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The relation for transition form factors of � and �0 is obtained by combining the exact nonperturbative

QCD sum rule, following from the dispersive representation of axial anomaly, and quark-hadron duality.

It is valid at all virtual photon momenta and allows one to express the transition form factors entirely in

terms of meson decay constants. This relation is in a good agreement with experimental data.
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I. INTRODUCTION

Axial anomaly [1,2] is known to be a fundamental
notion of nonperturbative QCD and hadronic physics.
Usually it is considered for the case of real photons, how-
ever, the dispersive form of axial anomaly [3] can be
considered for virtual photons also [4–6]. It leads to an
exact anomaly sum rule (ASR) which does not have per-
turbative corrections due to Adler-Bardeen theorem [7] as
well as nonperturbative QCD corrections due to ’t Hooft
consistency principle. Recently, this sum rule was applied
to the analysis of pion transition form factors [8] which
allowed to validate the interpolation formula for pion
transition form factor [9,10]. This form factor attracted
much attention because of unexpected and provocative
data of BABAR collaboration [11]. These data were fol-
lowed by a stream of theoretical papers, that, in particular,
questioned the QCD factorization [12,13], provided the
detailed analysis of perturbative and nonperturbative
QCD corrections [14–17] and suggested various model
approaches [18–21]. In our anomaly-based analysis [8] it
was found that the BABAR puzzle may indicate an exis-
tence of small nonperturbative correction to continuum
which must be compensated by significant correction to
transition form factor.

Recently, the BABAR collaboration extended the analy-
sis and presented the data for � and �0 meson transition
form factors [22]. These data motivated several recent
papers [23–26].

In this work we analyze the � and �0 transition form
factors by means of generalized ASR to include the effects
of meson mixing. Using the dispersive representation of
axial anomaly the particular (octet) combination of meson
transition form factors is expressed in terms of meson
decay constants only. This expression is in a good agree-
ment with experimental data in the whole range from real
to highly virtual photons.

II. ANOMALY SUM RULE IN OCTET CHANNEL

In this section we briefly remind the dispersive repre-
sentation for axial anomaly [3] (see also [27] for a review)
and derive anomaly sum rule for the octet channel of axial
current.
The VVA triangle graph correlator

T���ðk; qÞ ¼
Z

d4xd4yeðikxþiqyÞh0jTfJ�5ð0ÞJ�ðxÞJ�ðyÞgj0i
(1)

contains axial current J�5 and two vector currents
J� ¼ ðeu �u��uþ ed �d��dþ es �s��sÞ; k, q are momenta

of photons. The octet component of axial current which

is relevant for us explicitly reads: Jð8Þ�5 ¼ 1ffiffi
6

p ð �u���5uþ
�d���5d� 2�s���5sÞ.
It is convenient to write the tensor decomposition

[28–30] of correlator (1) in a form:

T���ðk;qÞ ¼F1"����k
�þF2"����q

�þF3k�"����k
�q�

þF4q�"����k
�q�þF5k�"����k

�q�

þF6q�"����k
�q�; (2)

where the coefficients Fj ¼ Fjðk2; q2; p2;m2Þ, p ¼ kþ q,

j ¼ 1; . . . ; 6 are the corresponding Lorentz invariant am-
plitudes constrained by current conservation and Bose
symmetry. Note, that the latter includes the interchange
� $ �, k $ q in the tensor structures and k2 $ q2 in the
arguments of scalar functions Fj.

In this paper we are interested in the case of one real
(k2 ¼ 0) and one virtual photon (Q2 ¼ �q2 > 0). Then for
the invariant amplitude F3 � F6 the anomaly sum rule
(ASR) takes the form [5]:

Z 1

4m2
A3aðt; q2; m2Þdt ¼ 1

2�
NcC

ðaÞ; (3)

where Nc ¼ 3 is a number of colors and

A3a ¼ 1

2
ImðF3 � F6Þ; (4)
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Cð3Þ ¼ 1ffiffiffi
2

p ðe2u � e2dÞ ¼
1

3
ffiffiffi
2

p ; (5)

Cð8Þ ¼ 1ffiffiffi
6

p ðe2u þ e2d � 2e2sÞ ¼ 1

3
ffiffiffi
6

p : (6)

The ASR (3) is an exact relation, i.e. it does not have
perturbative corrections to the integral [7] as well as it does
not have any nonperturbative corrections too (as it is ex-
pected from ’t Hooft’s principle). Another important prop-
erty of this relation is that it holds for an arbitrary quark
mass m and for any q2.

Note, that one can also write out the similar relation with

Cð0Þ ¼ 1ffiffiffi
3

p ðe2u þ e2d þ e2sÞ ¼ 2

3
ffiffiffi
3

p ; (7)

for the singlet component of the axial current. However, in
this case the absence of corrections is not guaranteed and
one should explicitly take into account the gluonic anom-
aly. So we will not consider the singlet channel in this
paper concentrating on the octet one.

Saturating the l.h.s. of the 3-point correlation function
(1) with the resonances and singling out their contributions
to ASR (3) we get the sum of resonances with appropriate
quantum numbers:

f8�F� þ f8
�0F�0 þ ðother resonancesÞ

¼
Z 1

4m2
A3aðt; q2; m2Þdt ¼ 1

2�
NcC

ð8Þ: (8)

Here the projections of the axial current JðaÞ5� onto one-

meson states Mð¼ �;�0Þ define the coupling (decay)
constants faM:

h0jJðaÞ�5 ð0ÞjMðpÞi ¼ ip�f
a
M; (9)

while the form factors FM� of the transition ��� ! M

are defined by the matrix elements:

Z
d4xeikxhMðpÞjTfJ�ðxÞJ�ð0Þgj0i ¼ 	����k

�q�FM�:

(10)

The relation (8) is exact and expresses the global duality
between hadrons and quarks. Nevertheless, to analyze the
hadron properties one should additionally implement the
local quark-hadron duality hypothesis. Taking into account
large �� �0 mixing, one can express the spectral function
A3aðs;Q2Þ in form of ‘‘two resonancesþ continuum’’:

A3aðs;Q2Þ ¼ �f8�
ðs�m2
�ÞF��ðQ2Þ þ �f8�0
ðs�m2

�0 Þ
� F�0�ðQ2Þ þ AQCD

3a �ðs� s0Þ: (11)

Here s0 is a continuum threshold and AQCD
3a at one-loop

level is

AQCD
3a ¼ 1

2�
ffiffiffi
6

p Q2

ðsþQ2Þ2 : (12)

As it was shown in [31] there is no two-loop �s corrections
to this expression.
Analyzing (11) and (12) one should note that the parti-

cles with nonzero two-photon decays cannot be included in
the continuum as it vanishes at Q2 ¼ 0, so they should be
taken into account explicitly in the ASR. For heavy mesons
the corresponding coupling constants should be suppressed
[32,33] at least as ðm�=mresÞ2 which follows from the

conservation of axial current Jð8Þ�5 in the chiral limit (if

only strong interaction is taken into account). That is
why we restrict ourselves only to � and �0 mesons. The
ASR for the octet channel then reads:

�f8�F��ðQ2Þ þ �f8�0F�0�ðQ2Þ ¼ 1

2�
ffiffiffi
6

p s0
Q2 þ s0

: (13)

Let us stress that this relation is correct for all Q2

due to the absence of the corrections to the ImðF3�F6Þ
[31] which allows to utilize the above expression for
different Q2.
For real photons (Q2 ¼ 0) the above expression coin-

cides with the expression in [33], which was obtained
from dispersive approach to axial anomaly in somewhat
different way:

�f8�F��ð0Þ þ �f8
�0F�0�ð0Þ ¼ 1

2�
ffiffiffi
6

p ; (14)

where

FM�ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�M!2�

��2m3
M

s
: (15)

Here �M!2� and mM are two-photon decay widths and

masses of �, �0 mesons.
The Eq. (13) allows us to fix the continuum threshold

s0 by considering the limit Q2 ! 1 where the QCD
factorization [34,35] is applicable (contrary to ASR the
exploration of this limit in generic QCD sum rules is
obscured by possible corrections). The form factors at
large Q2 [36,37] are:

Q2Fas
�� ¼ 2ðCð8Þf8� þ Cð0Þf0�Þ

Z 1

0

�asðxÞ
x

dx (16)

Q2Fas
�0� ¼ 2ðCð8Þf8

�0 þ Cð0Þf0
�0 Þ

Z 1

0

�asðxÞ
x

dx (17)

We take into account that in the limit Q2 ! 1 the
light cone distribution amplitudes of both �, �0 mesons
are described by their asymptotical form [34,35]:
�asðxÞ ¼ 6xð1� xÞ.
Then the ASR for the octet channel at large Q2 leads to:

s0 ¼ 4�2ððf8�Þ2 þ ðf8
�0 Þ2 þ 2

ffiffiffi
2

p ½f8�f0� þ f8
�0f0�0 �Þ: (18)
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Substituting (18) into (13) we express ASR in terms of
meson decay constants faM only, which is our main result:

f8�F��ðQ2Þ þ f8�0F�0�ðQ2Þ

¼
ffiffi
2
3

q
4�2 þQ2=ððf8�Þ2 þ ðf8

�0 Þ2 þ 2
ffiffiffi
2

p ½f8�f0� þ f8
�0f0�0 �Þ

:

(19)

It is instructive to compare this formula with interpola-
tion formulas for transition form factors of �, �0 mesons
proposed in [38]. The use of the proposed interpolation
formulas leads to relation which is different from (19) but
coincides with it in the limit of large and small Q2.
Numerically, the difference is small at all Q2 (the maximal
difference is 10% at �1 GeV) which proves that the inter-
polation formulas are good approximations.

Let us now pass to applications of (19).

III. MIXING SCHEMES AND TRANSITION
FORM FACTORS

Let us analyze the ASR (19) for different mixing
schemes. It is convenient to eliminate the dependence of
the l.h.s. of (19) on the scale of the coupling constants by

dividing both sides of Eq. (19) by f8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf8�Þ2 þ ðf8

�0 Þ2
q

.

Consider the form factors multiplied by Q2

Q2

f8
ðf8�F��ðQ2Þ þ f8

�0F�0�ðQ2ÞÞ

¼
Q2

f8

ffiffi
2
3

q
4�2 þQ2=ððf8�Þ2 þ ðf8

�0 Þ2 þ 2
ffiffiffi
2

p ½f8�f0� þ f8
�0f0�0 �Þ

(20)

and introduce the matrix of decay constants in the usual
way:

F �
f8� f8

�0

f0� f0
�0

0
@

1
A: (21)

(i) We start from the one-angle mixing scheme, with

F ¼ f8 cos� f8 sin�

�f0 sin� f0 cos�

 !
: (22)

This mixing scheme was analyzed in many papers
(see e.g. [39] and references therein), giving the val-
ues of mixing angle in the range � ¼ �12� ��22�.
In this case the ASR acquires a simple form:

Q2ðF��ðQ2Þ cos�þ F�0�ðQ2Þ sin�Þ

¼
ffiffiffi
2

3

s
Q2

4�2f8 þQ2=f8
; (23)

where constant f8 is defined by the anomaly sum rule
at Q2 ¼ 0 (14):

f8 ¼ �

4
ffiffiffi
6

p
�3=2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��!2�

m3
�

vuut cos�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0!2�

m3
�0

vuut sin�

1
A�1

:

(24)

Thus, (23) and (24) determine the mixing angle in
terms of physical quantities (decay widths and tran-
sition form factors).
The corresponding relation is plotted for different
mixing angles in Fig. 1 and 2. The dots with error
bars correspond to the l.h.s. of Eq. (23), where the
form factors of �, �0 mesons are taken from experi-
mental data of CLEO [40] and BABAR [22] collabo-
rations. The r.h.s. of Eq. (20) corresponds to the curve
with the shaded stripe defined by the experimental
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FIG. 1 (color online). ASR for one-angle mixing scheme (23):
� ¼ �14�.
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FIG. 2 (color online). ASR for one-angle mixing scheme (23):
� ¼ �16�.

AXIAL ANOMALYAND MIXING: FROM REAL TO HIGHLY . . . PHYSICAL REVIEW D 84, 051901(R) (2011)

RAPID COMMUNICATIONS

051901-3



uncertainties of meson decay widths. The slope of the
straight line in the origins indicates the value of the
anomaly sum rule at Q2 ¼ 0. This sum rule was
considered earlier [33] and is in a good agreement
with the experimental values of two-photon decay
widths of � and �0 mesons.
We observe that for � ¼ �14� ��16� there is a
reasonable agreement with the experimental data
[22,40]. The corresponding values of coupling con-
stant (24) are f8 ¼ 0:87� 0:94f�, f� ¼ 0:13 GeV.
The slight increase at largeQ2 is related, in particular,
to the tendency of �0 contribution to decrease at
large Q2. Because of the negative mixing angle this
leads to the behavior in the octet channel, qualita-
tively resembling the pion case, which produced
the BABAR puzzle.

(ii) Let us now discuss the mixing schemes suggested
and developed in [41–43]. These schemes parame-
trize the decay constants faM in terms of two mixing
angles �8, �0:

F ¼ f8 cos�8 f8 sin�8

�f0 sin�0 f0 cos�0

 !
: (25)

Note, that this kind of matrices may appear when one
considers the quark basis (see, e.g. [42]). For the parame-
ters, suggested in [42] (f0 ¼ 1:17f�, f8 ¼ 1:26f�, �0 ¼
�9:2�, �8 ¼ �21:2�) the plot describing the ASR (20) is
shown in Fig. 3.

For parameters, suggested in [43] (f0 ¼ 1:29f�, f8 ¼
1:51f�, �0 ¼ �2:4�, �8 ¼ �23:8�) the plot for ASR (20)
is shown in Fig. 4. One can see that for this particular
mixing model the agreement of ASR with the experimental
data is substantially worse.

The developed approach can be used as an additional
constraint on mixing parameters. It is useful to analyze the
mixing schemes which take into account more than two
mixing states; the detailed analysis of these schemes is
quite lengthy and will be presented elsewhere.

IV. DISCUSSION AND CONCLUSIONS

We generalize the rigorous nonperturbative QCD ap-
proach which relies on quark-hadron duality hypothesis
but does not contain any free adjustable parameters to
the case of � and �0 mesons where mixing is crucially
important.
Combining the exact dispersive form of anomaly rela-

tion, quark-hadron duality hypothesis and asymptotic
matching with QCD factorization we express the combi-
nation of �, �0 meson transition form factors in terms of
meson decay constants only (19). The obtained anomaly
sum rule is valid in the whole kinematical region starting
fromQ2 ¼ 0. This ASR is quite robust and can be used as a
test for different sets of mixing parameters. Our analysis
shows that for a large number of mixing schemes ASR is in
a good agreement with experimental data (probably with
the exception of parameters offered in [43]).
At the same time, let us note that if one estimates the

value of continuum threshold s0 from Eq. (18) it appears to
be quite small for all mixing schemes. This may reflect the
contradiction of local quark-hadron duality from one side,
and anomaly from the other side. The possible resolution
of such contradiction can be due to 1=Q2 suppressed non-
perturbative corrections to continuum similar to suggested
earlier [8] for explanation of BABAR pion puzzle. It is
significant that such corrections are essential for the value
of s0 while ASR (19) is practically insensitive to them.
This problem as well as the consideration the singlet
channel of axial current and other mixing schemes requires
a special investigation which is now in progress.
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