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We propose a novel way to break grand unified gauge symmetries via the Hosotani mechanism in

models that can accommodate chiral fermions. Adjoint scalar fields are realized through the so-called

diagonal embedding method which is often used in the heterotic string theory. We calculate the one-loop

effective potential of the adjoint scalar field in a five dimensional model compactified on an S1=Z2

orbifold, as an illustration. It turns out that the potential is basically the same as the one in an S1 model,

and thus the results in literatures, in addition to the chiral fermions, can be realized easily.
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I. INTRODUCTION

The Hosotani mechanism [1] is one of the most interest-
ing features possessed by models with topological extra
dimensions, and has been studied extensively in the litera-
ture [2–4]. In this mechanism, zero-modes of the extra-
dimensional components of the higher dimensional gauge
fields acquire nonvanishing vacuum expectation values
(VEVs) to break the gauge symmetry. Since the extra-
dimensional components behave as adjoint scalar fields
at low energy [2,3], the mechanism has mainly been ap-
plied to the grand unified theories (GUTs) in the last
century. The idea, however, encounters the difficulty that
one cannot obtain the chiral fermions, and thus it is not
phenomenologically viable.

After the work in Ref. [5] on the orbifold symmetry
breaking within the field theoretical framework, which
opens a way to realize scalar fields in the fundamental
representation from the extra-dimensional components of
the higher dimensional gauge fields, the Hosotani mecha-
nism is often applied to the electroweak symmetry break-
ing. In this scenario, one can obtain the chiral fermions,
and in addition, it gives a new approach to the hierarchy
problem [3] without using supersymmetry. The scenario is
called gauge-Higgs unification and has been studied from
various points of view [4].

It is natural to ask whether or not one can apply the
Hosotani mechanism to the GUTs without contradicting
with the existence of the chiral fermion. Our aim in this
letter is to establish a way to realize this application in the
case of the orbifold compactification. This is very attrac-
tive because the gauge symmetry-breaking patterns are
completely determined by the calculable dynamics inde-
pendently of details of the unknown ultraviolet completion,
thanks to the finiteness of the Higgs effective potential [3].

This is in great contrast to the orbifold breaking in which
the symmetry-breaking pattern is freely chosen by bound-
ary conditions (BCs). In addition, at the same time, one can
incorporate the chiral fermions easily.
There is, however, a difficulty in this attempt. The

massless adjoint scalar fields, which originate from the
extra-dimensional components, tend to be projected out
at low energy in models that realize the chiral fermions.
This is caused by the difference between the BCs of the
four-dimensional (4D) vector components and those of the
extra-dimensional ones. It is actually possible that they
have a common BC, when there are directions compacti-
fied on a certain manifold, such as a torus. The chiral
fermions, however, disappear when such directions exist.
This difficulty is shared with the heterotic string theory

[6]. Since this theory is expected to contain the standard
model, it has been thoroughly studied and a way to over-
come the difficulty was proposed, through the so-called
diagonal embedding method [7–9]. This method extracts
the diagonal part of n-copies of a gauge symmetryG, ðGÞn,
by, for instance, a Zn orbifold action that permutes them. In
view of the orbifold projection, the eigenvalues of the

permutation are given as e2�ik=n ðk ¼ 0; 1; � � � ; n� 1Þ. In
particular, the gauge factor with k ¼ 0 corresponds to the
diagonal part and remain unbroken by the orbifold action.
In other words, the remaining gauge symmetry in the 4D
effective theory is embedded into the diagonal part. A point
is that if the phases of other eigenstates cancel those of the
extra-dimensional components of the gauge field which
comes from the geometrical twist, adjoint scalars appear
in the massless spectrum [9].
We find no reasons that forbid the application of the

same method to our phenomenological setup and we ex-
amine this possibility. An advantage of working in a simple
field theoretical setup is that it is much easier to calculate
the quantum corrections that tell us the positions of vacua.
By this, it is possible to determine the gauge symmetry-
breaking patterns dynamically. In this letter, as an illustra-
tion, we work on S1=Z2 models since extension to models
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with a more complex orbifold such as T2=Z3 is
straightforward.

II. DIAGONAL EMBEDDING IN S1=Z2 MODEL

Let us rephrase the diagonal embedding method in terms
of the BCs. In the S1=Z2 orbifold model, we should fix the
BCs with respect to the reflections of the 5th-dimensional
coordinate, y, at the two fixed points, y0 ¼ 0 and y� ¼ �R.
We choose them so that two-copies of the gauge symmetry
G are exchanged [10]. For this purpose, the Lagrangian
should be symmetric under the exchange. Namely, we
consider models with a G�G� Z2 symmetry. We for-
mally distinguish the two gauge factors with indices, as
G1 and G2. Their gauge fields and generators are named as

Að1Þ
M and Að2Þ

M , and Ta
1 and Ta

2 , respectively, where M ¼
�ð¼ 0–3Þ; 5 is a 5D Lorentz index.

To be more concrete, we choose the BCs as

Að1Þ
� ðyi � yÞ ¼ Að2Þ

� ðyi þ yÞ; (1)

which are rewritten as

Að�Þ
� ðyi � yÞ ¼ �Að�Þ

� ðyi þ yÞ; (2)

where we have defined Xð�Þ ¼ ðXð1Þ � Xð2ÞÞ= ffiffiffi
2

p
and used

yiði ¼ 0; �Þ. Since A5 has the parity opposite to A� to keep

the Lagrangian invariant, they lead to

Að�Þ
5 ðyi � yÞ ¼ �Að�Þ

5 ðyi þ yÞ: (3)

The BCs (2) imply that the gauge symmetries G1 �G2 are
broken down to their diagonal part Gdiag whose gauge field

is AðþÞ
� , while those in (3) show that the zero-mode of the

extra-dimensional component Að�Þ
5 exists, which behaves

as the adjoint representation ofGdiag as we will see soon. In

this way, a massless adjoint scalar is obtained in the orbi-
fold model.

The Wilson line in this case is given as

W¼ exp

�
i
Z 2�R

0
gðAð1Þa

5 Ta
1 þAð2Þa

5 Ta
2 Þdy

�

¼ exp

�
i
Z 2�R

0

gffiffiffi
2

p ðAðþÞa
5 ðTa

1 þTa
2 ÞþAð�Þa

5 ðTa
1 �Ta

2 ÞÞdy
�
;

where g is the common gauge coupling constant. Taking
the commutation relations with the generators of the di-
agonal group,

½Ta
1 þ Ta

2 ; T
b
1 � Tb

2 � ¼ ifabcðTc
1 � Tc

2Þ; (4)

we see that both combinations (T1 � T2) behave as adjoint
representation under the diagonal group. Note that the

normalizations of (T1 � T2) have no factor of 1=
ffiffiffi
2

p
to

satisfy the commutation relation (4). This results in the
suppressed gauge coupling of Gdiag compared to the origi-

nal one, gdiag ¼ g=
ffiffiffi
2

p
.

Since only the combination Að�Þ
5 has zero-modes, we set

the VEVs of A5 as�
gffiffiffi
2

p Að�Þa
5

�
¼ hgAð1Þa

5 i ¼ �hgAð2Þa
5 i ¼ �a

�R
: (5)

Then, the VEVof the Wilson line becomes

hWi ¼ exp½i�a2ðTa
1 � Ta

2 Þ�: (6)

III. FERMIONS

Because of the Z2 symmetry which is required to impose
the BCs that exchange the two gauge groups, when we

introduce a fermion, �ð1ÞðR1;R2Þ with R1 � R2 where
R1 and R2 denote its representations of G1 and G2, re-

spectively, its Z2 partner �ð2ÞðR2;R1Þ should be also
introduced. These fermions behave as a reducible repre-
sentation R1 �R2 under the residual diagonal gauge
groups. To keep the Lagrangian invariant, their BCs are
given as

�ð1Þðyi � yÞ ¼ ���
5�ð2Þðyi þ yÞ; (7)

where �� is a parameter being �2
� ¼ 1. Namely,

�ð�Þðyi � yÞ ¼ ����
5�ð�Þðyi þ yÞ: (8)

This implies that a vectorlike pair of the fermion zero-
modes in the reducible representation R1 �R2 appears.
In the case with R1 ¼ R2ð¼ RÞ, a single fermion c ��

is allowed, where � and � are the indices of the represen-
tationR on which the elements of G1 andG2, respectively,
act. It behaves as a reducible representation of the diagonal
group:

R �R ¼ ðRs1 þ � � �Þ þ ðRa1 þ � � �Þ; (9)

where ‘‘s’’ and ‘‘a’’ denote symmetric and antisymmetric

products, respectively. We define c ��
� ¼ ðc �� � c ��Þ=2

so that cþ and c� consist of Rsi and Rai, respectively.
Its BCs are

c ��ðyi � yÞ ¼ �c�
5c ��ðyi þ yÞ; (10)

or c ��
� ðyi � yÞ ¼ ��c�

5c ��
� ðyi þ yÞ: (11)

With this, we see that chiral zero-modes appear in this case
[12].
The interaction terms among the fermions and the 5D

gauge fields are written as
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g ��ð1Þ ��ð2Þ� � Að1ÞaTa
R1

þ Að2ÞaTa
R2

0

0 Að1ÞaTa
R2

þ Að2ÞaTa
R1

0
@

1
A �ð1Þ

�ð2Þ

 !

¼ gffiffiffi
2

p ��ðþÞ ��ð�Þ� � AðþÞaðTa
R1

þ Ta
R2
Þ Að�ÞaðTa

R1
� Ta

R2
Þ

Að�ÞaðTa
R1

� Ta
R2
Þ AðþÞaðTa

R1
þ Ta

R2
Þ

0
@

1
A �ðþÞ

�ð�Þ

 !
3 ��ð�Þ �

a

�R
ðTa

R1
� Ta

R2
Þi�5�ð�Þ: (12)

Here, Tr is the generator on the representation r and A ¼ AM�
M with �M ¼ ð��; i�5Þ. Note that the last two expressions

also hold for c , with the replacements �ð�Þ ! c� and TR1
(TR2

) by TR that act on the first (second) index of c�. Thus,
we concentrate on � in the remaining in this section, except for specially mentioned comments.

On the background (5), the mass terms for the n-th Kaluza-Klein (KK) modes of �ð�Þ, with n being a non-negative
integer, are

LKK ¼ �1

R
��ðþÞ
n

��ð�Þ
n

� 	
�0

�n �i�aðTa
R1

� Ta
R2
Þ=�

�i�aðTa
R1

� Ta
R2
Þ=� n

 !
�5

�ðþÞ
n

�ð�Þ
n

 !
�

þ c:c:; (13)

where � and �0ð� �Þ denote the chiralities which we fix so
that ð�ðþÞÞ� becomes even. Diagonalizing the above ma-
trix and rearranging phases by the chiral rotation, we find
the KK spectrum is given as

mðnÞ
KKR ¼ nþ �aðTa

R1
� Ta

R2
Þ=�; n 2 Z: (14)

Let us note that the KK spectrum is basically the same form
as the one obtained for the S1 compactification, though the
effect of �a is nontrivial as discussed soon. With this
expression, it is easy to calculate the contributions to the
one-loop Higgs effective potential [1,2].

It is interesting to see that for the fermions withR2 being
trivial, the situation is completely the same as the S1

compactification with the same radius R and the original
gauge coupling constant g. Note that the 4D effective
gauge couplings are the same as that of the remaining
Gdiag: g

2
diag=LS1=Z2

¼ g2
S1
=LS1 ¼ g2=ð2�RÞ. This is under-

stood by latticizing the extra-dimension [13], as shown in
Fig. 1. From this figure, we see the resulting Moose dia-
gram looks the same as the one for the S1 model. This
means that what can be done in the S1 models in the
literatures are easily reproduced, while the chiral fermions
can be put on the branes.

For the fermions with nontrivial R1 and R2, the mass
spectra (and thus the contributions to the one-loop Higgs
effective potential) are the same as the one of the fermion
in theR1 �R�

2 (reducible) representation in the S
1 model,

while they behave as R1 �R2 representations under the

remaining gauge symmetry GD. This gives a difference
between our model and the S1 model, which is again
understood via the latticized picture, as these fermions
seem to have ‘‘nonlocal’’ interactions with the gauge bo-
sons in two distant sites in view of the S1 side.
Special comments on c are in order. As mentioned

before, the above expressions are also for the case of c .
Since the representation of cþ is, however, different from
that of c� in this case, it is clear that not all of the zero-
modes acquire masses. Instead, some components that are
vectorlike with respect to the unbroken subgroup against
the VEVof A5 become massive. The other components are
the eigenstates of �aðTa

R1
� Ta

R2
Þ with vanishing eigenval-

ues and thus remain massless. These modes can be chiral.
Let us consider an example of an SUð5Þ model with

c ð5Þ where the VEV of A5 breaks SUð5Þ into SUð3ÞC �
SUð2ÞL �Uð1ÞY . This c is divided into cþð15Þ and
c�ð10Þ, which are decomposed as

15 ! ð3; 2Þ1=6 þ ð6; 1Þ�2=3 þ ð1; 3Þ1; (15)

10 ! ð3; 2Þ1=6 þ ð�3; 1Þ�2=3 þ ð1; 1Þ1: (16)

The component ð3; 2Þ1=6 becomes massive due to the VEV,

while the others remain massless. It is easy to see the latter
are the eigenstates of �aðTa

R1
� Ta

R2
Þ with zero eigenvalues

in this case.

IV. APPLICATIONS

In this section, we shall discuss applications to
SUð5Þ models. The literature [1,2] indicates that it is not
easy to realize vacua where the SUð5Þ symmetry is broken
to SUð3Þ � SUð2Þ �Uð1Þ as the global minimum of the
potential in the S1 framework. Since the potential in our
setup is basically the same as those in the S1 models,
unfortunately, the same conclusion would be applied to
our case.
It is, however, not so important whether we reside on

the global minimum or on a local minimum, as far as
FIG. 1. The latticized picture of G1 �G2 ! GD model on
S1=Z2.
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the lifetime of the local minimum is much longer than the
age of universe. In this view, the analysis in Ref. [14] is
noteworthy. There, it is claimed that the desired vacuum is
realized as a local minimum when one fermion in 5 and 10,
respectively, one scalar in 5 and three scalars in 15 are
introduced. Though we find that the precise point consid-
ered in Ref. [14] is not even extremal, there is another
point, �aTa=� ¼ diagð2; 2; 2;�3;�3Þ=2, being actually a
local minimum where the desirable symmetry breaking
occurs. Since it is not easy to keep the scalars light against
the quantum corrections, we would like to replace them by
antiperiodic fermions which have a similar effect as the
periodic scalars [15]. It is not difficult to check the point
remains a local minimum after this modification.

In this way, we can utilize the results in the literature that
investigate S1 models while the chiral fermions can be put
on the branes in our setup. We hope that this letter revives
the researches in the literature that have been abandoned
because of the lack of the chiral fermions. We leave con-
crete model building as future works [16].
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