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We consider an electroweak model based on the gauge symmetry SUð2ÞL �Uð1ÞY0 � Uð1ÞB�L which

has right-handed neutrinos with different exotic B� L quantum numbers. Because of this particular

feature we are able to write Yukawa terms, and right-handed neutrino mass terms, with scalar fields that

can develop vacuum expectation values belonging to different energy scales. We make a detailed study of

the scalar and the Yukawa neutrino sectors to show that this model is compatible with the observed solar

and atmospheric neutrino mass scales and the tribimaximal mixing matrix. We also show that there are

dark matter candidates if a Z2 symmetry is included.
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I. INTRODUCTION

The neutrino masses and mixing, which are required for
giving a consistent explanation for the solar and atmospheric
neutrino anomalies, are the most firm evidence of physics
beyond the electroweak standard model (ESM). New phys-
ics can be implemented in a variety of different scenarios.
There are basically two main schemes that are often fol-
lowed: (i) new matter content is added to the model respect-
ing the original ESM gauge symmetry and (ii) to consider a
model with a larger gauge symmetry. Certainly both
schemes can be implemented together. In this vein, exten-
sions of the ESM having an extra Uð1Þ gauge symmetry
factor are interesting for a variety of reasons. They are the
simplest way of extending the ESM gauge symmetry and
can be thought of as an intermediate energy scale symmetry
coming from the breaking, at a higher energy scale, of a
larger gauge symmetry describing some yet unknown phys-
ics. For instance, Uð1Þ gauge factors are contained in grand
unified theories, supersymmetric models, and left-right
models. One major feature of these models is the existence
of an extra neutral vector boson, usually denoted by Z0,
whose mass is related to the energy scale of the extra Uð1Þ
symmetry spontaneously broken. It is expected to have Z0
signals at the TeV scale and its discovery is one of the goals
of the LHC and future lepton colliders. Depending on the
implementation of this kind of model, it can have a natural
candidate for dark matter (DM) and/or furnish a mechanism
for leptogenesis. Through the years much work has been
done considering the features of this extraUð1Þ gauge factor
and some particular formulations of the model were made.
See, for example, Refs. [1,2]. In particular, when the charge
of the extra Uð1Þ factor is identified with B� L (baryon
number minus lepton number), there is extensive literature
concerning the most different versions of the model and a
large variety of phenomenological aspects.

In this paper we consider a B� L gauge model which
has the particularity of being rendered anomaly free by
introducing right-handed neutrinos with exotic B� L
charges. The number of right-handed neutrinos and their
B� L exotic charges is fixed by the anomaly cancellation
equations. Since in this model not all of these right-handed
neutrinos have the same exotic charge, we can construct
Yukawa terms with different SUð2ÞL scalar doublets.
Appropriate SUð2ÞL scalar singlets are also introduced to
write the most general mass terms for the right-handed
neutrinos. We make a detailed study of the scalar potential,
concerning the mass spectra and the physical Goldstones,
and take advantage of this rich scalar sector to construct a
seesaw mechanism at low energies (TeV scale) to give
realistic masses to the light active neutrinos.
The outline of this paper is as follows. In Sec. II we

present the particular B� L gauge model under consid-
eration. In Sec. III we analyze the scalar potential of the
model—the symmetries, the mass spectra, and the model
compatibility with experimental constraints—and intro-
duce a Z2 symmetry to allow the model to have DM
candidates. In Sec. IV we study the neutrino mass genera-
tion and show the compatibility of the model with the
observed neutrino masses and the tribimaximal mixing.
Finally, our conclusions are given in Sec. V.

II. THE MODEL

We consider the model of Ref. [3] that we briefly sum-
marize here. The model is an extension of the ESM based
on the gauge symmetry SUð2ÞL �Uð1ÞY0 �Uð1ÞB�L where
B and L are the usual baryonic and leptonic numbers,
respectively, and Y0 is a new charge. The values of Y0 are
chosen to obtain the ESM hypercharge Y through the
relation Y ¼ ½Y0 þ ðB� LÞ�, after the first spontaneous
symmetry breaking. In order to make the model anomaly
free we have to introduce right-handed neutrinos (nR).
Solving the anomaly equations we find that the number of
nR cannot be less than 3, if we restrict ourselves to integer
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quantum numbers only. For the minimal number (3) these
equations have two solutions: the usual one, where all right-
handed neutrinos are identical and have L¼1, and the
exotic one, where two of them have L ¼ 4 and the third
one has L ¼ �5. The model under consideration has the
right-handed neutrinos having such exotic lepton numbers.

The fermionic content of the model is the same as the
ESM plus the right-handed neutrinos introduced above.
The respective charge assignment is shown in Table I.
In the framework of a gauge theory with spontaneous

symmetry breaking, we at least have to introduce a scalar
doublet, H, in order to give mass to the lighter massive
neutral vector boson (Z) and the charged fermions, as in the
ESM. However, more scalar fields are needed to give mass
to the extra neutral vector boson (Z0), which is expected to
be heavier than Z, and to the neutrinos of the model.
Respecting gauge invariance, a general choice is to intro-
duce two SUð2Þ scalar doublets, �1;2, and three SUð2Þ
neutral scalar singlets, �1;2;3, with the charge assignments

shown in Table II.
With these fields, and omitting summation symbols, the

most general Yukawa Lagrangian respecting the gauge
invariance is given by

�LY ¼ YðlÞ
i

�LLieRiH þ YðdÞ
ij

�QLidRjH þ YðuÞ
ij

�QLiuRj ~H þDim
�LLinRm�1 þDi3

�LLinR3�2 þMmnðnRmÞcnRn�1

þM33ðnR3ÞcnR3�2 þMm3ðnRmÞcnR3�3;þH:c:; (1)

where i, j ¼ 1, 2, 3 are lepton family numbers and represent e, �, and �, respectively, m, n ¼ 1, 2, and ~H ¼ i�2H
�. The

corresponding scalar potential is

VB�L ¼ ��2
HH

yHþ �HðHyHÞ2 ��2
11�

y
1�1 þ �11j�y

1�1j2 ��2
22�

y
2�2 þ �22j�y

2�2j2 ��2
s�j��j2 þ �s�j��

���j2
þ �12j�1j2j�2j2 þ �0

12ð�y
1�2Þð�y

2�1Þ þ�H�jHj2j��j2 þ�0
H�ðHy��Þð�y

�HÞ þ�Hs�jHj2j��j2
þ�0

��j��j2j��j2 þ ½�y
1�2ð�13�1�

�
3 þ �23�

�
2�3Þ þ �123�1�2ð��

3Þ2 þ H:c:� þ ���ð��
���Þð��

���Þ; (2)

where � ¼ 1, 2; �,� ¼ 1, 2, 3; and�< � in the last term.
In LY, the motivation for introducing such scalar fields is
to write the most general neutrino mass terms. Because of
the fact that not all right-handed neutrinos have the same Y0
and (B� L) charges, the neutrino mass matrix will have
entries proportional to vacuum expectation values (VEVs)
which can, in principle, belong to different energy scales.
The scalar potential is a consequence of the fields we have
previously introduced, and the terms in Eq. (2) are only
dictated by gauge invariance. Now, we have to observe that
when we write terms based on general grounds, although
correct, we may have introduced more symmetries than we
need. Hence, we must do a detailed study of the scalar
potential, and know the scalar mass spectra in order to
avoid inconsistencies with the present phenomenology.
The scalar doublets of the model, H and �1;2, contribute
to the Z boson mass, so their vacuum expectation values
are bounded by the electroweak energy scale. Hence, the

largest energy scale of the model comes from the SUð2Þ
scalar singlets �1;2;3. In this way, the pattern of the sponta-
neous symmetry breaking is

SUð2ÞL �Uð1ÞY0 �Uð1ÞB�L

!h�1;2;3i
SUð2ÞL �Uð1ÞY!

hH;�1;2i
Uð1Þem: (3)

III. THE SCALAR POTENTIAL ANALYSIS

Now, we focus on the analysis of the VB�L scalar po-
tential given in Eq. (2) when all neutral scalar fields
develop nonvanishing VEVs, with the usual shifting ’0 ¼
1ffiffi
2

p ðV’ þ Re’þ i Im’Þ. By using standard procedures we

are able to find the constraint equations coming from the
linear terms in the scalar potential after the symmetry
breaking. See the appendix. In the same way, we can

TABLE I. Quantum number assignment for the fermionic
fields.

I3 I Q Y0 B� L Y

�eL 1=2 1=2 0 0 �1 �1
eL �1=2 1=2 �1 0 �1 �1
eR 0 0 �1 �1 �1 �2
uL 1=2 1=2 2=3 0 1=3 1=3
dL �1=2 1=2 �1=3 0 1=3 1=3
uR 0 0 2=3 1 1=3 4=3
dR 0 0 �1=3 �1 1=3 �2=3
n1R 0 0 0 4 �4 0

n2R 0 0 0 4 �4 0

n3R 0 0 0 �5 5 0

TABLE II. Quantum number assignment for the scalar fields.

I3 I Q Y0 B� L Y

H0;þ �1=2 1=2 0, 1 1 0 1

�0;�
1 �1=2 1=2 0, �1 �4 þ3 �1

�0;�
2 �1=2 1=2 0, �1 5 �6 �1

�1 0 0 0 �8 þ8 0

�2 0 0 0 10 �10 0

�3 0 0 0 1 �1 0
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construct the mass-squared matrices for the charged, real,
and imaginary scalar fields. We start looking at the mass-
squared matrix for the charged fields. It is a complete 3� 3
symmetric matrix in the basis ðHþ;�þ

1 ;�
þ
2 Þ that can be

easily diagonalized and, after taking into account the con-
straint equations, gives the following mass spectrum: two
charged Goldstone bosons

G�
W ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V2
H

V2
�2

þV2
�1

V2
�2

s
�
� VH

V�2

H�þV�1

V�2

��
1 þ��

2

�
; (4)

and two massive states whose expressions we are not
showing by shortness. The fields G�

W will be absorbed to
form the longitudinal components of the charged massive
vector bosonsW�. The other two physical states remain in
the spectrum and are a prediction of the model. Later in the
paper we approach numerically all the mass spectra in
some different situations.

In the neutral imaginary scalar sector we have a 6� 6
mass-squared matrix that, after the diagonalization proce-
dure, shows two massive scalar and four massless fields.
Two of them will become the longitudinal components of
the Z and the Z0 neutral vector bosons. The other two
massless states remain in the physical spectrum. We
show the two physical Goldstone bosons only in the limit
where V�1;2;3

� VH, V�1;2
and they are given by

G0
F1
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
�1

þV2
�2

V2
HþV2

�1
þV2

�2

vuut �
ImH0þ VHV�1

V2
�1

þV2
�2

Im�0
1

þ VHV�2

V2
�1

þV2
�2

Im�0
2

�
; (5)

G0
F2

	 1ffiffiffiffiffiffiffiffi
110

p ð7 Im�1 þ 5 Im�2 þ 6 Im�3Þ: (6)

From the expressions above we see that G0
F1;2

are mainly

doublet and singlet, respectively. This fact will be analyzed
later on.

For the neutral real scalar sector we have a symmetric
6� 6 mass-squared matrix with a nonvanishing determi-
nant. Hence the spectrum will not contain massless states.
We will not show analytical expressions here but we will
give numerical values below.

The number of Goldstone bosons we have found by
doing explicit calculations can be easily understood by
studying the global symmetries of the scalar potential
before and after the spontaneous symmetry breaking
(SSB). Before the SSB, the global symmetries of the scalar
potential are (a) SUð2Þ acting on H and �1;2 doublets,

(b) Uð1Þ acting on H with charge þ1, (c) Uð1Þ acting on
�1;2 with charge þ1, and (d) two independent Uð1Þ�;�
transformations acting on the fields �1, �2, �1, �2, �3

with charges ð12 ;� 1
2 ; 1;�1; 0Þ and ð� 1

2 ;
1
2 ; 0;þ2; 1Þ, re-

spectively. After the SSB the global symmetries of the

scalar potential are reduced to a single Uð1Þ� acting on
the charged components of the doublets,H� and��

1;2, with

charges ð�1;�1Þ. Following the Goldstone theorem, the
number of Goldstone bosons is equal to the number of
broken symmetry generators. In this case the original
symmetry has ð3þ 4� 1Þ ¼ 7 generators and the remain-
ing symmetry has 1. Then we must have 6 Goldstone
bosons, which is exactly the number we have found just
above: two charged and four neutral imaginary fields.
Notice that the scalar potential given in Eq. (2) corrects

the one given in Eq. (16) of Ref. [3] in which the terms
proportional to �0

H� are missing. The lack of these terms

alters the global symmetries under which the scalar
potential is invariant and, consequently, the number of
Goldstone bosons in the spectra. In that case the symme-
tries before the SSB are (a) Oð4Þ acting on the four
components ofH, (b) SUð2Þ acting on�1;2, (c)Uð1Þ acting
on �1;2, (d) the two Uð1Þ�;� defined above. After the

SSB the remaining symmetries are (i) Oð3Þ acting on the
components ðImH0;ReHþ;ImHþÞ and (ii) Uð1Þ acting
on ��

1;2 with charge �1. Therefore, we are left with

ð6þ3þ3�1Þ�ð3þ1Þ¼12�4¼8 Goldstone bosons.
The same result is obtained by doing explicit calculations.
From the mass-squared matrices we find that the number of
Goldstone bosons is the expected one and also that in
the charged sector we are left with four massless states
given by

G�
W ¼ H�; (7)

G�
C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
�1

þ V2
�2

q ðV�1
��

1 þ V�2
��

2 Þ: (8)

Hence, this result is in conflict with the present phenome-
nology since there are two extra charged massless scalars
in the spectrum.
Now, we return to our present analysis. Since our analy-

sis of the scalar potential shows the existence of two
physical Goldstone bosons, it is time to care about the
safety of the model. Before that, some remarks about the
VEVs of the model are due. The V�1;2;3

are the largest

energy scale of the model. The main contribution to the
Z boson square mass comes from the doublets so that
ðV2

H þ V2
�1

þ V2
�2
Þ ¼ V2

ESM ¼ ð246Þ2 GeV2. The doublet

H is the one that couples to quarks and to charged leptons
via Yukawa interactions, and hence, VH must be close to
VESM to give the correct tree level mass to the quark top, as
the ESM do, for an Oð1Þ top Yukawa coupling. We then
conclude that V2

�1
þ V2

�2

 V2

H.

The major challenge to models with physical Goldstone
bosons, also called Majorons (J), comes from the energy
loss in stars through the processes �þ e� ! e� þ J.
This process is used to put limits on the �eeJ coupling,
and it is found that it has to be geeJ � 10�10 for the Sun,
and geeJ � 10�12 for the red-giant stars [4]. However, the
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dynamics of the red giants has not the same level of
confidence as that of the Sun, and this fact considerably
weakens the second constraint.

The physical Goldstone G0
F2

has components only in the

SUð2Þ singlets �1;2;3, which couple only to right-handed

neutrinos. Therefore, it is safe since there is no tree level
contribution to the energy loss process. The case for G0

F1
is

not that simple. G0
F1

has a component in the ESM-like

doublet H, and it contributes to �eeJ through ImH0. The
components in �1;2, which couple only to neutrinos at the

tree level, pose no problem. Since in this case symmetry
eigenstates and mass eigenstates are connected by orthogo-
nal matrices, from Eq. (6) we find

ImH0 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
�1

þ V2
�2

V2
H þ V2

�1
þ V2

�2

vuut G0
F1

þ . . . ; (9)

and, hence,

geeJ 	 Yeffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
�1

þ V2
�2

V2
H þ V2

�1
þ V2

�2

vuut ¼
� ffiffiffi

2
p

me

VH

��
V�ffiffiffi
2

p
VH

�

	 2� 10�6 V�

VH

� 10�12 � 10�10; (10)

where Ye is the electron Yukawa coupling to the doubletH,
we have defined V2

�1
þ V2

�2
� V2

�, and we have used the

shift H0 ! 1ffiffi
2

p ðVH þ ReH0 þ iImH0Þ. From the equation

above we conclude that the VEVs of the SUð2Þ doublets
�1;2 must be less than 12 MeV to satisfy the Sun constraint

or less than 120 KeV to satisfy rigorously the red-giant
constraint. Let us adopt for practical purposes an inter-
mediate scale: V� ¼ 1 MeV.

Once we have established the energy scale of the VEVs
of the model, and verified its safety up to now, we can make
an exemplary study of the full scalar mass spectra. We will
do it numerically since the excessive length of the analyti-
cal expressions make them useless.

In order to compute the masses we consider a set of
parameters: the dimensional ones VH ¼ 246, V�1;2

¼0:001,

V�1;2;3
¼1000, in GeV, and �H¼0:2, �11;22¼�0

13;21;22;H1;H2¼
�s�¼1, �H1;H2¼�Hs�¼�0

11;12;23, �12;13;23 ¼ 0:1, �123 ¼
�0:8 which are dimensionless, for � ¼ 1, 2, 3. Note that
the values for the � parameters are found by solving the
constraint equations for the scalar potential: �2

H ¼ ð402Þ2,
�2

11 ¼ �ð630Þ2, �2
22 ¼ ð230Þ2, �2

s1 ¼ �2
s2 ¼ ð838Þ2,

�2
s3 ¼ ð550Þ2, in GeV2. We also use gY0 ¼ gB�L ¼

0:4885, and g ¼ 0:6298, where gY0 , gB�L, and g are the
coupling constants of the Uð1ÞY0 , Uð1ÞB�L, and SUð2ÞL
gauge factors, respectively, which are related to the electric
charge through 1=e2 ¼ 1=g2Y0 þ 1=g2B�L þ 1=g2 [3].

The charged scalar sector gives the masses mCj
¼

ð1424:9; 173:9; 0Þ, also in GeV, where the massless
complex field is responsible for the longitudinal compo-
nents of the charged vector bosons Wþ and W�.

In the imaginary neutral scalar sector we have a 6� 6
square mass matrix and after diagonalization we find, in
GeV,mIi ¼ ð1549:2; 1414:13; 0; 0; 0; 0Þ. Notice the correct

number of the massless field: two are absorbed to form the
longitudinal component of the neutral vector bosons of the
model, Z and Z0, and the other two are the physical
Goldstone bosons G0

F1;2
, as discussed above.

In the real neutral scalar sector, in the same way, we find
mRi

¼ ð1743:9; 1643:2; 1414:2; 1029:8; 150:0; 0:0014Þ, in

GeV. We have found a very light scalar of about
1.4 MeV which poses a new challenge to the model: the
Z invisible decay width. The presence of such a light scalar
field, say, R, and the G0

F1
� J zero mass state, allows the

decay Z ! RJ ! JJJ, which will contribute to the Z
invisible decay width as half of the decay Z ! ���, for a
single flavor family [5]. According to the experimental
data there is no room for such an extra contribution [6].
The light scalar we found above is not the result of a

particular choice of the input parameters, as it could be
thought at the first moment. Let us provide a qualitative but
convincing argument. As was observed in Ref. [5], the
reason is as follows. We have mentioned above that, before
the SSB, the scalar potential has a Uð1Þ global symmetry
acting on each of the�1;2 doublets, say,�. This means that

we can rotate freely in the Re�0-Im�0 plane, so that as
long as this Uð1Þ symmetry holds, the fields Re�0 and
Im�0 are mass degenerate. However, this symmetry is
broken when the real neutral component acquires a non-
vanishing VEV and, hence, the fields are no longer mass
degenerate. The square mass difference must be, then, of
the order of the square of the energy scale responsible for
breaking the symmetry, i.e., m2

Re�0 �m2
Im�0 ¼ OðV2

�Þ.
When Im�0 is a Goldstone, m2

Im�0 ¼ 0, we are left with

m2
Re�0 ¼ OðV2

�Þ, which, in our case, it is a very light scalar
since V� must be of the order of 1 MeV, in order to be
consistent with the star energy loss data. Then, we must
find a way to reconcile the present model with the experi-
mental constraints.
Some attempts can be made to remove such inconsis-

tency. Since the origin of the problem is in the breaking of
the Uð1Þ symmetry acting on the doublets �1;2, let us

consider the situation where V�2
¼ 0, and all other

VEVs are different from zero. In this case we find the
same number of neutral Goldstone bosons (4): two would
be Goldstone bosons and two physical ones G0

F1;2
. G0

F2
is

given by the same expression as in Eq. (6), and

G0
F1

	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
H þ V2

�1

q ðV�1
ImH0 þ VHIm�0

1Þ: (11)

We also find that for the same input parameters, but now
providing an input value for �2

22 ¼ ð230Þ2 GeV2, the mass
spectra are practically not affected and we still have a light
real scalar whose mass is about 1 MeV OðV�1

Þ. We get
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the same conclusion if we consider V�1
¼ 0 and V�2

� 0.

We only have to do the replacement�1 $ �2 in the above
results.

As the problem persists, let us now consider the case
where V�1

¼ 0 and V�2
¼ 0. In this case, the number of

Goldstone bosons is reduced to 3. There is only one physi-
cal Goldstone, the G0

F2
given in Eq. (6), which is safe, as

discussed above. The mass spectra are now considerably
affected. For the same input parameters as above, and with
�2

11 ¼ �ð800Þ2, �2
22 ¼ ð230Þ2, in GeV2, the spectra, with

all the masses in GeV, are the following. For the charged
scalars we have mCj

¼ ð1469:4; 380:1; 0Þ. For the imagi-

nary scalars we find mIi ¼ ð1549:2; 1459:1; 337:9; 0; 0; 0Þ,
and for the real scalars mRi

¼ ð1743:9; 1643:2; 1459:1;
1029:8; 337:8; 150:0Þ. As we can see, there is no a light
real scalar anymore. The lighter real scalar is heavier than
the Z vector boson, so that the problematic decay Z ! RJ
is kinematically forbidden. Then, we have succeed in
making the model safe. However, this solution is not
satisfactory since the choice we have made for the doublet
VEVs (V�1;2

¼ 0) does not allow the light neutrinos to get

mass. It is easy to see that in this case there is a remaining
Uð1Þ quantum symmetry, say, Uð1Þ	 , protecting the neu-

trino mass generation at any level. A possible 	-charge
assignment is 	ð�eL;eL;eR;�1;2Þ¼�1, 	ðuL;dL;uR;dRÞ¼
1=3, and 	ðnð1;2;3ÞR;�1;2;3Þ ¼ 0. In order to make the model

compatible with the experimental data and, hence, with
massive neutrinos, we have to look for a new kind of
solution since the symmetry breaking pattern above is
not realistic.

Before continuing the search for a satisfactory solution,
let us observe that before the SSB the model has a Z2 exact
symmetry with the transformation rules Z2ðnR3Þ ¼ �nR3,
Z2ð�2Þ ¼ ��2, Z2ð�3Þ ¼ ��3, and all the other fields
being even under Z2. It is interesting to preserve this
symmetry after the SSB if we are looking for DM candi-
dates. This is true when V�2

¼ V�3
¼ 0. In this case the Z2

symmetry is not spontaneously broken, and a mechanism
similar to that of Ref. [7] can be implemented. The number
of Goldstone bosons is 4, and the physical ones are given
by the following: G0

F1
is given by the same expression in

Eq. (11), and

G0
F2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16V2
�1
þ25V2

�2

q ð5V�2
Im�1þ4V�1

Im�2Þ: (12)

However, as we already know, there is a very light real
scalar that, together with G0

F1
, has severe implications on

the Z invisible decay width. Wewill come to this Z2 picture
later on.

A. The solution

With the aim of constructing a consistent model, let us
introduce a new SUð2Þ neutral scalar singlet �X with the
quantum numbers Y0 ¼ �ðB� LÞ ¼ 3. The Yukawa

Lagrangian remains as in Eq. (1), but to the scalar potential
in Eq. (2), besides extending the range of the indices to �,
� ¼ 1, 2, 3, X, we have to add the following non-
Hermitian terms,

VX
B�L ¼ �i
H1X�

T
1�2H�X � i
H2Xð�T

2�2HÞð��
XÞ2

þ �Xð��
X�1Þð�2�3Þ þ �3Xð��

X�
3
3Þ þ H:c:; (13)

in order to account for all the gauge invariant terms after
the introduction of�X. The terms above reduce the number
of global symmetries of the scalar potential, so that
changes in the scalar spectra are expected.
Before the SSB, the global symmetries of the total scalar

potential are (a) SUð2Þ acting on H and �1;2 doublets,

(b) Uð1Þ� acting on H and �1;2, and (c) Uð1Þ� acting on

the fields H, �1, �2, �1, �2, �3, �X with charges
ð38 ; 0;� 9

8 ; 1;� 5
4 ;� 1

8 ;� 3
8Þ, respectively. After the SSB

the global symmetries of the scalar potential are reduced
to a single Uð1Þ acting on the charged components of the
doublets, H� and ��

1;2, with charges ð�1;�1Þ. The total

number of Goldstone bosons will be given by the number
of broken generators, i.e., 5� 1 ¼ 4, which is the number
of massless fields needed to form the longitudinal compo-
nents of the charged ðWþ; W�Þ and neutral vector bosons
ðZ; Z0Þ. In this case, there are no physical Goldstone bosons
at all. It means that the inclusion of the SUð2Þ scalar singlet
�X has removed all physical massless states from the
spectrum, and we have succeeded in finding a solution
for the safety of the model.
Now, numerical applications require expanding the

input parameters set to account for the new ones related
to �X. We then choose V�X

¼ 1000, and 
H1X ¼ 0:01 in

GeV, and the dimensionless �sX ¼ �0
1X ¼ 1, �HsX ¼

�0
2X ¼ �1X ¼ �2X ¼ �3X ¼ �3X ¼ 0:1, �X ¼ �0:6,

and 
H2X ¼ 0:001. As before the � parameters are found
by solving the constraint equations given in the appendix.
With the above parameter set, plus the one we have used
previously, we find mCj

¼ ð11 137:3; 1661:7; 0Þ for the

charged scalar sector, mIi ¼ ð11 135:9; 1652:6; 1467:0;
973:6; 0:002; 0; 0Þ for the neutral imaginary sector, and
mRi

¼ ð11 135:9; 1927:6; 1816:6; 1652:7; 1508:8; 900:5;

146:2Þ for the real scalar sector, in GeV. Notice that we
have now a very light pseudoscalar, which has components
mainly in the SUð2Þ singlet fields �1;2;3;X. For instance,

its component in ImH0 is 7:3� 10�12, which implies
geeJ 	 10�18. Hence, it is compatible with the astrophys-
ical constraint, and poses no problem to the Z invisible
decay width, since all the real scalar fields are heavier than
the Z boson.
In this case the introduction of the �X scalar provides

the right elements to make the model safe. Moreover,
concerning the neutrino mass generation, from the
Yukawa terms in Eq. (1) we are able to construct the
most general neutrino mass matrix, since now all VEVs
are different from zero.
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B. A Z2 symmetry and dark matter

Now let us consider the Z2 symmetry again, after the
introduction of the scalar �X. We had the field symmetry
transformation rules

Z2ðnR3Þ¼�nR3; Z2ð�2Þ¼��2; Z2ð�3Þ¼��3; (14)

and all the other being even. It is easy to see that all the
Hermitian terms in the scalar potential involving �X are
invariant under Z2. However, the non-Hermitian terms

� i
H2Xð�T
2�2HÞð��

XÞ2; �Xð��
X�1Þð�2�3Þ; and

�3Xð��
X�

3
3Þ; (15)

in VX
B�L, are not invariant. We could change the �X trans-

formation rule to odd, in order to have some of them
invariant. In this case, however, if we want to keep the
Lagrangian invariant under Z2 after the SSB, we must have
V�X

¼ 0, and this is not an option since we need V�X
� 0

to have a consistent model, as discussed above. Motivated
by the possibility of having DM candidates we impose the
Z2 symmetry to the entire Lagrangian. Then, the terms in
Eq. (15) will be removed from the scalar potential and the
only non-Hermitian terms allowed are

VNH
B�L ¼ �y

1�2ð�13�1�
�
3 þ �23�

�
2�3Þ þ �123�1�2ð��

3Þ2
� i
H1X�

T
1�2H�X þ H:c: (16)

After the SSB, the Z2 symmetry is not broken if we have
V�2

¼ V�3
¼ 0, and we have mass eigenstates that are also

eigenstates of this symmetry. However, we know from our
previous analysis, before introducing �X, that this vacuum
configuration challenges the safety of the model due to a
physical Goldstone and a light real scalar. Now, after
introducing �X we have four massless states in the neutral
imaginary sector. However, in this case, both of the physi-
cal massless states are mainly singlets: G0

F2
is given by the

same expression in Eq. (12), and

G0
F1

	 1ffiffiffiffiffiffiffiffiffiffiffi
7093

p ð12 Im�1 � 15 Im�2 þ 82 Im�XÞ: (17)

In fact, for the parameter set we used above, the G0
F1

component in ImH0 is 	 2� 10�12 which implies geeJ 	
4� 10�18; thus it is safe with respect to the star energy loss
constraint. This main feature is due to the introduction of
the trilinear term �i
H1X�

T
1�2H�X. Qualitative argu-

ments to explain this behavior can be given. The number
ofUð1Þ symmetries is the same in both situations, with and
without�X, 4. Without�X, we have two independentUð1Þ
symmetries involving only the doublets, say, Uð1Þ� acting
onH, andUð1Þ� acting on�1;2. With�X, the trilinear term

relates the Uð1Þ charge of H to that of �1, reducing the
number ofUð1Þ symmetries involving only doublets to just
one, say,Uð1Þ� acting onH and�1;2, and at the same time,

it introduces a new Uð1Þ symmetry acting on H and �X,
say,Uð1Þ�. The number of broken generators is the same in

both situations, since we have the same number of massless
states; however, the origin of these physical massless states
is different. The introduction of�X works in a very similar
way to the singlet introduced in Refs. [8,9] to form the
terms HT

u�2Hd� and HT
u�2Hd�

2, respectively, in order to
make the axion invisible.
The numerical spectra for the different scalar sectors, in

GeV, are mCj
¼ ð1489:9; 1330:3; 0Þ for the charged scalar

sector; mIi ¼ ð1479:7; 1433:9; 1318:9; 0; 0; 0; 0Þ for the

neutral imaginary sector, and mRi
¼ ð1483:5; 1479:7;

1378:4; 1378:4; 1318:9; 675:3; 152:9Þ for the real scalar
sector. The point here is that all real scalar fields are now
heavier than the Z boson, avoiding in this way the Z
invisible decay width constraint. Therefore, the model is
safe from these most severe constraints.
As the Z2 symmetry still holds after the SSB, due to this

particular vacuum configuration, the model can present
some DM candidates. In general, a candidate must be the
lightest particle odd under Z2, in order to be stable. In our
case, it can be the lightest odd mass eigenstate of the nR3 or
the lightest odd imaginary mass eigenstate, or its odd real
counterpart. This subject will be considered elsewhere.
Here we only estimate the relic abundance and the direct
detection cross section for the case of the fermionic cold
DM candidate nR3 (referred as � from now on).
The most relevant annihilation process of � occurs via

the t-channel exchange of ��
2 (�0

2) to charged (neutral)
leptons’ final states. The thermally averaged � annihilation
cross section, h�vi, is given by [10]

h�vi 	 aþ bhv2i 	 1

16

X
ij

G2
eff;ijccM

2
�hv2i; (18)

where i, j ¼ e, �, � and cc are the color factors, equal to 1
for leptons. Also we have neglected the lepton masses. The
Geff;ij¼Di3D

�
j3=ðm2

C1;R2
þM2

�Þ are the effective couplings,
where mC1

	 1489 GeV (mR2
	 1489 GeV), the mass to

be considered when charged (neutral) leptons are produced.
The relic abundance of � is approximately given by [11]

�h2 	 1:04� 10�9xf
MPl

ffiffiffiffiffi
g�

p ðaþ 3b=xfÞ ; (19)

where, in this model, g� ¼ 107:75 is the number of rela-
tivistic degrees of freedom available at the freeze-out tem-
perature, Tf, and xf ¼ M�=Tf is given by

xf ¼ ln

2
4c

ffiffiffiffiffiffi
45

8

s
g�MPlM�ðaþ 6b=xfÞ

23 ffiffiffiffiffiffiffiffiffiffi
xfg�

p
3
5; (20)

with c ¼ 5=4 and g� ¼ 2. Using the following set of

parameters, De3 ¼ 0:06, D�3 ¼ 0:9, De3 ¼ 1, and for

M� ¼ 750 GeV, we find xf ¼ 24:81 and �h2 ¼ 0:11,

which is in agreement with the experimental bounds [12].
The same interaction allowing the � annihilation in charged
leptons, which are proportional Di3, also induces lepton
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flavor violation (LFV) such as � ! e� and � ! ��
(see below).

The next task is to compute the direct detection cross
section. In our case, the elastic scattering of � with nuclei
occurs via the t-channel �þ N ! �þ N process due to
the exchange of the scalar mass eigenstate R7, which is
the Higgs scalar boson in the model with mass mR7

	
152:9 GeV. The spin-independent cross section is given
by [13]

��N ¼ 4



M2
�m

2
N

ðM� þmNÞ2
½Zfp þ ðA� ZÞfn�2; (21)

where the effective couplings to protons and neutrons, fp;n,

are

fp;n ¼
X

q¼u;d;s

Geff;qffiffiffi
2

p fðp;nÞTq

mp;n

mq

þ 2

27
fðp;nÞTG

X
q¼c;b;t

Geff;qffiffiffi
2

p mp;n

mq

:

(22)

In this case Geff;q¼G0�mq�½C�2R7
CHR7

M�=

ðV�2
VHm

2
R7
Þ��mq, where C�2R7

	0:01 and CHR7
	0:99

are the coefficients relating the symmetry eigenstates
ð�2; HÞ to the relevant mass eigenstate R7, respectively.

By using fðp;nÞTq and fðp;nÞTG given in Ref. [14] we find

��;p 	 3� 10�7 pb�
�
Geff;q � ð1 GeV=mqÞ

10�7 GeV�2

�
2
; (23)

which gives��;p 	 4:74� 10�11 pb, forM� ¼ 750 GeV,

which is in agreement with the most recent present bounds
[15–17]. The parameter set we have used in all the cases
above is compatible with the following requirements:
(i) the constraint equations are satisfied, (ii) all obtained
masses are m2 > 0, and (iii) results for the already known
fields are consistent with those of the SM at the tree level.

Notice that, although we are considering a multi-Higgs
model, the values we have found for the lightest real scalar,
the Higgs boson, are in agreement with the last combined
CDF and D0 results for the ESM Higgs boson, which have
excluded, at the 95% C.L., a region at high mass in 158<
mH < 175 GeV [18].

IV. NEUTRINO MASSES

The model without the Z2 symmetry already has a
satisfactory solution to the neutrino masses, since we are
able to construct a general neutrino mass matrix. However,
we are going to consider the case with this symmetry
because the model becomes more attractive due to the
presence of stable candidates to DM.

The Yukawa Lagrangian in Eq. (1) gives the following
neutrino mass terms:

�Lm�
¼ Dim�LinRmV�1

þMmnðncmÞLnRnV�1

þM33ðnc3ÞLnR3V�2
þ H:c:; (24)

where i, j ¼ 1, 2, 3 (or e, �, �, respectively, when conve-
nient) and m, n ¼ 1, 2. In matrix form Eq. (24) reads

�Lm�
¼ �L ðncÞL

h i 0 MD

MT
D MM

" # ð�cÞR
nR

" #
; (25)

with

�L ¼ ½�e�����TL; nR ¼ ½n1n2n3�TR: (26)

The Majorana mass matrix (MM) and the Dirac mass
matrix (MD) are given by

MM ¼ V�1

M11 M12 0

M12 M22 0

0 0
V�2

V�1

M33

0
BBB@

1
CCCA;

MD ¼ V�1

D11 D12 0

D21 D22 0

D31 D32 0

0
BB@

1
CCA;

(27)

since V�2
¼ V�3

¼ 0, where MM ¼ MT
M. For V�1


 V�1
,

the mass matrix in Eq. (25) can be diagonalized by an
approximate scheme. The masses of the heavy neutrinos
are related to the energy scale of the VEVs of the singlets
�1 and �2, and are given by the eigenvalues of MM:

M1;2 ¼
ðM11 þM22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

12 þ ðM11 �M22Þ2
q

2
V�1

;

M3 ¼ M33V�2
:

The masses of the light neutrinos are given by the eigen-
values of the matrix

M� 	 MDM
�1
M MT

D; (28)

which are

m1;2 ¼ 1

2DM

½��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ r

p
�V

2
�1

V�1

; m3 ¼ 0; (29)

where the following definitions have been used:

~C1¼ðD11;D21;D31Þ; ~C2¼ðD12;D22;D32Þ;
r¼4DM½ðD12

~C1�D11
~C2Þ2þD2

D�;
�¼M11ð ~C2Þ2þM22ð ~C1Þ2�2M12ð ~C1: ~C2Þ;

DM¼M2
12�M11M22; DD¼D21D32�D22D31:

(30)

The parameters in MM and MD have to be chosen in order
to have light neutrino masses consistent with the solar and
atmospheric experimental data. However, since there is no
a standard procedure to do that, we will present a particular
solution to show that this model can generate realistic
active neutrino masses.
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A particular solution

From the experimental neutrino data it is found that the
neutrino mixing matrix is compatible with the so-called
tribimaximal (TB) one [19], which is given by

UTB ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BBBB@

1
CCCCA; (31)

and where it is assumed that the neutrino mixing angles are
in a good approximation given by sin2�12 ¼ 1=3,
sin2�23 ¼ 1=2, and sin2�13 ¼ 0. Working in a basis where
the charged lepton mass matrix is already diagonal, the
UTB matrix diagonalizes the light neutrino mass matrix in

Eq. (28): UT
TBM�UTB ¼ M̂� ¼ diagðm1; m2; m3Þ. It can be

shown that the most general neutrino mass matrix that can
be exactly diagonalized by UTB has the form

MTB ¼
x y y

y xþ � y� �

y y� � xþ �

0
BB@

1
CCA; (32)

using the same notation as in Ref. [19].

The MTB mass eigenstates are

m1¼x�y; m2¼xþ2y; m3¼2�þx�y: (33)

The square mass differences �m2
sol and �m2

atm, needed

to explain the solar and atmospheric neutrino anomalies,
can be obtained by imposing conditions on x, y, and �. The
simplest way to apply this analysis to our particular case is
as follows. We consider

M 11 ¼ M22 ¼
V�2

V�1

M33; M12 ¼ 0; (34)

so that the Majorana and Dirac mass matrices are now
given by

MM¼M11V�1
13�3; MD¼V�1

D11 D12 0

D21 D22 0

D31 D32 0

0
BB@

1
CCA: (35)

Then, the light neutrino mass matrix becomes

M�¼MDM
�1
M MT

D¼
V2
�1

V�1

1

M11

MDM
T
D¼

V2
�1

M11V�1

D2
11þD2

12 D11D21þD12D22 D11D31þD12D32

D11D21þD12D22 D2
21þD2

22 D21D31þD22D32

D11D31þD12D32 D21D31þD22D32 D2
31þD2

32

0
BB@

1
CCA: (36)

The matrix above has a null determinant and, therefore, a
zero mass eigenstate. Hence, in order to make both matri-
ces compatible, we must have a vanishing eigenvalue in
Eq. (33). We choose m3 ¼ 0, i.e., 2�þ x� y ¼ 0, and,
hence, xþ � ¼ y� �.

Comparing Eq. (32) with Eq. (36) we have the following
equations:

x

K
¼ D2

11 þD2
12; (37)

y

K
¼ D11D21 þD12D22 ¼ D11D31 þD12D32; (38)

xþ �

K
¼ D2

21 þD2
22 ¼ D2

31 þD2
32; (39)

y� �

K
¼ D21D31 þD22D32; (40)

where we have defined the dimensional constant

K ¼ V2
�1

M11V�1

. A solution for the above equations is

D 21 ¼ D31; and D22 ¼ D32: (41)

From the above equations we see that the condition to have
m3 ¼ 0, xþ � ¼ y� �, is automatically satisfied. We
have the following equations to fit the atmospheric and

solar neutrino data,

m1 ¼ x� y; m2 ¼ xþ 2y; m3 ¼ 0; (42)

and, therefore,

�m2
sol ¼ m2

2 �m2
1 ¼ 3yð2xþ yÞ> 0; (43)

j�m2
atmj ¼ jm2

3 �m2
1j ¼ ðx� yÞ2: (44)

Assuming that x� y > 0 we have to solve the equations

3yð2xþ yÞ ¼ 7:67� 10�5 ðeVÞ2; and

x� y ¼ ð2:4� 10�3Þ1=2 eV;
(45)

which are satisfied by x ¼ 0:049 248 7 and y ¼
0:000 258 887, in eV. The corresponding mass eigenvalues
are then given by m1 ¼ 0:048 989 8, m2 ¼ 0:049 766 5,
and m3 ¼ 0, in eV, showing an inverse hierarchy pattern.
We can now solve Eqs. (37) and (38) for the Dij parame-

ters. In order to do that we have to know the value of the
dimensional constant K. For V�1

¼1MeV, V�1
¼ 1 TeV,

and assuming M11 ¼ 1, we have K ¼ 1 eV. Choosing
the input values D22 ¼ 0:25 and D21 ¼ 0:15, we find
D11 ¼ 0:190 751, and D12 ¼ �0:113 415. Experiments
on 0��� can put bounds on jmeej, and the strongest one
is jmeej< 0:26ð0:34Þ eV at 68% (90%) C.L. [20]. This
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quantity is related to the mass eigenvalues through jmeej¼
jc213ðm1c

2
12e

i�1þm2s
2
12e

i�2Þþm3e
2i�CPs213j. In our case,

with no CP violation nor phases in the leptonic mixing
matrix, we find jmeej	0:05eV. Future experiments, how-
ever, expect to improve sensitivity up to 	 0:01 eV [21].

The procedure we have followed for finding a particular
solution for the light neutrinomasses can also be realized by
using, instead of thematrices given inEqs. (31) and (32), the
ones given in Ref. [22], provided we make, in the notation
of this reference, c ¼ �d=2, and the identifications � ¼
d� ðaþ bÞ, y ¼ d, x ¼ aþ 2b� d. It results in
�a ¼ x� yþ 2� ¼ m3, and we take a ¼ 0.

The results showed above demonstrate that the model is
fully compatible with the experimental neutrino data, and
that light neutrino masses can be generated neither appeal-
ing for very large energy scales nor imposing fine-tuning.
Now, we have to verify if the set of parameters we have
used above is in agreement with the LFV constraints
coming from a process like li!ljþ�, where i ¼ 2,

3 ¼ �, � and j ¼ 1, 2 ¼ e, �, respectively. This model
has one loop contributions to such a process since charged
leptons couple to charged scalars and right-handed heavy
neutrinos. The branching ratio is estimated as [23]

Bðli ! lj þ �Þ ¼ 963�

G2
Fm

4
li

ðjfM1j2 þ jfE1j2Þ; (46)

where � ’ 1=137 and GF ’ 1:16� 10�5 GeV�2 is the
Fermi constant and

fM1 ¼ fE1 ¼
X3
k¼1

DikDjk

4ð4Þ2
m2

li

m2
�

F2

�m2
Nk

m2
�

�
; (47)

with F2ðxÞ being

F2ðxÞ ¼ 1� 6xþ 3x2 þ 2x3 � 6x2 lnx

6ð1� xÞ4 : (48)

Using the parameters needed to fit the neutrino masses and
the ones to estimate �h2 ’ 0:11 (De3 ’ 0:06, D�3 ’ 0:9,

D�3 ’ 1, mnR3 ¼ 750 GeV, mC1
’ m��

1
¼ 1:33 TeV,

mC2
¼ m��

2
¼ 1:48 TeV), we can give an estimate for

the branching ratio Bð� ! eþ �Þ ’ 7:9� 10�12 and
Bð� ! �þ �Þ ’ 2:5� 10�9. These values are in agree-
ment with the present upper bounds Bð� ! eþ �Þ<
1:2� 10�11 and Bð� ! �þ �Þ ’ 6:8� 10�8 [24,25].

The ratio between the VEVs we have used for finding the
neutrino mass eigenvalues is V�1

=V�1
¼ 10�6. This is of

the same order as the ratiome=mtop ¼ Ye=Ytop 	 10�6, and

it is comparable withmu=mtop ¼ Yu=Ytop 	 10�5. We have

chosen those values for V�1
and V�1

in order to have light

neutrino masses without resorting to very tiny neutrino
Yukawa coupling constants, or fine-tuning, and, at the
same time, to have the Z0 vector boson not extremely heavy.
This is a kindof seesawmechanismwhere the heaviest scale,
V�1

, is constrained by the Z0 vector boson, which should be

not too heavy in order to not decouple from the spectrum.
The light scale,V�1

, is then used to fix the absolute neutrino

mass scale through the ratio V2
�1
=V�1

. In this picture we are

substituting a hierarchy in the VEVs, which would have a
possible explanation based on the dynamics of the fields, for
one in the Yukawa coupling constants, for which we cannot
find any natural explanation. This is basically the philosophy
behind the work in Refs. [26,27].
As we have discussed above, the absolute neutrino mass

scale depends on the ratio V2
�1
=V�, where V�1

is a tiny

value. Although this value can be affected by radiative
corrections, it can be argued that, when the Z2 symmetry
is considered, setting V�1

to a tiny value, at the tree level, is

natural because if it were in fact taken to be zero this would
increase the symmetry of the entire Lagrangian (’t Hooft’s
principle of naturalness). This can be seen considering the
constraint equations with V�1

!0. It implies that 
H1X¼0,

since VH and V�X
differ from zero. Then the term

�i
H1X�
T
1�2H�X does not appear in the scalar potential,

Eq. (16), and the entire Z2 invariant Lagrangian is now
invariant under an additional global quantum symmetry,
say, Uð1Þ	 . A possible 	-charge assignment is 	ð�eL;eL;

eR;�1;2Þ¼�1, 	ðuL;dL;uR;dRÞ¼1=3, and 	ðnð1;2;3ÞR;
�1;2;3Þ¼0. Thus, it is expected that the VEV hierarchy

will remain stable when radiative corrections are taken
into account.

V. CONCLUSIONS

In this paper we have studied in detail the scalar and the
neutrino Yukawa sectors of an extension of the electroweak
standard model which has an extra Uð1Þ gauge factor, as
described in Sec. II. We have analyzed the scalar spectra of
the potential given in Eq. (2) and found that it is incon-
sistent with the experimental data coming from the star
energy loss and the Z invisible decay width. We would like
to stress that this is a general result for this scalar potential.
We find that the more suitable solution to this problem is

the addition of a new SUð2Þ scalar singlet, called�X in the
text. The new terms introduced by �X are able to remove
all the physical Goldstone bosons and, at the same time, to
have all the real mass eigenstates heavier than the Z boson.
This solution is particularly interesting since, in this case,
all VEVs can be different from zero, which allows for the
construction of a general neutrino mass matrix.
In order to have a still more attractive model we consider

the possibility of having DM candidates by including a Z2

symmetry. Before the SSB the only fields having odd trans-
formation under Z2 are nR3, �2, and �3. Z2 will still be a
symmetry if the scalar fields �2 and �3 do not develop
VEVs. Hence, after the SSB we will have states which are
mass and Z2 eigenstates simultaneously. It opens the possi-
bility of havingDMfields since the lighterZ2 odd eigenstate
will be stable.Moreover, we show in a preliminary study that
the fermionic field nR3 is a viable cold DM candidate.
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We consider in detail the neutrino mass generation in the
framework of the model with the Z2 symmetry. In this case
we found an inverted hierarchy compatible with the solar
and atmospheric neutrino data and the tribimaximal mix-
ing matrix. Two appealing features are (i) the absolute
scale of the neutrino masses is obtained by a seesaw
mechanism at OðTeVÞ energy scale, which is the scale of
the first symmetry breaking, and (ii) the observed mass-
squared differences are obtained without resorting to fine-
tuning the neutrino Yukawa couplings.

The model has also some phenomenological implica-
tions. One of them is the existence of an extra neutral
vector boson, Z0, which can be in principle detected at
the LHC or International Linear Collider. In fact, there are
studies showing that the Z0 of this particular model can be
distinguished from that of other models by comparing, for
instance, the forward-backward asymmetry for the process
pþ p ! �þ þ�� þ X as a function of the dilepton
invariant mass, or the muon transverse momentum distri-
bution at the LHC [28], and the same asymmetry for the
process eþ þ e� ! fþ �f (f ¼ q, l) at the International
Linear Collider [29]. At first glance, another interesting

feature is that the model seems to indicate that the LFVand
DM are closely related. It implies that when the parameters
are appropriate to satisfy the DM requirements, the LFV is
relatively close to the present experimental bounds. In this
way, the model can be confronted by the next generation of
LFV experiments.
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APPENDIX: THE CONSTRAINT EQUATIONS

Here we show the constraint equations for the scalar
potential given in Eq. (2) plus the terms after the �X

introduction and without the Z2 symmetry. These equa-
tions are obtained by considering, after the spontaneous
symmetry breaking, the linear terms (t’’) in the scalar

potential, and the solutions to the equations t’ ¼ 0 are the

critical points of the scalar potential.
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