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We explore some ways of minimally modifying the neutrino mixing matrix from tribimaximal,

characterized by introducing at most one mixing angle and a CP violating phase thus extending our

earlier work. One minimal modification, motivated to some extent by group theoretic considerations, is a

simple case with the elements V�2 of the second column in the mixing matrix equal to 1=
ffiffiffi
3

p
.

Modifications by keeping one of the columns or one of the rows unchanged from tribimaximal mixing

all belong to the class of minimal modification. Some of the cases have interesting experimentally testable

consequences. In particular, the T2K and MINOS collaborations have recently reported indications of a

nonzero �13. For the cases we consider, the new data sharply constrain the CP violating phase angle �,

with � close to 0 (in some cases) and � disfavored.
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I. INTRODUCTION

Mixing of different neutrino species has been estab-
lished by various experiments [1]. Recently the T2K [2]
and MINOS [3] collaborations have reported indications of
a nonzero �13 providing new evidence for neutrino mixing
and new information about the mixing pattern. The mixing
can be represented by the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) [4] mixing matrix V in the charged current
interaction of the W boson with left-handed charged lep-

tons lL and neutrinos �L, L ¼ �ðg= ffiffiffi
2

p Þ�lL��V�LW
þ
� þ

H:c:. The elements of the unitary matrix V are usually
indicated by V�j with � ¼ e;�; �; . . . and j ¼ 1; 2; 3; . . . .

With three neutrinos, there are three mixing angles, one
Dirac phase, and possibly two Majorana phases if neutri-
nos are Majorana particles.

It is possible to fit data from various experiments [5],
except for possible anomalies in the LSND, MiniBoone
[6], and MINOS [7] data. The pre-T2K data, with modified
Gallium cross section used by the SAGE Collaboration [8],
on mixing and mass parameters, can be summarized at the
1	ð3	Þ level as [5,9]

�m2
21 ¼ 7:59� 0:20

�þ0:61

�0:69

�
� 10�5 eV2;

�m2
31 ¼ �2:36� 0:11ð�0:37Þ

� ½þ2:46� 0:12ð�0:37Þ� � 10�3 eV2;

�12 ¼ 34:5� 1:0

�þ3:2

�2:8

��;
�23 ¼ 42:8þ4:7

�2:9

�þ10:7

�7:3

��;
�13 ¼ 5:1þ3:0

�3:3ð� 12:0Þ�: (1)

Here the mixing parameters are those of the Particle Data
Group (PDG) parametrization [1] (with �12 � �e2,
�23 � ��3, �13 � �e3). There is no direct experimental

information on the phases �PDG.
The mixing pattern is well approximated by the so-

called tribimaximal mixing pattern of the form [10]

VTB ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

0
BBBB@

1
CCCCA: (2)

Note that with this mixing pattern, �13 is equal to zero.
The recent T2K data on �13 (and therefore jVe3j) show

that [2] at 90% C.L. it is not zero with sin22�13 in the range
of 0.03 (0.04)–0.28 (0.34) for normal (inverted) neutrino
mass hierarchy. Data from MINOS [3] also disfavor
�13 ¼ 0 at 89% C.L. This information provides an impor-
tant constraint on theoretical model building for neutrino
mixing [11]. Combining the recent T2K and MINOS data
with previous neutrino oscillation data and using the new
reactor flux in Ref. [12], more stringent constraints on the
mixing parameters than those given in Eq. (1) have been
obtained [13]. These new constraints are shown in Table I.
We will use them for our later discussions.
The combined data show that �13 is nonzero at 3	 level.

In fact the pre-T2K data already provide a hint that �13 is
nonzero at a more-than-1	 level [9]. A nonzero Ve3 would
rule out tribimaximal mixing. Now the tribimaximal mix-
ing prediction for the angle �12 is outside the 1	 level.
Also, because one of the elements in the mixing matrix is
zero, the tribimaximal mixing does not allow CP violation
to be manifest in neutrino oscillation, i.e. the Jarlskog
parameter [14] J is identically equal to zero. The combined
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experimental efforts [15–19] will be able to measure CP
violation in neutrino oscillation [20]. Were CP violation to
be established in the future, it would definitively rule out
tribimaximal mixing. We also recall that CP violation in
the lepton sector has a profound implication regarding why
our Universe is dominated by matter. There is thus an
additional motivation to study deviations from tribimax-
imal mixing.

Phenomenologically, small deviations from the tribi-
maximal pattern can be easily parametrized in terms of
three small parameters and studied [21,22]. In [23], we
studied a minimal modification with one complex parame-
ter. Here we extend this discussion.

Theoretically, many attempts have been made to derive
the tribimaximal mixing, but in our opinion a simple and
compelling construction is still sorely lacking. Many of the
attempts were based on the tetrahedral group A4 first
studied by Ma and Rajasekaran for neutrino models [24],
and subsequently by others [25]. A group theoretic dis-
cussion was given in [26] attributing the difficulty to a
clash between the residual Z2 in one sector and Z3 in
another. Residual discrete symmetries in the context of
neutrino mixing have also been extensively discussed in
Ref. [27]. Authors in Ref. [28] have named this the
‘‘sequestering problem.’’ Within the context of A4, it was
shown [29] that two assumptions were needed to obtain a
one-parameter family of mixing matrices which contains
tribimaximal mixing. In other words, to obtain tribimax-
imal mixing, it is necessary to find one reason or another to
set this particular parameter to zero. This suggests, or at
least motivates, studying various one-parameter modifica-
tions to tribimaximal mixing.

II. THE FORM OF MINIMAL
MODIFICATIONS FOR VTB

In our 2006 work [23], which we will review briefly in
the appendixes, we were naturally led in the context of A4,
assuming that the sequestering problem of [28] could be
solved, to a modification of tribimaximal mixing in which
the middle (1, 1, 1) column was left unchanged.

It has not escaped the notice of many authors that the
three columns, ð�2; 1; 1Þ, ð0; 1;�1Þ, (1, 1, 1), of VTB

furnish the two-dimensional and the one-dimensional rep-
resentations of the permutation group S3. Historically, this
observation led Wolfenstein [30] long ago to guess, based
on a sense that somehow (1, 1, 1) is special, a mixing
matrix that consists of VTB with its last two columns

interchanged. Another early guess was put forward by
Yamanaka, Sugawara, and Pakvasa [31]. The mutual or-
thogonality of these three columns of course also means
that they correspond to the three Gell-Mann diagonal gen-
erators of SU(3). Similarly, these three columns also ap-
pear [29,32] in a table of Clebsch-Gordon coefficients for
SU(2). These may all indicate some deeper reasons for
tribimaximal mixing, such as the possibility [29] that
neutrinos are composite.
With so little known about the underlying theory of

neutrino mixing, we take here a purely phenomenological
approach. If we take the column vectors as reflecting some
basic feature of the neutrino, a minimal modification may
be to keep the column vectors unchanged as much as
possible. Some phenomenological implications have been
studied in Ref. [33]. In this paper we analyze these minimal
modifications to the tribimaximal mixing in light of the
recent T2K data. Because of unitarity, we can leave at most
one column unchanged. Minimal modification to the tribi-
maximal mixing can therefore be characterized by which
column we leave unchanged. Some special cases have been
considered in the literature [23,29,32,34,35]. We refer to
them as case Va, case Vb, and case Vc, corresponding to
keeping the third, second, and first columns unchanged,
respectively. This class of modifications can be obtained by
multiplying a two-generation mixing matrix from the right
of VTB, 2 and 3, 1 and 3, and 1 and 2 mixing patterns. These
modifications can be viewed as perturbation to the tribi-
maximal mixing by modifying the neutrino mass matrix
[33]. One can also motivate minimal modification by
perturbing the charged lepton mass matrix in a similar
fashion, which would result in one of the rows of VTB

being unchanged. One such example has been studied by
Friedberg and Lee in [35]. Therefore there are another
three types of minimal modification, keeping the first row
or the second row or the third row indicated by case Wa,
case Wb, and case Wc, respectively.

A. One of the columns in VTB unchanged

Leaving one of the columns in VTB unchanged, we have
the three possibilities:

Va ¼ VTB

cos� sin� 0

� sin� cos� 0

0 0 1

0
BB@

1
CCA;

Vb ¼ VTB

cos� 0 sin�ei�

0 1 0

� sin�e�i� 0 cos�

0
BB@

1
CCA;

Vc ¼ VTB

1 0 0

0 cos� sin�ei�

0 � sin�e�i� cos�

0
BB@

1
CCA:

(3)

We will use the abbreviation c ¼ cos� and s ¼ sin�.

TABLE I. Ranges for mixing parameters obtained in Ref. [13].

Parameter sin2�12 sin2�23 sin2�13

Best fit 0.312 0.42 0.025

1	 range 0.296–0.329 0.39–0.50 0.018–0.032

2	 range 0.280–0.347 0.36–0.60 0.012–0.041

3	 range 0.265–0.364 0.34–0.64 0.005–0.050
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Note that for Va, with the third column in VTB un-
changed, Ve3 ¼ 0 and there is no nonremovable phase
leading to a vanishing Jarlskog parameter, J ¼ 0. No CP
violation phenomena can show up in oscillation related
processes.

B. One of the rows in VTB unchanged

Keeping the neutrino mass matrix unchanged and per-
turbing the charged lepton mass matrix for the tribimax-
imal mass matrices, one obtains a V in the form of a unitary
U multiplied from left to the tribimaximal mixing V ¼
UVTB. The three cases with one of the rows unchanged
from tribimaximal mixing can be written in the following
forms:

Wa ¼
1 0 0
0 c s
0 �s c

0
@

1
AVTB;

Wb ¼
c 0 sei�

0 1 0
�se�i� 0 c

0
B@

1
CAVTB;

Wc ¼
c sei� 0

�se�i� c 0
0 0 1

0
B@

1
CAVTB:

(4)

Since there is no nonremovable phase in Wa, no CP
violation phenomena can show up in oscillation related
processes for this case.

As mentioned earlier, the case Wc has been motivated
theoretically and studied by Friedberg and Lee [35].

III. PHENOMENOLOGICAL IMPLICATIONS

As was mentioned in the introduction, of these six cases,
we are theoretically prejudiced in favor of Vb, which we
studied in Ref. [23]. As far as we know, some of the other
cases are not well motivated and we analyzed them merely
as straw men to be knocked down by future precision
experiments.

There are no phases for cases Va and Wa. They are
given by

Va ¼

2cffiffi
6

p � sffiffi
3

p cffiffi
3

p þ 2sffiffi
6

p 0

� cffiffi
6

p � sffiffi
3

p cffiffi
3

p � sffiffi
6

p 1ffiffi
2

p

� cffiffi
6

p � sffiffi
3

p cffiffi
3

p � sffiffi
6

p � 1ffiffi
2

p

0
BBBB@

1
CCCCA;

Wa ¼
2ffiffi
6

p 1ffiffi
3

p 0

� cffiffi
6

p � sffiffi
6

p cffiffi
3

p þ sffiffi
3

p cffiffi
2

p � sffiffi
2

p

� cffiffi
6

p þ sffiffi
6

p cffiffi
3

p � sffiffi
3

p � cffiffi
2

p þ sffiffi
2

p

0
BBB@

1
CCCA:

(5)

The modification to tribimaximal mixing is represented
by a nonzero s ¼ sin� (c ¼ cos�). For case Va, the main

predictions of this mixing pattern are that jV�3j ¼ 1=
ffiffiffi
2

p
which is at the boundary of the 1	 allowed range. Present

data constrain the modification mixing parameter s (with
c > 0), which can modify the value for Ve2, to be in the
range�0:04–0:002 ð�0:075–0:0Þ at 1	 ð3	Þ with the best
fit value of �0:02. For case Wa, a definitive prediction for

this case is that Ve2 ¼ 1=
ffiffiffi
3

p
. This is outside the 1	 range,

but within the 2	 range. A nonzero swill modify V�3 away

from 1=
ffiffiffi
2

p
. The current data allow s to be in the range

0–0.08 ð�0:14–0:105Þ at the 1	 ð3	Þwith the best fit value
to be 0.08. For both cases Va and Wa, Ve3 are predicted to
be zero. They are in conflict with data at the 3	 level. Also
there are no phases for Va and Wa. There is no CP
violation in neutrino oscillation. This provides another
test for cases Va and Wa. Should future experiments find
CP violation in neutrino oscillations, these two cases
would be ruled out.
The other four cases have two parameters; one can

use available data on the magnitude of the elements in V
to constrain them and to predict other observables, in
particular, the Jarlskog CP violating parameter J ¼
ImðVe1V

�
e2V

�
�1V�2Þ. Complete determination of parameters

related to neutrino physics includes the mixing angles and
the CP violating Dirac phase, and also the absolute neu-
trino masses and possible Majorana phases. Since not
much information can be used to constrain the Majorana
phases, in the following we will use the combined pre-T2K
and the recent T2K and MINOS data to study some phe-
nomenological implications for the mixing parameters of
the other four minimal modifications described in the
previous section.
Case Vb: In this case the mixing matrix Vb is given by

Vb ¼

2cffiffi
6

p 1ffiffi
3

p 2sei�ffiffi
6

p

� cffiffi
6

p � se�i�ffiffi
2

p 1ffiffi
3

p cffiffi
2

p � sei�ffiffi
6

p

� cffiffi
6

p � se�i�ffiffi
2

p 1ffiffi
3

p � cffiffi
2

p � sei�ffiffi
6

p

0
BBBB@

1
CCCCA: (6)

A definitive prediction of this mixing pattern is that

Ve2 ¼ 1=
ffiffiffi
3

p
. This is outside the 1	 range, but consistent

with data within the 2	 level. Since Ve2 is fixed to be 1=
ffiffiffi
3

p
,

jVe3j can be expressed as a function of Ve1 with

Ve3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3� jVe1j2

q
: (7)

This can be used as an additional check.
In this case there is room for a nonzero Ve3 and also a

nonzero Jarlskog parameter given by J ¼
jVe1jjVe3j sin�=2

ffiffiffi
3

p
for CP violation. Using the allowed

range for �13, we can easily obtain information for s with
the best fit value given by 0.177 and the 1	 ð3	Þ allowed
range 0.16–0.22 (0.09–0.27).
Expressing Ve3 and V�3 in terms of the mixing angle �

(through c and s) and CP violating phase, we have

Ve3 ¼
ffiffiffi
2

3

s
sei�; V�3 ¼ 1ffiffiffi

2
p c� 1ffiffiffi

6
p sei�: (8)
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One could use Eq. (8) to eliminate � and relate jVe3j,
jV�3j and �,

jV�3j ¼
�
1

2
c2 þ 1

6
s2 � 1ffiffiffi

3
p cs cos�

�
1=2

¼
��

1

2
jVe3j cos�� 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3jVe3j2=2

q �
2

þ 1

4
jVe3j2sin2�

�
1=2

: (9)

Using the known ranges of sin�23 and sin�13, the 1	
range for V�3 is determined to be 0.617–0.701. We could

plot jVe3j in terms of the unknown � for some typical
values of V�3 in the allowed range. In solving for jVe3j
we have to pick the branch consistent with Eq. (8) of
course. We will work in the convention where s and c
are all positive. The result is shown in Fig. 1. jVe3j is
symmetric in the region of 0 to � and � to 2� for �.
The allowed ranges in Table I rule out some portion of
allowed �. Regions of � close to � are not allowed at the
1	 level, but there are ranges of � which can be consistent
with data. Improved data can further narrow down the
allowed range.
Since in this case there are only two unknown parame-

ters, s and �, in the model, the four parameters �12, �23,
�13, and the CP violating parameter �PDG of the general
parametrization are related. The boundaries in Fig. 1 rep-
resent the 1	 allowed ranges for the parameters of the
model. The situations are similar for the other three cases
in our later discussions. Note also that the analysis we are
carrying out is insensitive to whether the neutrino mass
hierarchy is normal or inverted.
One can extract useful information on the CP violating

parameter J by using the relation

J ¼ 1

3
ffiffiffi
2

p sin�jVe3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3jVe3j2=2

q
: (10)

Note that J is simply proportional to sin�. The results are
shown in Fig. 2. On the left panel of Fig. 2, J is plotted as a
function of � for three values of jVe3j. The absolute value
of J can be as large as 0.04 for jVe3j and takes its 1	 upper
value of 0.179.
For jV�3j close to its lower bound, � close to 0 and 2�

are favored. For � close to �, jV�3j is outside of its 1	

allowed range. There are overlaps for the regions allowed
in the right panel of Fig. 2 and those in Fig. 1. Combining

FIG. 1 (color online). Case Vb. jVe3j as a function of � for
jV�3j equals to 0.617 (1	 lower bound, dashed line), 0.641 (best

fit value, solid line) and 0.701 (1	 upper bound, dotted line). The
solid and dashed horizontal lines are for the best value and the
1	 bounds of jVe3j, respectively.

FIG. 2 (color online). Case Vb. Left: J as a function of � for jVe3j equals to 0.179 (solid line), 0.145 (dashed line), and 0.134 (dotted)
line. Right: jV�3j as a function of � for jVe3j equals to 0.179 (solid line), 0.145 (dashed line), and 0.134 (dotted line). The solid and two
dashed horizontal lines are for the best value and the 1	 bounds of jV�3j, respectively.
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information from Ve2 discussed earlier, we can conclude
that this case is ruled out at the 1	 level, but is consistent
with data at the 2	 level.

In Fig. 3, the contours of jVe3j and jV�3j for different
values of J are shown. The contours are degenerate in
�jJj.

Case Vc: For this case, the mixing matrix is

Vc ¼

2ffiffi
6

p cffiffi
3

p sei�ffiffi
3

p

� 1ffiffi
6

p cffiffi
3

p � se�i�ffiffi
2

p cffiffi
2

p � sei�ffiffi
3

p

� 1ffiffi
6

p cffiffi
3

p þ se�i�ffiffi
2

p � cffiffi
2

p þ sei�ffiffi
3

p

0
BBBB@

1
CCCCA: (11)

A prediction for the mixing is that Ve1 ¼ 2=
ffiffiffi
6

p
. Ve3 is

related to Ve2 by

jVe3j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3� jVe2j2

q
: (12)

Imposing unitarity of the VPMNS, this prediction is in the 1	
region.

Within the 1	 range of Ve3, s is allowed to vary from 0.2
to 0.31 with the best fit value of 0.25, and Ve2 can be within
its 1	 range. One can again combine information from
jV�3j and jVe3j to constrain the CP violating phase � and

the Jarlskog parameter J. We have

jV�3j¼
��

jVe3jcos�þ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3jVe3j2

q �
2
��������

þjVe3j2 sin�2

�
1=2

;

J¼� 1

3
ffiffiffi
2

p sin�jVe3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3jVe3j2

q
: (13)

The results are shown in Figs. 4–6. For this case even a
larger portion of the � range is ruled out by data as can seen

from Fig. 4. From the right panel of Fig. 5, we also see that
a large portion of � is ruled out. However, there are over-
laps for the two regions. This case can be consistent with
data at the 1	 level. CP violating information is shown in
the left panel of Fig. 5. The largest value of J is 0.04 when
jVe3j takes its 1	 upper bound value of 0.179. The corre-
lations of J, V�3, and Ve3 are shown in Fig. 6.

Case Wb: The mixing matrix Wb is given by

Wb ¼

2cffiffi
6

p � sei�ffiffi
6

p cffiffi
3

p þ sei�ffiffi
3

p � sei�ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

� cffiffi
6

p � 2se�i�ffiffi
6

p cffiffi
3

p � se�i�ffiffi
3

p � cffiffi
2

p

0
BBBB@

1
CCCCA: (14)

This case predicts V�3 ¼ 1=
ffiffiffi
2

p
. This prediction is at the

boundary of the 1	 allowed range. But it is different than
case Va since Ve3 is not zero and J can be nonzero. s is in
the range of 0.19–0.25 at the 1	 level with the best fit value
given by 0.20. In this case correlations of jVe2j, jVe3j, and �
or J are given by

jVe2j ¼ 1ffiffiffi
3

p
�� ffiffiffi

2
p jVe3j cos�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jVe3j2

q �
2

þ 2jVe3j2sin2�
�
1=2

;

J ¼ 1

3
ffiffiffi
2

p sin�jVe3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jVe3j2

q
: (15)

FIG. 3 (color online). Case Vb. Contours of jVe3j and jV�3j for
different values of J. The curves are for J equal to �0:04 (solid
line), �0:03 (dashed line), and �0:01 (dotted line). The solid
and two dashed horizontal lines are for the best value and the 1	
bounds of jV�3j, respectively.

FIG. 4 (color online). Case Vc. jVe3j as a function of � for
jV�3j equal to 0.617 (dashed line), 0.641 (solid line), and 0.701

(dotted line). The solid and dashed horizontal lines are for the
best value and the 1	 bounds of jVe3j, respectively.
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The results are shown in Figs. 7–9. Now jVe2j is playing
the role of jV�3j for the cases Vb and Vc. From Fig. 7 and

the right panel in Fig. 8, we see that the allowed range for �
is constrained to be even closer to�=2 and 3�=2. But there
are still regions consistent with data at the slightly larger
than 1	 level. J can be as large as 0.04 when jVe3j is equal
to its 1	 upper bound value of 0.179. The correlations of J,
V�3, and Ve3 are shown in Fig. 9.

Case Wc: In this case the third row is left unchanged
from tribimaximal mixing [35] and the mixing matrix Wc

is given by

Wc ¼

2cffiffi
6

p � sei�ffiffi
6

p cffiffi
3

p þ sei�ffiffi
3

p sei�ffiffi
2

p

� cffiffi
6

p � 2se�i�ffiffi
6

p cffiffi
3

p � se�i�ffiffi
3

p cffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

0
BBBB@

1
CCCCA: (16)

We have

jVe2j ¼ 1ffiffiffi
3

p
�� ffiffiffi

2
p jVe3j cos�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jVe3j2

q �
2

þ 2jVe3j2sin2�
�
1=2

;

J ¼ � 1

3
ffiffiffi
2

p sin�jVe3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jVe3j2

q
: (17)

The expression for jVe2j is the same as for case Wb, but
the sign of J is opposite to those for caseWb when reading
Figs. 8 and 9, respectively. One can easily read off the
constraints on � and J from Figs. 7 and 8. A crucial

FIG. 5 (color online). Case Vc. Left: J as a function of � for jVe3j equal to 0.179 (solid line), 0.145 (dashed line), and 0.134 (dotted
line) for case Vc. Right: jV�3j as a function of � for jVe3j equal to 0.179 (solid line), 0.145 (dashed line), and 0.134 (dotted line). The

solid and dashed horizontal lines are for the best value and the 1	 bounds of jV�3j, respectively.

FIG. 6 (color online). Case Vc. Contours of jVe3j and jV�3j for
different values of J. The curves are for J equal to �0:04 (solid
line), �0:03 (dashed line), and �0:01 (dotted line). The solid
and dashed horizontal lines are for the best value and the 1	
bounds of jV�3j, respectively.

FIG. 7 (color online). Case Wb. jVe3j as a function of � for
jVe2j equal to 0.538 (dashed line), 0.553 (solid line), and 0.568
(dotted line). The solid and dashed horizontal lines are for the
best value and 1	 bounds of jVe3j, respectively.
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difference is that V�3 is no longer 1=
ffiffiffi
2

p
, but c=

ffiffiffi
2

p
. jV�3j

can vary from 0.684–0.694 (0.670–0.703) at the 1	 ð3	Þ
level. This case is consistent with data at 1	 level. Precise
measurement of jV�3j can be used to distinguish these two
cases.

IV. SUMMARY

Recent data from T2K and MINOS show evidence of a
nonzero Ve3 at 90% C.L.. There may be the need for
modifications to the tribimaximal mixing with which Ve3

is equal to zero resulting in a CP conserving mixing. We
have studied several possible ways to minimally modify
the tribimaximal mixing by keeping one of the columns or
one of the rows in the tribimaximal mixing unchanged. Six
cases were studied. Two of the cases have Ve3 ¼ 0. These
two cases are in tension with data at the 3	 level. Also for
these two cases, the CP violating Jarlskog parameter J is

identically zero. CP violation in neutrino oscillation can
provide new tests for these two cases. For the other four
cases, all have two parameters in the mixing matrix.
Current data on neutrino oscillation can put constraints
on the parameters, but remain consistent with data within
2	 for case Vb, and within 1	 for the other three cases. The
allowed ranges for CP violation are also constrained.
Future experiments can test the predictions to rule out these
models.
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APPENDIX A

Here we review some features of the family group A4

[24] that led us to favor Vb, which we analyzed in [23]. A
key point to achieve the tribimaximal mixing in models
based on A4 symmetry is to obtain the matrices Ul and U�

which diagonalize the charged lepton and neutrino mass

matrices Ml and M�, U
y
l MlUr ¼ Dl and UT

�M�U� ¼ D�

in the following forms [23]:

Ul ¼ 1ffiffiffi
3

p
1 !2 !

1 1 1

1 ! !2

0
BB@

1
CCA;

U� ¼ 1ffiffiffi
2

p
1 0 �1

0
ffiffiffi
2

p
0

1 0 1

0
BB@

1
CCA;

(A1)

where !3 ¼ 1. The mixing matrix V is given by Uy
l U�.

Note that Ur which plays a role in diagonalizing the

FIG. 8 (color online). Case Wb. Left: J as a function of � for jVe3j equal to 0.179 (solid line), 0.145 (dashed line), and 0.134 (dotted
line). Right: jVe2j as a function of � for jVe3j equals to 0.179 (solid line), 0.145 (dashed line), and 0.134 (dotted line). The solid and
dashed horizontal lines are for the best value and the 1	 bounds of jVe2j, respectively.

FIG. 9 (color online). CaseWb. Contours of jVe3j and jVe2j for
different values of J. The curves are for J equal to �0:04 (solid
line), �0:03 (dashed line), and �0:01 (dotted line). The solid
and dashed horizontal lines are for the best value and the 1	
bounds of jVe2j, respectively.
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charged lepton mass does not show up in V. With suitable
choices of phase conventions, V can be written in the form
in Eq. (2). In general the elements in the diagonal matrix
D� have phases, the Majorana phases. We provide some
details in Appendix B for obtaining the relevant mass
matrix.

One can easily find that the neutrino mass matrix must
be the following form:

M� ¼
� 0 

0 � 0

 0 �

0
@

1
A; (A2)

to obtain the right form for U�. With appropriate redefini-
tion of phases and mixing angles, one obtained the form
VTB for V.

To achieve the above with specific models, there are
some requirements for Higgs boson fields’ vacuum expec-
tations values as can be seen in Appendix B. In general,M�

above will be modified. If one keeps the charged lepton
mass matrix unchanged, the most general Higgs potential
may not respect the conditions leading to modification
resulting modifying the ‘‘11’’ entry to �� � and the
‘‘33’’ entry to �þ � for the neutrino mass matrix M�

given by Eq. (B4) in Appendix B. With appropriate rede-
finition of phases and angles shown in Appendix B, one
obtains Vb where we have redefined � ¼ �þ �=2 to the
form in Eq. (B8).

Note that in taking the form of Vb in Eq. (3), without
Majorana phases in V, we have absorbed possible
Majorana phases in the masses ~mi ¼ mie

i2
i . Here mi are
real and positive. Without loss of generality, one can al-
ways choose one of the 
i to be zero, for example 
2 ¼ 0.
The above form belongs to the minimal modification to the
VTB mixing pattern specified earlier with the elements in

the second column remaining as V�2 ¼ 1=
ffiffiffi
3

p
.

We have arrived at this minimal modification from a
specific model. In fact, the above parametrization is the

most general one for V�2 ¼ 1=
ffiffiffi
3

p
up to phase conventions.

One can understand this by starting with a most general
parametrization used by the Particle Data Group, VPDG,
and then setting certain angles to some particular values to

make sure that V�2 ¼ 1=
ffiffiffi
3

p
. Since we want all of the

elements in the second column to be 1=
ffiffiffi
3

p
, for conve-

nience we exchange the second and the third columns,
and move the Dirac phase at different locations, by rede-
fining the phase of charged leptons and neutrinos, accord-
ing to the following:

Vb ¼ PLVPDGEPR; (A3)

where PL;R are diagonal phase matrices with elements,

PL ¼ diagðei�; 1; 1Þ, PR ¼ diagðe�i�; 1; 1Þ, and E is a ma-
trix switching the second and third columns with elements
Eij ¼ �i1�j1 þ �i2�j3 þ �i3�j2.

We have

Vb ¼
c13c12 s13 c13s12e

i�

�s12c23e
�i� � c12s23s13 s23c13 c12c23 � s12s23s13e

i�

s12s23e
�i� � c12c23s13 c23c13 �c12s23 � s12c23s13e

i�

0
BB@

1
CCA: (A4)

To have all of the elements in the second column in the
above matrix to be 1=

ffiffiffi
3

p
, one just needs to set s13 ¼ 1=

ffiffiffi
3

p
,

c13 ¼
ffiffiffiffiffiffiffiffi
2=3

p
, and s23 ¼ c23 ¼ 1=

ffiffiffi
2

p
. We then obtain

Eq. (3) with c ¼ c12 and s ¼ s12.
In this basis, one can reconstruct the elements in the

neutrino mass matrix in terms of the mixing angle �, phase

�, and masses ~mi by requiring M� ¼ U�
l VD�V

TUy
l . We

have

� ¼ 1

2
ððc2 � s2e�2i�Þ ~m1 � ðc2 � s2e2i�Þ ~m3Þ;


 ¼ 1

2
ððc2 þ s2e�2i�Þ ~m1 þ ðc2 þ s2e2i�Þ ~m3Þ;

� ¼ icsðe�i� ~m1 � ei� ~m3Þ;
� ¼ ~m2:

(A5)

The �, 
, and � here are equivalent to those given in
Appendix B with a different basis. The important thing is
that the number of independent parameters is the same total
of six.

APPENDIX B

In Appendix B, we briefly outline how Vb can be ob-
tained from models based on A4 family symmetry [24]
with the standard model (SM) gauge symmetry.
Away to obtainUl in Eq. (A1) is to assign the three left-

handed SM lepton doublet lL ¼ ðlL1; lL2; lL3Þ and three
right-handed neutrino ðlR1; lR2; lR3Þ representations into a
triplet, and the three singlets 1, 10, and 100 of A4 group,
respectively. A SM doublet and A4 triplet Higgs represen-
tation � ¼ ð�1;�2;�3Þ then leads to the Yukawa cou-
pling terms,

Ll ¼ �eð�lL�1ÞlR1 þ ��!
2ð�lL�Þ10lR2 þ ��!ð�lL�Þ100lR3

þ H:c: (B1)

After� develops a vacuum expectation value (VEV) of the
form h�i ¼ ðv�; v�; v�Þ, the charged lepton mass matrix
is given by Ml ¼ UlDl with Dl ¼ Diagðme;m�;m�Þ and
mi ¼

ffiffiffi
3

p
v��i. This gives the right Ul with Ur ¼ I.

To obtain the right form of the neutrino mass matrix,
three right-handed neutrinos �R ¼ ð�R1; �R2; �R3Þ, a SM
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doublet Higgs�, and a SM singlet � ¼ ð�1; �2; �3Þ, trans-
forming under the A4 group as triplet, singlet, and triplet,
respectively. The Yukawa coupling terms relevant are

L� ¼ ��ð�lL�RÞ1 þmð ��R�
C
RÞ1 þ ��ðð�R�

C
RÞ3�Þ1 þ H:c:

(B2)

With the VEV structure h�i ¼ v� and h�i ¼ ð0; v�; 0Þ, the
neutrino mass matrix is given by

M ¼ 0 MD

MT
D MR

� �
; MR ¼

m 0 m�

0 m 0
m� 0 m

0
B@

1
CA; (B3)

whereMD ¼ Diagð1; 1; 1Þ��v� andm� ¼ ��v�. The light

neutrino mass matrix is M� ¼ �MDM
�1
R MT

D which is the
desired form giving U� in Eq. (A1).

The charged lepton masses are controlled by the VEVof
� which requires the components of � to have the same
VEV. This choice leaves a Z3 unbroken symmetry in the
theory. The neutrino mass matrix is, on the other hand,
controlled by the VEVof � and � with only h�2i nonzero.
This preserves a Z2 unbroken symmetry in the theory. If
there is no communication between these two sectors, the
residual Z3 and Z2 symmetries are left unbroken. But in
general these two sectors cannot be completely sequestered
and can interact which complicates the situation [26,28].
For example, the VEV structure with only h�2i as nonzero
may not be maintained. One of the consequences that
concern us is that the mass matrix M� will be modified
to [23]

M� ¼
�� � 0 

0 � 0

 0 �þ �

0
@

1
A: (B4)

The above will lead to a different form for U� from that in
Eq. (A1) which can be written as

U� ¼
�c� 0 �is�
0 1 0

�s�e
i� 0 ic�e

i�

0
@

1
A; (B5)

where c� ¼ cos� and s� ¼ sin� with

tan2ð2�Þ ¼ 4j
j2
ðj�þ �j � j�� �jÞ2

�
�
1� 4j�2 � �2j

ðj�þ �j þ j�� �jÞ2 sin
2	

�
;

	 ¼ arg

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � �2
p

�
;

� ¼ ~�þ arg

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �

�þ �

r �
;

tan ~� ¼ j�þ �j � j�� �j
j�þ �j þ j�� �j tan	: (B6)

The phase conventions are chosen such that setting � ¼ 0,
the resulting mixing matrix V goes to VTB.
In this basis, V is given by

V ¼ 1ffiffiffi
3

p
�ðc� þ s�e

i�Þ 1 iðc�ei� � s�Þ
�ð!c� þ!2s�e

i�Þ 1 ið!2c�e
i� �!s�Þ

�ð!2c� þ!s�e
i�Þ 1 ið!c�e

i� �!2s�Þ

0
BB@

1
CCA;
(B7)

which can be further rewritten as

V ¼ VTB

cos� 0 i sin�ei�

0 1 0

i sin�e�i� 0 cos�

0
BB@

1
CCAVp; (B8)

where Vp is a diagonal phase matrix Vp ¼
ðeið�þ�=2Þ; 1; eið��þ�=2Þ multiplied from the right. �, �,
and � are given by

sin2� ¼ 1

2
ð1� sinð2�Þ cos�Þ;

tan� ¼ � 1� tan�

1þ tan�
tanð�=2Þ;

tan� ¼ tanð2�Þ sin�:
(B9)

Absorbing the phases in Vp into the neutrino masses, the

total Majorana phases for ~m1, ~m2, and ~m3 are 
1 ¼
�ð2�þ �þ 2�1Þ, 
2¼�2, and 
3¼�ð�2�þ�þ2�3Þ
with

�1¼�1

2
½argðc2�j���jþ2s�c�j
jeið~�þ	Þþs2�j�þ�je2i ~�Þ�

�argð� ffiffiffiffiffiffiffiffiffiffiffiffi
���

p Þ;
�2¼�1

2
argð�Þ;

�3¼�1

2
½argðc2�j���j�2s�c�j
jeið~�þ	Þþs2�j�þ�je2i ~�Þ�

�argði ffiffiffiffiffiffiffiffiffiffiffiffi
�þ�

p Þ: (B10)

In this basis, V is given by Eq. (B8), but with Vp removed.

The absolute masses squared are given by

m2
1 ¼ j�j2 þ j�j2 þ j
j2 � 2Reð���Þ

cosð2�Þ ;

m2
2 ¼ j�j2;

m2
3 ¼ j�j2 þ j�j2 þ j
j2 þ 2Reð���Þ

cosð2�Þ :

(B11)
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