minimal SUSY SUð5Þ model neutrinos are mass-

less, just as in the MSSM and for the same reasons.
However, it is fairly straightforward to extend minimal
SUð5Þ to include a seesaw mechanism which allows to
explain the observed smallness of the neutrino masses. It
is well known that, at the renormalizable level, there are
exactly three ways [21] to do so: (i) Add (at least two)
gauge singlet superfields, i.e. ‘‘right-handed neutrinos,’’
this is now usually called type-I seesaw [22–24]; (ii) add
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1Strictly speaking, within SUSY unification requires only
gauginos to be light [16,17], but not necessarily sfermions. We
will not entertain this possibility.
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a scalar triplet with Y ¼ 2 (type-II seesaw) [25,26]; or
(iii) add (two or more) fermionic triplets with Y ¼ 0
(type-III seesaw) [27]. For the latter two cases, the suc-
cessful unification of the MSSM can only be maintained if
these heavy fields enter in complete SUð5Þ multiplets.
Thus, within SUSY models, GCU requires the type-II
seesaw to be realized by adding a pair of Higgs 15-plets,
while a type-III seesaw can be generated with (at least two)
copies of 24-plets in the matter sector [21].

If we require Yukawas to be perturbative anywhere
between the seesaw scale (i.e., �LNV) and the GUT scale
MG, all three types of seesaw require �LNV to be below
1015 GeV. If we ask in addition that all gauge couplings
remain perturbative, lower limits on SUSY type-II see-
saw of the order of �LNV * 107 GeV at 1-loop (or
�LNV * 109 GeV at 2-loop) [28] result. For type-III see-
saw, perturbativity puts lower bounds on the seesaw scale
of the order of �LNV * 1013 GeV for three copies of
24 of SUð5Þ and around �LNV * 109 GeV for two2 copies
of 24. Since type-I seesaw adds only standard model (SM)
singlets, there is no lower limit on its scale from
perturbativity.

Models based on SOð10Þ [30] are different from SUð5Þ in
that they automatically contain the necessary ingredients to
generate nonzero neutrino masses: (i) The spinorial 16 of
SOð10Þ contains a complete SM family plus a gauge singlet,
i.e. a right-handed neutrino. In addition, (ii) Uð1ÞB�L is a
subgroup of SOð10Þ. If the Uð1ÞB�L is broken by SUð2ÞR
triplets with B� L ¼ 2, a seesaw mechanism of either
type-I and/or type-II results automatically [24]. Alter-
natively, breaking Uð1ÞB�L by SUð2ÞR doublets can give
different realizations of the so-called inverse [31] and linear
[32] seesaw schemes.

The SOð10Þ gauge symmetry can be broken to the SM
gauge group in a variety of ways [33]. Since our main
motivation is neutrino masses, all breaking chains of inter-
est to us contain a left-right symmetry (LR) at some stage.
SUSY LR models which use triplets to break SUð2ÞR,
whether using only B� L ¼ 2 triplets [34,35] or both
B� L ¼ 2 and B� L ¼ 0 triplets [36,37], all require
that the scale of SUð2ÞR breaking (vR) is close to the
GUT scale, typically vR � 1015 GeV from GCU. How-
ever, also in nonminimal versions of triplet-based models,
one cannot lower vR arbitrarily, since one encounters either
problems with proton decay or with perturbativity [38].
Allowing for either (a) sizeable GUT scale threshold cor-
rections, (b) nonrenormalizable operators or (c) adding
some carefully chosen particles the authors of [39] find a
lower limit on vR of the order of vR � 109 GeV.

However, the situation is different in models with
doublets. It was shown in [40] that if one breaks

SUð2ÞR �Uð1ÞB�L by means of an B� L ¼ 0 triplet to
Uð1ÞR�Uð1ÞB�L and, subsequently, the Uð1ÞR �Uð1ÞB�L

symmetry gets broken down to Uð1ÞY by the Y-neutral
components of SUð2ÞR doublets, it is possible to construct
models in which the scale of Uð1ÞR �Uð1ÞB�L breaking,
vBL, can be as low as TeV. In [39] it was demonstrated that
even the full SUð2ÞR can be brought down to the electro-
weak scale, if only doublets are used in the symmetry
breaking and if some additional particles are also light.
An especially simple variant for a low vR scale was dis-
cussed in [41]. Here, GCU is maintained for a TeV scale
SUð2ÞR with only two requirements: (a) The numbers of
light left and right doublets have to be different and (b) a
(pair of) light colored SUð2ÞL singlets needs to be added to
the spectrum.
Obviously, all models with additional gauge groups lead

to a potentially very rich phenomenology at the LHC.
Current limits on new Z0 (and WR) gauge bosons are very
roughly of the order of mZ0 * ð5–6Þ=gTeV (mWR

*1TeV)

[42,43], with exact numbers depending on the couplings,
so there is ample room for discovery. One expects that forffiffiffi
s

p ¼ 14 TeV at the LHC limits for Z0 bosons will improve
to at least 3 TeV [44]. A WR should be discovered at the
LHC up to masses of the order of 4–4.6 TeV [45,46],
depending on luminosity. However, even if the new gauge
bosons predicted in the models [39–41] are out of reach for
the LHC, sparticle mass spectra will contain indirect hints
for these new scales due to changes in the RGEs, as dis-
cussed above. This observations is in fact the main moti-
vation for the calculations presented in this paper.
Within the mSugra framework, one can define certain

combinations of soft parameters, which are independent
of the high scale input parameters at leading order. We
will call such combinations ‘‘RGE invariants.’’ In [47] it
was pointed out that these invariants show a characteristic
deviation from their mSugra expectations, if either a type-
II or a type-III seesaw mediators are added to the MSSM
spectrum. Here, we will study these invariants in different
SOð10Þ based models. We will construct variants of the
models proposed in [40,41] and will also consider a com-
pletely new model, in which vR can be brought down to the
electroweak scale with the help of an intermediate Pati-
Salam scale [48]. We will show how the RGE invariants
calculated within these models depart from their mSugra
values, how they differ from model to model and, impor-
tantly, also differ from the expectations for the minimal
type-II and type-III seesaws. The invariants are therefore
good indicators to distinguish between different GUT-
based SUSY models.
Two comments might be in order at this point. First, our

calculations rely on the assumption of strict mSugra
boundary conditions. In principle, invariants can be calcu-
lated also in more complicated SUSY-breaking schemes, if
the SUSY-breaking scale is larger than the mass scale of
the new states. However, with a total of only four invariants

2With only one copy of 24, the seesaw scale could be lowered
as far as the electroweak scale. However, with only one 24,
neutrino data cannot be explained unless nonrenormalizable
operators are added to the model [29].
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(per generation) only SUSY-breaking schemes with very
few additional parameters will lead to nontrivial consis-
tency tests. Furthermore, while the invariants are certainly
useful model discriminators, it has been shown that quan-
titatively important 2-loop corrections exist for both,
the type-II [49] and the type-III seesaw [28]. A quantitative
determination of the new intermediate scales will there-
fore most likely rely on a detailed numerical �2-analysis
of measured SUSY spectra [50], using invariants only as
guidance for which models might be interesting for further
scrutiny.

The rest of the paper is organized as follows. In the next
section, we shall specify four basic SOð10Þ models of
interest paying particular attention to their potential com-
patibility with the SM flavour structure. In Sec. III, we
briefly comment on the evolution of the soft masses in
mSugra models and, for completeness, recall the defini-
tions of the RGE invariants, following essentially the dis-
cussion in [49]. The results of a simple analysis of their
sensitivity to the intermediate scales in the four scenarios
considered here are given in Sec. IV. Finally we close with
a short discussion and outlook. Some technical details of
the RGEs in models with more than a single Abelian gauge
factors are deferred to an Appendix.

I. SPECIFIC SUSY SOð10Þ GUT MODELS

Let us begin with a detailed specification of the four
basic SUSY SOð10Þ GUTs which shall be the studied in
Sec. IV. Though all of them, by construction, accommodate
the low-energy measured values of the gauge couplings,
they will in general yield vastly different MSSM soft
spectra whose shapes would strongly depend on the char-
acter of the intermediate symmetries and the scales of their
spontaneous breakdown.

A. General remarks

In all cases, we demand that the models should be
realistic in several basic aspects and potentially interesting
for our scope, namely:

(i) Requirement 1: SUSY SOð10Þ unification with a
sliding intermediate scale by which we mean that
the position of a certain intermediate scale can be
moved over a large energy range while the full
compatibility with the electroweak constraints is
maintained. This is a basic practical stipulation in
order to be able to study the scale-dependence of the
soft leading-log RGE invariants in such GUTs over a
large range.

(ii) Requirement 2: Renormalizable SOð10Þ ! MSSM
gauge symmetry breaking—this is, namely, to have
a good grip on the intermediate scales and the
associated thresholds.

(iii) Requirement 3: Potentially realistic fermionic
spectra—we demand that the effective Yukawa
structure is rich enough to be able, at least in

principle, to accommodate the low-energy
matter-fermionic spectra and mixing. The sliding
nature of the SUð2ÞR �Uð1ÞB�L scale, however,
typically calls for a noncanonical seesaw, such as
inverse [31] or linear [32] seesaw.

(iv) Requirement 4: MSSM Higgs doublet structure
suitable for the implementation of the standard
radiative symmetry breaking and also as a means
to get unrelated Yukawa couplings for quarks and
charged leptons.

As to the Requirement 1 above, we shall be, namely,
interested in SUSY SOð10Þ models with a sliding SUð2ÞR
breaking scale which would be assumed to range from as
low as several TeV up to essentially the GUT scale. From
the gauge unification perspective, there are two basic strat-
egies to devise such models. In practice:
(i) One can attempt to compensate for the departure

of the b-coefficients from their ‘‘canonical’’
MSSM values (due to the presence of W�

R and
the SUð2ÞR-breaking Higgs multiplets in the desert)
by other multiplets brought down to the
SUð2ÞR-breaking scale, which would inflict further
shifts to the b-coefficients (namely g3) in order to
compensate for the genuine low-scale SUð2ÞR ef-
fects. The main advantage of this approach is that
SUð2ÞR �Uð1ÞB�L becomes the only intermediate
scale at play, so the SOð10Þ gauge symmetry is
broken down to the SUð3Þc � SUð2ÞL �Uð1ÞY of
the MSSM in just two steps. The slight complication
here is the fact that the gauge-coupling unification in
such a case is not exact, which brings an extra
theoretical uncertainty into the game.3

(ii) Alternatively, rather than compensating for the de-
parture of the b-coefficients from their MSSM
values due to the W�

R (and the associated Higgs
multiplets) in the desert, one can take advantage
of this and invoke an extra intermediate scale such
as for instance SUð4ÞC � SUð2ÞL � SUð2ÞR of
Pati and Salam and let it conspire with the
SUð2ÞR �Uð1ÞB�L so that the gauge unification
is maintained. Though this can be somewhat more
elaborate in practice, the clear advantage of such a
scenario is that one can always devise an exact
gauge coupling unification by a proper adjustment
of the Pati-Salam scale.

In both cases, because we have quite a lot of beyond-
MSSM dynamics in the desert, we expect significant ef-
fects of the relevant intermediate scale(s) on the shape of
the MSSM squark and slepton spectra.
The first strategy above, especially in combination

with the other requirements, is rather restrictive. Indeed,

3This feature is already present at the MSSM level.
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it imposes strict conditions on the b-coefficients in specific
models which should essentially match those of the MSSM
up to a uniform shift. Nevertheless, a variety of potentially
realistic models can still be devised and, in particular, the
behavior of the RGE invariants in this class of theories
can be strongly model-specific. We shall demonstrate this
on a couple of scenarios of this kind derived from [41],
c.f., Model-I and Model-II in Sec. I B.

The sensitivity to the intermediate-scales dynamics should
be evenmore pronounced in the latter class of scenarios with
more than a single such scale at play. This is, namely, due to
the fact that the extra fields in the desert associated to a higher
intermediate symmetry (e.g., Pati-Salam) tend to affect the
soft spectra stronger than in the former case with an inter-
mediate SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞR only. This
feature is going to be clearly visible in the specific model
of this kind, c.f., Model III in Sec. I B.

However, a strong dependence of the invariants on the
sliding scale should not be viewed as a generic feature of
the SUSY SOð10ÞGUTs. Indeed, there are simple scenarios
in which the sliding intermediate scale does leave almost
no imprints in the soft spectrum. We shall demonstrate this
on a specific model with a sliding intermediate Uð1ÞB�L

scale (and a fixed SUð2ÞR scale at around 1014 GeV ensur-
ing a proper gauge unification) of the kind given in [40],
c.f., Model IV in Sec. I B. Here, the GUT-scale pattern of
the RGE invariants is (almost) not changed by the running,
leaving no good handle on the intermediate scale in the
SUSY spectrum.

B. SUSY SOð10Þ models with a sliding SUð2ÞR scale

1. Models I and II: single sliding intermediate scale

First, we shall introduce two variants of the model
advocated in [41] which supply the original setting with
a few extra ingredients in order to make it potentially
realistic, c.f. Sec. I A.

Model I.—The field content relevant to the running in
this Model is specified in Table I.

The original SOð10Þ gauge symmetry is broken down to
the MSSM in two steps via an intermediate SUð3Þc �
SUð2ÞL � SUð2ÞR �Uð1ÞB�L symmetry stage. The first
step, i.e., the SOð10Þ ! SUð3Þc � SUð2ÞL � SUð2ÞR �
Uð1ÞB�L breaking, is triggered by an interplay between
the VEVs of 45 and 210 of SOð10Þ. Subsequently, the
SUð2ÞR�Uð1ÞB�L gauge symmetry is broken down to
the Uð1ÞY of hypercharge by the VEVs of the �c � ��c

pair which can emerge for instance from its cubic interac-
tion with a full singlet �.4 Note that, at the 1-loop level,

such a neutral � field can be put essentially anywhere
between MGUT and MSUSY without any impact on the
gauge unification. The bi-coefficients at the SUð3Þc �
SUð2ÞL � SUð2ÞR �Uð1ÞB�L level read b3 ¼ �2,
bL ¼ 2, bR ¼ 4 and bcB�L ¼ 13 where the last number
corresponds to the canonically normalized B� L charge,
which is obtained from the ‘‘physical’’ one (based on
Bp
Q ¼ þ 1

3 and Lp
L ¼ þ1) by means of the formula

ðB� LÞc ¼
ffiffi
3
8

q
ðB� LÞp. Note that these coefficients hap-

pen to be entirely identical to the setting advocated
in [41] and, thus, the leading-log evolution of the soft
SUSY-breaking parameters in that model is covered by
our analysis of Model I, see Sec. III A. The scale of the
SUð2ÞR �Uð1ÞB�L breaking is not determined because it
drops from the formula for the unification scale (owing,
namely, to the hypercharge-matching condition ��1

Y ¼
3
5�

�1
R þ 2

5�
�1
B�L) and affects only the value of the GUT-

scale gauge coupling �G which, however, is subject of
much weaker constraints.
This, on one hand, makes the gauge coupling unification

in Model I qualitatively similar to the MSSM case, see
Fig. 1. On the other hand, it is well known that in the
MSSM the 1-loop gauge unification is incompatible with
the latest extractions of �s unless the soft SUSY-breaking
scale is pushed well below 1 TeV. This few percent
mismatch is expected to be accounted for by GUT-scale
thresholds whose detailed analysis is, however, beyond the
scope of this work. Thus, in what follows, we shall simply
parametrize our ignorance of the shape of the GUT spec-
trum by considering unification regions from where the
SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L gauge couplings
can emanate rather than unique unification points, c.f. dis-
cussion in Sec. III A. Though this approach is oversimpli-
fied in several aspects, it admits to estimate the magnitude
of the theoretical error associated to the lack of exact gauge-
coupling unification in this model.
Concerning the effective flavor structure of the model,

there are two aspects worth some discussion here, namely,

TABLE I. The relevant part of the field content of Model I
with a sliding SUð2ÞR-breaking scale discussed in Sec. I B 1a. In
the third column the relevant fields are characterized by their
SUð3Þc � SUð2ÞL � SUð2ÞR � Uð1ÞB�L quantum numbers
while their SOð10Þ origin is specified in the fourth column.

Field Multiplicity 3c2L2R1B�L SOð10Þ origin
Q 3 (3, 2, 1, þ 1

3 ) 16

Qc 3 (�3, 1, 2, � 1
3 ) 16

L 3 (1, 2, 1, �1) 16

Lc 3 (1, 1, 2, þ1) 16

S 3 (1, 1, 1, 0) 1

�d, ��d 1 (3, 1, 1, � 2
3 ), (

�3, 1, 1, þ 2
3 ) 10

� 1 (1, 2, 2, 0) 10, 120

�, �� 1 (1, 2, 1, �1) 16, 16
�c, ��c 3 (1, 1, 2,� 1) 16, 16

4It is perhaps worth mentioning that, for a very low scale of the
SUð2ÞR �Uð1ÞB�L breaking, the relevant VEV can be devised
even without an extra singlet because, then, the interplay be-
tween a ‘‘RH �-term’’ for �c � ��c and the relevant soft mass
should be sufficient, in complete analogy with the
SUð2ÞL-doublet sector in the MSSM.
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the structure of the effective MSSM Higgs doublet pair �
and the possibility to accommodate the SM quark and
lepton masses and mixing (requirements 3 and 4 formu-
lated at the beginning of this section). First, the effective
L-R bidoublet (1, 2, 2, 0) corresponds to a massless
combination of the (1, 2, 2) and (15, 2, 2) Pati-Salam
components of 10 and 120 of SOð10Þ, respectively, which
can mix at the GUT-level due to the PS-breaking VEV in an
SOð10Þ-breaking multiplet such as 45 and/or 210. Usually,
the role of the extra Higgs such as 120 and/or 126 in the
Yukawa sector is, namely, to provide Clebsch-Gordan co-
efficients that would break the degeneracy of the effective
Yukawa couplings among up and down quarks and charged
leptons. However, an extra 120 alone is still not enough as
it does not yield enough freedom to accommodate the SM
data [51]. Actually, the issue becomes even worse if the
MSSM-level mass matrices for the two hypercharge com-
ponents of� are virtually identical, as one can expect for a
single bidoublet at play in the low-scale SUð2ÞR-breaking
regime. Both issues are potentially resolved due to the
extra vectorlike down-type quark pair �d � �d and an addi-
tional SUð2ÞL-doublet Higgs pair � � �� (which, simulta-
neously, ensure the right b-coefficients for the running),
c.f. Table I. In this case, the down-type quark mass matrix
is extended5 to 4� 4 which, together with the extra free-
dom in the MSSM doublet sector, should be enough to
avoid the Grimus-Kuhbock-Lavoura (GKL) no-go [51].
Let us also mention that the VEV of �L gives rise to the
LS entry in the neutrino mass matrix generating the linear
seesaw mechanism and, unlike in [40], it is not naturally

suppressed in this case because � � �� resides well below
the GUT scale. Thus, one has to assume a small LS�
Yukawa coupling.
Model II.—The relevant bi-coefficients at the SUð3Þc �

SUð2ÞL � SUð2ÞR �Uð1ÞB�L level read b3 ¼ �2,
bL ¼ 2, bR ¼ 3 and bcanB�L ¼ 29=2. Indeed, these numbers
differ from Model I only in the SUð2ÞR �Uð1ÞB�L sector
and the variations in the relevant b-coefficients obey
�bR þ 2

3 �bB�L ¼ 0 so the b-coefficient associated to

the ‘‘effective’’ MSSM hypercharge is the same as in
Model I. Therefore, apart from the difference in the spe-
cific slopes of the SUð2ÞR �Uð1ÞB�L curves the qualita-
tive picture of the gauge coupling unification in Model II,
c.f. Fig. 2, is very similar to that observed in Model I.
Nevertheless, as we shall see in Sec. III A, even such a
slight change in the gauge-coupling behavior at the
SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L level is enough
to generate a significant difference between the Model-I
and Model-II (c.f. Table II) soft invariants, especially if the
SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L running is long.
However, if the SUð2ÞR �Uð1ÞB�L gauge symmetry hap-
pens to be broken close to the GUT scale, the two models
will be indistinguishable from the soft-sector point of view.
Concerning the flavor structure of Model II, it is indeed

very similar to that of Model I, with the main difference
that here the GKL no-go [51] is overcome by a 4� 4
extension of the up-type quark mass matrix. Moreover,
since it is the VEV of �� rather than that of � that enters
the extended up-type quark mass matrix, h�i can be made
much smaller than h ��i which also relieves the need for the
small LS� Yukawa in the neutrino sector. Given also the
reduced number of the SUð2ÞR doublets, Model II consti-
tutes a somewhat more compact alternative to Model I.
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FIG. 1 (color online). Gauge-coupling unification in Model I
in two limits corresponding to different positions of the sliding
SUð2ÞR �Uð1ÞB�L breaking scale VR. In solid lines, we depict
the RGE behavior of the gauge couplings for VR in the vicinity of
the electroweak scale VR � 104 GeV while the dashed lines
correspond to VR � 1014 GeV. The position of the intersection
region shifts slightly up with rising VR but the corresponding
scale remains intact.
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FIG. 2 (color online). Gauge-coupling unification in Model II
in two limits corresponding to different positions of the sliding
SUð2ÞR � Uð1ÞB�L breaking scale VR. In solid lines, we depict
the RGE behavior of the gauge couplings for VR in the vicinity of
the electroweak scale VR � 104 GeV while the dashed lines
correspond to VR � 1014 GeV. The position of the intersection
region shifts slightly up with rising VR but the corresponding
scale remains intact.

5For an explicit SOð10Þ realization of this mechanism see e.g.
[52] and references therein.
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2. Model III: Sliding SUð2ÞR and Pati-Salam scales

The third model of our interest belongs to the second
category of the simple classification given in Sec. I A.
In particular, the sliding nature of the SUð2ÞR �Uð1ÞB�L

scale is achieved via an interplay with another intermediate
scale, namely, the Pati-Salam SUð4ÞC�SUð2ÞL�SUð2ÞR,
rather than a delicate adjustment à la Model I or Model II
owing to very specific field contents. Thus, the initial
SOð10Þ gauge symmetry is broken down to the MSSM
in three steps. The field content relevant to the two
intermediate-symmetry stages is given in Table III. In
more detail, the initial SOð10Þ ! SUð4ÞC � SUð2ÞL �
SUð2ÞR breaking is triggered by the GUT-scale VEV
of 54 of SOð10Þ. The subsequent SUð4ÞC � SUð2ÞL �
SUð2ÞR ! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L break-
ing is due to the VEV of the � emerging again from
its interplay with an extra singlet. Finally, the
SUð2ÞR �Uð1ÞB�L symmetry is broken down to the
MSSM by means of the VEVs of �c � ��c which are

connected by the B� L-neutral SUð2ÞR-triplet �. At
the Pati-Salam stage, the bi-coefficients read b4 ¼ 3,
bL ¼ 6, bR ¼ 14 while at the SUð3Þc � SUð2ÞL �
SUð2ÞR �Uð1ÞB�L level they are b3 ¼ �2, bL ¼ 3,
bR ¼ 11 and bcanB�L ¼ 10.
In this model, both the position of the GUT scale as well

as the value of �G depend on both intermediate scales.
However, unlike in Models I and II, here the gauge
unification can always be made exact, c.f. Fig. 3, even at
the 1-loop level, and, thus, there is no extra theoretical
uncertainty other than the error in the electroweak-scale �s

to be taken into account.
The flavor structure of this model relies on the presence

of three extra copies of SUð2ÞR triplet �c which in the
neutrino sector play a role similar to that of S in Models I
and II. In particular, they expand the 6� 6 neutrino mass
matrix to 9� 9 where, e.g., the Lc�c sector comes from
the contraction with the VEVof �c, but without any entry
generated at the L�c ‘‘linear seesaw’’ position. Thus, there
is no need for an extra fine-tuning in the seesaw formula in
Model III. Moreover, the charged components of �c can
mix with the charged leptons and, hence, provide the
welcome departure from the down-type quarks even if
the MSSM doublets span over 10’s of SOð10Þ only.
Indeed, the relevant 6� 6 charged-lepton mass matrix
looks schematically like

M‘ /
Yv10

d 0

h ��ci ��c þ h�i

 !
; (1)

where the row and column bases are fL;�c�g and
fLc;�cþg, respectively, and ��c is the associated sing-
let mass parameter. Note also that the VEV of � is
antisymmetric in the generation space and, thus, does not
contribute to the neutrino Majorana mass matrix. Finally,

TABLE III. The effective field contents of Model III in the two
intermediate symmetry stages.

Field Mult. 3c2L2R1B�L Pati-Salam SOð10Þ
Q 3 (3, 2, 1, þ 1

3 ) (4, 2, 1) 16

Qc 3 (�3, 1, 2, � 1
3 ) (�4, 1, 2) 16

L 3 (1, 2, 1, �1) (4, 2, 1) 16

Lc 3 (1, 1, 2, þ1) (�4, 1, 2) 16

�c 3 (1, 1, 3, 0) (1, 1, 3) 45

�d, ��d 1 (3, 1, 1, � 2
3 ) (6, 1, 1) 10

� 2 (1, 2, 2, 0) (1, 2, 2) 10

� 1 (1, 1, 3, 0) (1, 1, 3) 45

�, �� 1 (1, 2, 1, �1) (�4, 2, 1), (4, 2, 1) 16, 16
�c, ��c 1 (1, 1, 2, �1) (4, 1, 2), (�4, 1, 2) 16, 16
� 1 absent (15, 1, 1) 45
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FIG. 3 (color online). Running in the Model III variant of the
low-LR scale SUSY SO(10). Here the SO(10) gauge symmetry
is broken first into a Pati-Salam intermediate stage stretching
from the unification point down to the relevant energy scale VPS

(in the middle) and, subsequently, to the L-R symmetry stage.
The value of VPS is correlated to the position of the L-R breaking
scale VR which can again slide from as low as few TeV up to
roughly 1014 GeV, c.f. FIG. 8.

TABLE II. The same as in Table I for Model II defined in
Sec. I B 1b. The main variation with respect to Model I is the
B� L charge of the vectorlike color triplet pair owing to its
different SOð10Þ origin. The extra �u and ��u fields can mix with
the up-type quarks at the MSSM level which leads to a poten-
tially realistic effective flavour structure. In order to maintain the
MSSM-like unification pattern, the number of the SUð2ÞR dou-
blets has been reduced, thus making the setting slightly more
compact than in Model I.

Field Multiplicity 3c2L2R1B�L SOð10Þ origin
Q 3 (3, 2, 1, þ 1

3 ) 16

Qc 3 (�3, 1, 2, � 1
3 ) 16

L 3 (1, 2, 1, �1) 16

Lc 3 (1, 1, 2, þ1) 16

S 3 (1, 1, 1, 0) 1

�u, ��u 1 (3, 1, 1, þ 4
3 ), (

�3, 1, 1, � 4
3 ) 45

� 1 (1, 2, 2, 0) 10, 120

�, �� 1 (1, 2, 1, �1) 16, 16
�c, ��c 2 (1, 1, 2, �1) 16, 16
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the two MSSM Higgs doublets are different because the
underlying bidoublets contract through � and, therefore,
the effective up-type quark Yukawa coupling differs from
the down-type one even without the need to resort to the
mixing with the vectorlike �d � ��d pair.

C. SUSY SOð10Þ models with a sliding Uð1ÞR scale

All the models discussed so far featured an intermediate
SUð2ÞR �Uð1ÞB�L symmetry which, at a certain scale,
was broken directly down to the Uð1ÞY of the MSSM
hypercharge. The full SUð2ÞR, however, is not the minimal
option to realize a gauge symmetry acting in the RH sector
of the matter spectrum in a way compatible with the
MSSM quantum numbers. Indeed, the hypercharge sum-
rule Y ¼ T3

R þ ðB� LÞ=2 trivially holds even if one sticks
to the Uð1ÞR subgroup of the original SUð2ÞR generated by
T3
R alone.
On the other hand, within SOð10Þ broken down to

an intermediate SUð3Þc � SUð2ÞL � Uð1ÞR � Uð1ÞB�L

stage, only Z0 and the associated Uð1ÞR �Uð1ÞB�L !
Uð1ÞY-breaking Higgs fields remain light (at least in
minimally fine-tuned scenarios) and, thus, the
intermediate-scale dynamics is generally much simpler
than in the models based on the full SUð2ÞR �Uð1ÞB�L.
In view of that, one can expect that also the intermediate-
scale dependence of the soft RGE invariants will be much
milder than in the former case. Moreover, with more than a
single Abelian gauge factor at play, there is a new class of
effects associated with the so-called kinetic mixing be-
tween the associated gauge fields. Both these aspects
make this class of models worth further scrutiny.

1. General remarks

Remarkably, the simplicity of the minimally fine-tuned
Uð1ÞR �Uð1ÞB�L ! Uð1ÞY scenarios automatically im-
plies the scale of this spontaneous symmetry breakdown
is a sliding one. Indeed, minimal fine-tuning implies that
the spectrum of the model in the unbroken phase consists
of that of the MSSM plus Z0 plus an MSSM-neutral
Higgs responsible for the relevant symmetry breaking.
Since the gauge field associated to the hypercharge (BY)
does not feel any effect of either Z0 nor the hypercharge-
neutral Higgs6 the effective hypercharge gauge coupling
(corresponding to a relevant combination of gY and gR)
in this picture runs as if it were in the MSSM, at least
at the 1-loop level. Thus, the specific position of the
Uð1ÞR �Uð1ÞB�L ! Uð1ÞY breaking scale is, in this
case, irrelevant for the 1-loop gauge running.

This, however, is not the case for the leading-log soft
RGE invariants of our interest. In particular, unlike BY ,
both the Uð1ÞR �Uð1ÞB�L gauge bosons enter the renor-
malized propagators of squarks and sleptons

and one can expect a residual dependence of the invariants
on the Uð1ÞR �Uð1ÞB�L-breaking scale. Nevertheless, as
we shall demonstrate in a particular realization of this
simple scheme, such effects should be much milder than
those in the scenarios with the full gauged SUð2ÞR
symmetry.

2. Model IV: Uð1ÞR � Uð1ÞB�L ! Uð1ÞY breaking

Here we consider a variant of the basic SUSY SOð10Þ
model advocated in [40] in which an extended intermediate
Uð1ÞR �Uð1ÞB�L stage follows a short SUð2ÞR �Uð1ÞB�L

phase. The field content relevant to the RG running in the
first two parts of the symmetry-breaking chain is given in
Table IV.
In more detail, after the initial SOð10Þ ! SUð3Þc �

SUð2ÞL � SUð2ÞR �Uð1ÞB�L breaking triggered by essen-
tially the same mechanism as in Models I and II, the
subsequent SUð2ÞR �Uð1ÞB�L ! Uð1ÞR �Uð1ÞB�L re-
quires a VEV of the � field which, at the level of an
effective theory, can again emerge from its interplay with
a LR singlet. The last symmetry-breaking step is then
achieved in a similar manner by the VEVs of the MSSM-
neutral components of the �c � ��c fields.
The relevant bi-coefficients at the SUð3Þc � SUð2ÞL �

SUð2ÞR �Uð1ÞB�L level read b3 ¼ �3, bL ¼ 2, bR ¼ 5
and bcanB�L ¼ 15=2. In the SUð3Þc � SUð2ÞL �Uð1ÞR �
Uð1ÞB�L stage, however, the effects of the Uð1Þ mixing
must be taken into account and, thus, the b-coefficients in
the Uð1ÞR �Uð1ÞB�L sector constitute a matrix of anoma-
lous dimensions �. One has b3 ¼ �3, bL ¼ 1 and

�phys ¼ 15=2 �1
�1 18

� �
; (3)

which should be brought into the canonical basis by

means of a normalization matrix N ¼ diagð1; ffiffiffiffiffiffiffiffi
3=8

p Þ,

TABLE IV. The effective field contents of Model IV relevant
to the two intermediate symmetry stages.

Field Mult. 3c2L1R1B�L 3c2L2R1B�L SOð10Þ
Q 3 (3, 2, 0, þ 1

3 ) (3, 2, 1, þ 1
3 ) 16

Qc 3 (�3, 1, � 1
2 , � 1

3 ) (�3, 1, 2, � 1
3 ) 16

L 3 (1, 2, 0, �1) (1, 2, 1, �1) 16

Lc 3 (1, 1, � 1
2 , þ1) (1, 1, 2, þ1) 16

S 3 (1, 1, 0, 0) (1, 1, 1, 0) 1

� 2 (1, 2, � 1
2 , 0) (1, 2, 2, 0) 10

� 1 absent (1, 1, 3, 0) 45

�, �� 1 absent (1, 2, 1, �1) 16, 16
�c, ��c 1 (1, 1, � 1

2 , �1) (1, 1, 2, �1) 16, 16
6To put this statement on a firm ground the effects of the

kinetic mixing must be considered, see, e.g., [53].

SOFT MASSES IN SUPERSYMMETRIC SO(10) GUTs . . . PHYSICAL REVIEW D 84, 053012 (2011)

053012-7



�can ¼ N�physN. The details of the 1-loop RGE evolution
of gauge couplings and soft masses in theories with more
than a single Abelian gauge factor are summarized in
Appendix A. The qualitative features of the gauge-
coupling running in this setting can be seen in Fig. 4.

Concerning the flavor structure of the model, the situ-
ation is essentially identical to that described in the original
work [40]. The only exception is a second LR bidoublet
retained until the Uð1ÞR �Uð1ÞB�L breaking scale which
might be necessary in order to get a potentially realistic
pattern of the effective Yukawa couplings. Nevertheless,
the salient features of the model in the soft sector should
not depend much on the detailed realization of the effective
Yukawa pattern.

II. LEADING-LOG RGE INVARIANTS

In this section we focus on the calculation of the invar-
iants using mSugra boundary conditions. mSugra is de-
fined at the GUT-scale, MG, by a common gaugino mass
M1=2, a common scalar mass m0 and the trilinear coupling

A0, which gets multiplied by the corresponding Yukawa
couplings to obtain the trilinear couplings in the soft SUSY
breaking Lagrangian.7 In addition, at the electroweak
scale, tan� ¼ vu=vd is fixed. Here, as usual, vd and vu

are the vacuum expectation values (vevs) of the neutral
components ofHd andHu, respectively. Finally, the sign of
the � parameter has to be chosen.

Renormalization group equations for general supersym-
metric models are known up to 2-loop order [56]. The only
case not covered in the otherwise general equations given
in [56] are supersymmetric models with more than one

Uð1Þ group. With more than a single Abelian gauge factor,
there appears a new class of effects associated with the so-
called kinetic mixing between the associated gauge fields.
RGEs for this case have been derived very recently in [53].
Barring for the moment the effects of Uð1Þ mixing

present in Model IV, at the 1-loop level, one can devise a
simple set of analytic equations for the soft terms. Gaugino
masses scale as gauge couplings do and so the requirement
of GCU fixes the gaugino masses at the low scale

MiðmSUSYÞ ¼ �iðmSUSYÞ
�ðMGÞ M1=2: (4)

Equation (4) implies that the relationship of theMi toM1=2

is changed in Models I to III, since �ðMGÞ is shifted.
Neglecting the Yukawa couplings for the soft mass

parameters of the first two generations of sfermions one
can write

m2
~f
¼ m2

0 þ
M1=2

�ðMGÞ2
X
Rj

XN
i¼1

~fRi �iðvRj
Þ2: (5)

Here, the sum over ‘‘Rj’’ runs over the different regimes in

the models under consideration, while the sum over i runs
over all gauge groups in a given regime. �iðvRj

Þ is to be

understood as the gauge coupling of group i evaluated at
the upper end of regime Rj. In the MSSM one would have

only to consider one regime, namely, from the SUSY scale
to the GUT scale. In Models I and II we have two different
regimes, while in Models III and IV there are a total of
three regimes to consider.

The different ~fRi can be written in a compact form as

~f R
i ¼ cf;Ri

bi

�
1�

�
�iðvxÞ
�iðvyÞ

�
2
�
; (6)

where vx and vy, respectively, indicate the value of the

relevant � at the lower and higher boundaries of the regime

under consideration. The cf;Ri coefficients given in Table V
are proportional to the values of the quadratic Casimir of
representation Rf hosting the matter field f with respect to

the group G in the regime R

cf;Ri ¼ 2CGðRfÞ: (7)

They are readily evaluated from the basic formula

CGðRÞdðRÞ ¼ T2ðRÞdðGÞ; (8)

where dðGÞ is the dimension of the group G, T2ðRÞ the
Dynkin index of the representation R and dðRÞ is its

dimension. Note that the coefficients cf;Ri are different
for the different fermions, which leads to a different coef-
ficient in front of M1=2 in Eq. (5). The bi in Eq. (6) are the

1-loop b-coefficients for the different models defined in the
previous section. For completeness, the well-known 1-loop
beta-coefficients for the MSSM are (in the traditional
SUð5Þ normalization): b ¼ ðb1; b2; b3ÞMSSM ¼ ð335 ; 1;�3Þ.
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FIG. 4 (color online). Running in Model IV with a low B� L
scale. Note the effects of the Uð1Þ mixing in the running and
matching; the lowest curve corresponds to the off-diagonals of
the ðGGT=4�Þ�1 matrix.

7It is sometimes argued that this setup should better be called
CMSSM, since there are even simpler models of supergravity
type breaking in which A0 is not a free parameter, as, for
example, in Polonyi type supergravity [54,55]. Since we will
be concerned with only the first two sfermion generations this
distinction is irrelevant for us.
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Equation (5) is valid neglecting Uð1Þ-mixing effects.
The extra effects due to the kinetic Uð1Þ mixing relevant
in Model IVare summarized in the Appendix A; for a more
detailed discussion including higher-loop effects, see [53].

Individual SUSY masses depend strongly on the initial
values for m0 and M1=2. However, one can form four

different combinations, which we choose to be

LE � ðm2
~L
�m2

~E
Þ=M2

1; QE � ðm2
~Q
�m2

~E
Þ=M2

1;

DL � ðm2
~D
�m2

~L
Þ=M2

1; QU � ðm2
~Q
�m2

~U
Þ=M2

1:
(9)

It is easy to see that, at the leading-log level, m0 and M1=2

drop out of the equations for the invariants. Note, that one
could have equally well normalized to any of the other two
gaugino masses. The choice ofM1 is only motivated by the
expectation that it will be the gaugino parameter measured
with the smallest error.

III. SLIDING SCALE IMPRINTS IN
THE LEADING-LOG RGE INVARIANTS

A. Models I and II with a sliding SUð2ÞR scale

The method: As we have already mentioned in Sec. I, in
Models I and II the sliding nature of the SUð2ÞR scale
makes it impossible to get an exact unification, in full

analogy with the MSSM. Since, however, this is just
about a 2% effect, we shall not attempt to improve on
this by either looking for a suitable set of threshold cor-
rections or by going beyond the 1-loop approximation.8

Rather than that, we shall just parametrize our ignorance of
the ‘‘true values’’ of the unification scale position and
the unified gauge coupling in terms of a pair of small
‘‘offset’’ parameters scanning over the area of the relevant
‘‘nonunification triangle’’ shown in Fig. 5. In what follows,
we shall to use the error on �SðMZÞ given in [57],
�ð�SðMZÞÞ ¼ 0:002, which does not take into account
the latest QCD lattice calculations results.
The results: In Figs. 6 and 7 we display the

vR-dependence of the RGE invariants in Models I and II
due to the running effects subsumed by Eq. (5). The bands
correspond to the error in the gauge-coupling unification
inherent to these settings which, at the leading-log level,
can be taken into account by scanning over the area of the
relevant nonunification triangle, c.f. Fig. 5. The upper
(yellow) band refers to the combination QE, the (blue)
band which at low vR partially overlaps with QE represents
DL, whereas the third (brown) band is QU and, finally,
the lowest (green) band refers to the LE combination. Note
that, for practical reasons, the invariants QE and DL have
been scaled down by a factor of 10. The same color-code is
adopted in the other figures in this section.
Several comments are in order here: In general, the

invariants exhibit a logarithmic dependence on vR.
For vR close to the MSSM scale (on the left), the QU
and LE invariants overlap. This is attributed to the en-
hanced gauge symmetry throughout the whole mSUSY-MG

range which makes m2
~Q
and m2

~U
as well as m2

~L
and m2

~E

behave the same; see the LR-stage c
~f
i -coefficients in

Table V. In the vR ! MG limit, the mSugra values of the
invariants (modulo the MSSM nonunification) are repro-
duced. Concerning QE and DL, the first thing to notice is
that these invariants tend to increase with vR departing
from MG, thus leading to a pattern characteristic to this
class of models. Moreover, they are more sensitive to the
initial condition because the color-effects in their evolution
do not cancel, thus leading to larger bands.
Naturally, the main difference between Figs. 7 and 6 is

expected in the low-vR regime where the effects due to the
slight difference in the Model-I and Model-II spectra are
most pronounced and the QU and LE invariants run faster
due to a larger ratio of the coupling constants in the
relevant Eq. (6).

B. Model III with sliding SUð2ÞR and PS scales

The method: In Model III, the LR and PS intermediate
scales can be always adjusted so that one gets an exact

TABLE V. Coefficients c
~f
i for Eq. (5) for different symmetry

stages. The MSSM and the LR parts are relevant to all four
models under consideration; the Uð1ÞR �Uð1ÞB�L and the Pati-
Salam parts are used solely for Model IV and Model III,
respectively.

~f ~E ~L ~D ~U ~Q

MSSM

cf;MSSM
1

6
5

3
10

2
15

8
15

1
30

cf;MSSM
2 0 3

2 0 0 3
2

cf;MSSM
3 0 0 8

3
8
3

8
3

Uð1ÞR �Uð1ÞB�L

cf;BLBL
3
4

3
4

1
12

1
12

1
12

cf;BLL 0 3
2 0 0 3

2

cf;BLR
1
2 0 1

2
1
2 0

cf;BL3 0 0 8
3

8
3

8
3

LR

cf;LRBL
3
4

3
4

1
12

1
12

1
12

cf;LRL 0 3
2 0 0 3

2

cf;LRR
3
2 0 3

2
3
2 0

cf;LR3 0 0 8
3

8
3

8
3

Pati-Salam

cf;PSL 0 3
2 0 0 3

2

cf;PSR
3
2 0 3

2
3
2 0

cf;PS4
15
4

15
4

15
4

15
4

15
4

8Indeed, this would be inconsistent as we are concerned only
with the leading-log approximation for the softs.
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1-loop unification for vR stretching up to about 1014 GeV,
c.f. Fig. 8. This is technically achieved by relating the value
of the PS scale to the value of the LR scale as

tPS ¼ 1

2
tLR � 1

12
ð14tSUSY þ 20tZ þ �ð18�SðtZÞ�1

� 33�LðtZÞ�1 þ 15�YðtZÞ�1ÞÞ: (10)

Here, the tx stand for lnðmXÞ as usual. Thus, the main
uncertainty at this level comes from the experimental error
in�SðMZÞ. In what follows, we shall vary vR and vPS along
the constant �SðMZÞ-error trajectories, namely, within
�1	, corresponding to the boundaries between the yellow

and white areas within the parameter area depicted in
Fig. 8.
The results: In this case, the intermediate-scale depen-

dence of the leading-log RGE invariants is yet more pro-
nounced than in Models I and II, c.f. Fig. 9. As before, the
numerical values of the invariants QE and DL have been
conveniently scaled down by a factor of 10. For each of the
four invariants, the solid curve in Fig. 9 corresponds to
�SðMZÞ fixed at its central value and the dashed and dotted
lines refer to the �1	 and þ1	 trajectories, respectively.
On the high-vR tail, the different curves stop at different
energies due to the need to respect the natural vR < vPS

hierarchy reflected by the ‘‘diagonal’’ cut to the parametric
space in Fig. 8.
For all four invariants under consideration, we observe a

stronger vR-dependence than in Models I and II. This is,
namely, due to the extended Pati-Salam running which

1.0 1016 2.0 1016 3.0 10161.5 1016
24.2

24.4

24.6

24.8

25.0

25.2

25.4

E GeV

1

FIG. 5 (color online). The MSSM-like nonunification triangle
in Models I and III with vR ¼ 1014 GeV for two different values
of the unknown soft-SUSY breaking scale (mSUSY ¼ 1 TeV for
the upper one and mSUSY ¼ 500 GeV for the lower). The upper
sides of the triangles corresponds to ��1

L while the lower-left
sides depict the effective ��1

Y defined as 3
5�

�1
R þ 2

5�
�1
B�L. The

light blue area surrounding the ��1
S line represents the 1	

uncertainty in �sðMZÞ as given in [57]. Both triangles move
down for lower values of vR, see Figs. 1 and 2.
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FIG. 6 (color online). The vR-dependence of the leading-log
invariants in Model I, c.f. Sec. I B 1a. The bands represent the
error due to the nonexact gauge-coupling unification depicted in
Fig. 5. For practical reasons, the numerical values of the invar-
iants QE and DL have been scaled down by a factor of 10.
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FIG. 7 (color online). The same as in Fig. 6 but for Model II of
Sec. I B 1b. The QU and LE behavior differs from that in Fig. 6
mainly in the low-vR regime.
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FIG. 8 (color online). The correlation of the intermediate
symmetry-breaking scales in Model III (allowed region col-
oured). The contours correspond to the quality of the fit of
�SðMZÞ for each choice of the Pati-Salam breaking scale vPS

an the LR breaking scale vR, within 1	 (white area within the
colored band), 2	 (yellow) and 3	 (orange) of the range quoted
in [57].
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contributes with larger c
~f
i -coefficients than the LR stage,

c.f. Table V. Moreover, unlike in Figs. 6 and 7, three out of
four invariants grow with lowering vR while the fourth one
even becomes negative for vR close to the MSSM scale,
thus, again, leading to a very characteristic pattern.

C. Model IV with a sliding Uð1ÞR �Uð1ÞB�L scale

The method: Finally, in Model IV, c.f. Sec. I C,
the unification is exact for any value of the sliding scale
vBL below a (constant) vR in the ballpark of roughly
3� 1015 GeV, c.f. Fig. 10. Thus, as before, the main
uncertainty at this level comes from the experimental error
in �SðMZÞ which translates into small shifts in vR. In what
follows, we shall again vary vBL along the constant
�SðMZÞ-error trajectories, namely, within �1	, corre-
sponding to the boundaries between the yellow and white
areas within the parametric depicted in Fig. 10.

The results: In the two panels of Fig. 11, the four
invariants of our interest are depicted as functions of
vBL. As in the case of Model III, for each of them the solid
line corresponds to the central-value trajectory in the
parametric space of Fig. 10, whereas the dashed and
dotted curves refer to the �1	 and þ1	-trajectories,
respectively.
Because of the very special nature of the sliding scale in

this setting, all four invariants exhibit only a very mild vBL

dependence, with the strongest effect of the order of few
per cent observed in the LE case. This is because the vBL

scale enters into the soft masses only through the slight
changes in the Abelian gauge couplings, which, however,
are overwhelmed by the color effects in all the other
invariants. This, however, will make it rather difficult to
distinguish this model from the MSSM, namely, because
such a discrimination is efficient only if more than a single
invariant differs significantly from the mSugra value so
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FIG. 9 (color online). Intermediate-scale-dependence of the
RGE invariants Model III, see Sec. I B 2. For each of the four
invariants, the solid curve corresponds to �SðMZÞ fixed at its
central value and the dashed and dotted lines refer to the �1	
and þ1	 trajectories, respectively; c.f. Fig. 8.
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FIG. 10 (color online). The parameter space of Model IV of
Sec. I C. The contours correspond to the different quality of the
�SðMZÞ fit for different choice of the L-R breaking scale vR,
namely, to 1	 (white), 2	 (yellow) and 3	 (orange) values for
the range quoted in [57].
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FIG. 11 (color online). The vBL-scale dependence of the RGE
invariants in Model IV. For practical purposes the figure has
been split into two panels. For each of the four invariants, the
solid curves correspond to �SðMZÞ fixed at its central value
while the dashed and dotted lines refer to the �1	 and þ1	
trajectories corresponding to roughly vR � 2� 1015 GeV and
vR � 4� 1015 GeV, respectively; c.f. Fig. 10.
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that the intermediate scale can be independently con-
strained from more than a single quantity.

Finally, let us comment in brief on the case where the
Uð1ÞR �Uð1ÞB�L ! Uð1ÞY breakdown is not triggered by
SUð2ÞR doublets like above but by, e.g., SUð2ÞR triplets.
We expect that for such models the effects on the invariants
would be similar to those expected in Model IV, and
certainly smaller than those observed in Models I-III.

D. Squark and slepton spectra

In Fig. 12 we plot the shapes of the MSSM squark and
slepton spectra obtained in mSugra and in Models I, II
and III calculated for the SPS3 benchmark point, i.e. for
m0 ¼ 90 GeV and M1=2 ¼ 400 GeV. This figure is to be

understood only as an illustrative example of the different
spectra generated in our different models. For each of the
cases, the horizontal lines (bottom to up) correspond tom~ec

(light blue), m~l (blue), m~uc (orange), m~dc (light orange)

and m~q (purple). In order to pronounce the differences, the

vR scale has been in all cases chosen very low, namely,
vR � 103 GeV, and consequently vPS in Model III is fixed
to vPS � 107 GeV by gauge unification. The masses of the
~dc and of the ~uc almost coincide in all the models. Models I
and II differ from the mSugra case, namely, by the smaller
splittings observable in the squark as well as in the slepton
masses, which is more pronounced for the latter model.
However, the spectrum ofModel III is strongly compressed
due to an extended Pati-Salam stage which makes it rather
outstanding.

We decided not to overpopulate the figure by displaying
the gaugino masses which, indeed, are obtained by a
simple rescaling (4); the SUSY-to-GUT-scale ratios of
the relevant �’s can be inferred from the evolution of the
gauge couplings, c.f. Figs. 1–4.

IV. DISCUSSION AND OUTLOOK

We have studied the leading-log RGE evolution of
the MSSM soft SUSY breaking parameters for four differ-
ent GUT models with mSugra boundary conditions.
Although all the settings are based on the unified SOð10Þ
gauge group, they differ at the level of intermediate scale
symmetry groups and/or particle content below the GUT
scale. Two of the models discussed (Models I and II of
Secs. I B 1a and I B 1b), which differ only in their beyond-
MSSM field contents, feature an intermediate left-right
symmetry which, at the level of precision used in this
calculation, can be broken to SUð3Þc � SUð2ÞL �Uð1ÞY
of the MSSM almost anywhere between MG and the soft
SUSY-breaking scale. In Model III (c.f. Sec. I B 2) the
sliding nature of the SUð2ÞR-breaking scale relies on an
additional intermediate Pati-Salam symmetry. Finally, in
Model IV (see Sec. I C), the left-right symmetry is broken
at a relatively high scale, but there is instead a sliding scale
corresponding to the breaking of its Uð1ÞR �Uð1ÞB�L

remnant. All models we consider are able to accommodate
the neutrino data by either inverse or linear seesaw.
The extra gauge groups and/or beyond MSSM fields

change the evolution of the soft parameters with respect
to the basic mSugra expectation. The invariant mass com-
binations we considered are especially suited to uncover
the effects of beyond-mSugra physics on the SUSY spec-
tra. Remarkably, while invariants contain only a logarith-
mic dependence on the new physics scales, their behavior
is qualitatively different in different models.
In our Models I and II, the invariants LE and QU

(c.f., Sec. II) are always lower than the mSugra limit, while
DL and QE are always larger. The former is a direct
consequence of the LR symmetry, while the latter reflects
mainly the shift in �ðMGÞ the models exhibit with respect
to theMSSM expectation. Moreover, in spite of only a mild
difference in the particle content, the invariants differ
quantitatively between Model I and Model II.
In contrast to that, in the Pati-Salam based Model III,

LE and QU are always larger than in mSugra, with a
rather strong dependence on the vR scale, namely, due to
the higher dimensionality of the relevant multiplets at the
Pati-Salam stage. At the same time, in Model III, DL is
always below the mSugra limit, while QE hardly varies at
all as a function of vR. Finally, Model IV is an example of
how a new scale can be effectively ‘‘hidden’’ from the
RGE invariants in special constructions: Despite contain-
ing a new scale potentially as low as Oð1Þ TeV, all invar-
iants are always very close to the mSugra limit in this
model. Technically, this is achieved by maintaining the
beta coefficients for the SUð2ÞL and SUð3Þc factors as in
the MSSM all the way up to a scale close toMG, while the
sliding feature of the Uð1ÞR �Uð1ÞB�L breaking scale
‘‘shields’’ all invariants from the effects of the new group,
with the exception of LE, which, however, changes only
very weakly.

Model I Model IImSUGRA Model III

200

400

600

800

m
G
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FIG. 12 (color online). The MSSM squark and slepton spectra
mSugra and Models I, II and III calculated for the SPS3 bench-
mark point, i.e. for m0 ¼ 90 GeV and M1=2 ¼ 400 GeV. In all

cases, vR ¼ 103 GeV and vPS � 107 GeV in Model III. From
bottom to top the horizontal lines correspond to: m~ec (light blue),
m~l (blue), m~uc (orange), m~dc (light orange) and m~q (purple). We

do not show the results for Model IV in this figure, since they are
very similar to the mSugra case.
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It is especially interesting to compare our results with
those obtained for minimal seesaw models within mSugra.
Invariants for seesaw have been studied previously in
[28,47,49]. Type-I seesaw adds only singlets to the
MSSM and thus, just like our Model IV, cannot be distin-
guished from the pure mSugra case by means of the
invariants only. Type-II and type-III seesaw, on the other
hand, change the b-coefficients with respect to the MSSM,
but do not extend the gauge group. As a result, for minimal
seesaws all four invariants are larger than their mSugra
limit if the seesaw scale is below the GUT scale, as
indicated by neutrino data. Thus, the invariants should
allow to distinguish our SOð10Þ-based Models I to III
from type-II and type-III seesaw.

The RGE invariants are, therefore, good model discrim-
inators, at least in principle. However, any attempt to
quantitatively determine the scale of a new physics within
a particular scenario must inevitably address the accuracy
of their calculation. Different types of errors need to be
considered here. First, there are the errors from uncertain-
ties in the values of the input parameters. The largest error
currently stems from the completely unknown mSUSY, see
Fig. 5 and Eq. (4). Once SUSY masses, indeed, have been
measured, this will become irrelevant and the largest error
will, most likely, be �ð�SÞ.

Next, the RGE invariants considered here are calculated
to the leading-log precision only. However, in some cases,
important higher order effects such as genuine 2-loop
corrections and 1-loop thresholds can emerge; for the see-
saw, this was studied recently in [28,49]. Both, 2-loop
running and 1-loop SUSY thresholds can, of course, be
taken into account, but the calculation of the invariants
at this level cannot be done analytically. Instead, it
requires numerical tools such as, e.g., SPheno [58,59]
and SARAH [60–62].

Probably more important than the above theoretical
considerations, eventually, will be the fact that the invari-
ants are not directly measurable quantities. Conversion of
the invariants into the measured sparticle masses (or ex-
traction of relevant soft parameters from sparticle mea-
surements) requires additional experimental input. In the
case of the first two generations of sfermions this requires
at least a reliable measurement of tan� for the determina-
tion of the D-terms. In addition, at variance with the
situation in the minimal seeesaw models, the breaking of
the extra gauge symmetries can potentially produce newD-
terms not present in the SUð3ÞC � SUð2ÞL �Uð1ÞY case.
Usually it is assumed that any beyond-SM gauge group is
broken in a ‘‘D-flat’’ manner in order to avoid problems
with tachyonic sfermions. However, since we wish to ex-
tract information from sfermion masses themselves, it will
certainly be prudent to do a combined fit on the new
parameters instead of simply assuming D-flatness.

The prospects of measuring sparticle masses at the LHC
and, possibly, at the future ILC have been studied by many

authors, for a detailed review see, for example [6]. In
general, one expects that slepton and gaugino masses, if
within the kinematical reach of the ILC, can be measured
at the per mill level or even better. Colored sparticles,
however, might be too heavy to be produced at the ILC.
At the LHC, the precision with which sparticle masses can
be measured depends strongly not only on the absolute
scale of the SUSY masses, but also decisively on the mass
ordering of the sparticles. If long decay chains such as

~q ! �0
2q with �0

2 ! ~ll ! l�l��0
1 are available, many

SUSY masses can be measured with accuracies down to
(few) percent. From the detailed studies of [6], the authors
of [50] concluded that the precision of ILC+LHC com-
bined would make it possible to see indications for a see-
saw of either type II or type III for nearly all relevant
seesaw scales. In an LHC-only analysis, the seesaw scale
must be below 1014 GeV even in favorable circumstances
[50] or might not leave a trace in the LHC data at all.
Comparing roughly the changes in spectra induced in

the seesaw models studied in [50] with the changes ex-
pected in our SOð10Þ models, we expect that a detailed,
numerical calculation should be able to probe most, if not
all the interesting parameter space of our models, if SUSY
is found at the LHC and precise mass measurements are
done with the help of an ILC.
Finally, we would like to mention that the models we

have studied in this paper have potentially also a rich
phenomenology beyond the MSSM apart from the invari-
ants. There are the new gauge bosons, additional Higgses,
additional gauginos/higgsinos, large lepton flavor violation
and many other effects worth studying. We plan to return to
these questions in a future publication.
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APPENDIX A: ONE-LOOP RUNNING
WITH Uð1Þ MIXING

In this appendix we give some technical details of the
1-loop evolution of gauge couplings and soft-SUSY-
breaking terms in Model IV of Sec. I C in which extra
kinetic mixing effects, generally present in theories with
multiple Uð1Þ gauge factors, emerge. This, in the approach
advocated in, e.g., [53], amounts to extending the notion
of the individual gauge couplings and gaugino masses
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associated to different Uð1Þ gauge factors to matrix forms,
which, subsequently, complicates the relevant generalized
evolution equations.

1. Gauge couplings

To deal with the effects of the kinetic mixing in cases
with more than a single Abelian gauge factor like in
Model IVof Sec. I C it is convenient to work with a matrix
of gauge couplings rather than with each of them individu-
ally, which would require an extra RGE for the kinetic
mixing parameters, c.f., [53]. In theUð1ÞR �Uð1ÞB�L case
this amounts to defining

G ¼ gRR gRX
gXR gXX

� �
; (A1)

where X is a shorthand notation for the canonically
normalized B� L. The evolution equation can be then
written as

d

dt
A�1 ¼ ��; (A2)

where A�1 � 4�ðGGTÞ�1 and t ¼ 1
2� logð�=�0Þ. Here

we have defined the relevant matrix of anomalous dimen-
sions by

� � X
f

QfQ
T
f ; (A3)

where the summation is taken over all the chiral superfields
f in the model and Qf denotes a column vector of Uð1ÞR
and Uð1ÞB�L charges of each f.

The matching condition between such high-energy
gauge couplings (corresponding to Uð1ÞR 	Uð1ÞB�L in
the case of our interest) and the effective-theory one (i.e.,
Uð1ÞY of the MSSM) at scale t0 then reads

��1
Y ðt0Þ ¼ pT

YA
�1ðt0ÞpY; (A4)

where pT
Y ¼ ð

ffiffi
3
5

q
;
ffiffi
2
5

q
Þ are the coefficients of the hyper-

charge Y in the space of the R- and B� L-charges, namely,

Y ¼
ffiffi
3
5

q
T3
R þ

ffiffi
2
5

q
X. Thus, one has

g�2
Y ¼ðgRRgXX�gRXgXRÞ�2

�
�
3

5
ðg2XXþg2XRÞþ

2

5
ðg2RRþg2RXÞ

�2

5

ffiffiffi
6

p ðgRRgXRþgRXgXXÞ
�
: (A5)

2. Soft SUSY-breaking terms

Neglecting for simplicity the Yukawa couplings and also
the ‘‘trace-terms’’ (denoted by S in [56]), which in mSugra
yield only subleading correction to the leading-log
approximation used in this work, one can write the gener-
alized evolution equation including the effects of the Uð1Þ
mixing [53] as

d

dt
~m2
f ¼ � 1

�
QT

fGMMyGTQf; (A6)

whereG is the matrix of gauge couplings,M is the gaugino
mass matrix and t ¼ 1

2� log�=�0. This is to be solved

together with the gauge coupling (A2) and gaugino evolu-
tion equations. The latter reads at one loop

d

dt
M ¼ 1

8�
ðMGT�GþGT�GMÞ: (A7)

The simplicity of the system (A2), (A6), and (A7) and, in
particular, the flavor-diagonal mSugra initial condition,
admits to write the general solution in a closed and com-
pact form

A�1ðtÞ ¼ A�1ðt0Þ � �ðt� t0Þ; (A8)

ðG�1TMG�1ÞðtÞ ¼ 1

4�
��1
G M1=2; (A9)

and, in particular,

~m2
fðtÞ� ~m2

fðt0Þ
¼2M2

1=2�
�2
G �QT

fA
�1
0 ½��1�A�1A0�

�1A0A
�1
A�1

0 Qf;

(A10)

where A0 � Aðt0Þ and A � AðtÞ.
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