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The distribution of linearly polarized gluons inside a large nucleus is studied in the framework of the

color glass condensate. We find that the Weizsäcker-Williams distribution saturates the positivity bound at

large transverse momenta and is suppressed at small transverse momenta, whereas the dipole distribution

saturates the bound for any value of the transverse momentum. We also discuss processes in which both

distributions of linearly polarized gluons can be probed.
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I. INTRODUCTION

Recently, transverse momentum dependent parton dis-
tributions (TMDs) [1] inside a nucleon have attracted a lot
of interest. Since TMDs depend not only on the longitudi-
nal momentum fraction x of the parton but also on its
transverse momentum k?, they contain more detailed in-
formation on the internal structure of the nucleon as com-
pared to the conventional collinear parton distributions.
So far, the main focus of the field has been on quark
TMDs. In particular, the (naı̈ve) time-reversal odd quark
Sivers function [2] and Boer-Mulders function [3], which
are intimately linked to initial/final state interactions of
the active quark [4,5], have been under intensive investi-
gation. In comparison, the available studies of (polarized)
gluon TMDs [6–12] are still rather sparse. Among them
the distribution of linearly polarized gluons inside an

unpolarized nucleon (h?g
1 in the notation of Ref. [9]) is

of particular interest. It is the only polarization dependent
gluon TMD for an unpolarized nucleon, and therefore
may be considered as the counterpart of the quark Boer-

Mulders function. However, in contrast to the latter, h?g
1

is time-reversal even, implying that initial/final state inter-
actions are not needed for its existence. It has been shown
that this distribution, in principle, can be accessed through
measuring, e.g., azimuthal cos2� asymmetries in
processes such as jet or heavy quark pair production in
electron-nucleon scattering as well as nucleon-nucleon
scattering, and photon pair production in hadronic
collisions [10–12]. Such measurements should be feasible
at the Relativistic Heavy Ion Collider (RHIC), the
LHC, and a potential future Electron Ion Collider (EIC)
[13,14].

It has long been recognized that the k? dependent un-
polarized gluon distribution fg1 (also frequently referred to

as the unintegrated gluon distribution) plays a central role
in small x saturation phenomena. Because of the presence
of a semihard scale (the so-called saturation scale), gen-
erated dynamically in high energy scattering, fg1 ðx; k?Þ at
small x can be computed using an effective theory which
is also known as the color glass condensate (CGC)

framework (see [15–19] and references therein). There
are two widely used k? dependent unpolarized gluon dis-
tributions with different gauge link structures: (1) the
Weizsäcker-Williams (WW) distribution [15,20,21] and
(2) the so-called dipole (DP) distribution which appears,
for instance, in the description of inclusive particle pro-
duction in pA collisions [22,23] (see, e.g., Refs. [18,19] for
an overview). The WW distribution describes the gluon
number density and as such has a probability interpreta-
tion, whereas the dipole distribution is defined as the
Fourier transform of the color dipole cross section. Very
recent work has demonstrated that both types of k? depen-
dent gluon distributions can be directly probed through
two-particle correlations in various high energy scattering
reactions [24,25]. These studies make use of an effective
TMD factorization at small x in the correlation limit, where
the transverse momentum imbalance of, e.g., two out-
going jets is much smaller than the individual transverse
jet momenta. Such a factorization is suggested by the CGC
approach.
In this article, we extend the calculation of fg1 ðx; k?Þ to

the case of h?g
1 ðx; k?Þ. To be more specific, we compute

both the WW distribution and the dipole distribution of
linearly polarized gluons in the CGC framework. It is
shown that the WW distribution saturates the positivity
bound [6] at high transverse momenta, and is suppressed
at low transverse momenta. The dipole distribution satu-
rates the bound for any value of k?. Following the proce-
dure outlined in [24,25] we further argue that the WW
distribution and the dipole distribution can be accessed by
measuring a cos2� asymmetry for dijet production in
lepton nucleus scattering and for production of a virtual
photon plus a jet in nucleon nucleus scattering, respec-
tively. In some sense this also extends related studies
[10–12] to the small x region.

II. WEIZSÄCKER-WILLIAMS DISTRIBUTION

We start the derivation by introducing the operator defi-
nition of the WW gluon distribution inside a large nucleus
[6,9],
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Mij
WW¼

Z d��d2�?
ð2�Þ3Pþ eixP

þ���i ~k?� ~�?hAjFþið��þy�;�?þy?ÞLy
�þyLyF

þjðy�;y?ÞjAi

¼�ij
?
2
xfg1;WWðx;k?Þþ

�
1

2
k̂i?k̂

j
?�1

4
�ij
?

�
xh?g

1;WWðx;k?Þ; (1)

where k̂i? ¼ ki?=k? (k? � j ~k?j). Color gauge invariance
is ensured by two (future-pointing) gauge links in the
adjoint representation. We use

L� ¼ Pe
�ig

R1�
�� d��Aþð��;�?ÞP e

�ig
R1

�?
d ~�?� ~A?ð�?;��¼1�Þ

;

(2)

where A� ¼ A
�
a ta with ðtaÞbc ¼ �ifabc, and fabc denoting

the structure constants of the SUð3Þ group. When the gauge
links become unity by choosing the light-cone gauge with
advanced boundary condition, the above two distributions
have a number density interpretation. Note that our con-
vention for h?g

1 differs from the previous literature [6,9] by
a factor k2?=M

2, whereM is the target mass. We also would
like to mention that the violation of translational invariance
inside a large nucleus prevents us from shifting the coor-
dinate y to zero, which would lead to the conventional form
of k? dependent gluon distributions. However, as shown in
Ref. [25], the gluon distributions defined in Eq. (1) are the
ones which can be directly related to physical observables.

We perform the calculation of the WW gluon distribu-
tions in the CGC framework in the light-cone gauge by
following the standard procedure (see, e.g., Ref. [17] for an
overview). By solving the classical Yang-Mills equation of
motion with a random color source, which has only a plus
component, the gluon field strength tensor reads

Fþiðy?Þ ¼ @þAiðy?Þ ¼ �Uðy?Þ@i?�Uyðy?Þ: (3)

All nonlinear effects are encoded in the Wilson line
Uyðy?Þ ¼ P expfigR1

y� d�
��ð��; y?Þg. The quantity �

satisfies the equation �r2
?�aðy?Þ ¼ �aðy?Þ with �a

being the color source in the covariant gauge. We proceed
by inserting this expression into the matrix element in (1)
and by contracting the field operators in all possible ways.
Because of rotational symmetry and the ordering of the
Wilson lines in the minus direction, the only allowed
contraction is

hFþið�þ yÞFþjðyÞiA
¼ h½Uy

ab@
i
?�b�ð�þ yÞ½Uy

ac@
j
?�c�ðyÞiA

¼ h@i?�bð�þ yÞ@j?�cðyÞiAhUy
abð�þ yÞUcaðyÞiA

¼ �ð��ÞhTrUyð�þ yÞUðyÞiA½�@i?@
j
?�Að�?Þ�	Aðy�Þ;

(4)

where Uy
ac ¼ Uca in the adjoint representation. In the

last step, we use the propagator h�aðxÞ�bðyÞiA ¼
�ab�ðx� � y�Þ�Aðx? � y?Þ	Aðx�Þ with �Aðk?Þ ¼ 1=k4?,

where 	A comes from the correlation of color sources

generated by a Gaussian weight function WA½�� ¼
expf� 1

2

R
d3x �aðxÞ�aðxÞ

	Aðx�Þ g [15],
h�aðxÞ�bðyÞiA ¼ �ab�

2ðx? � y?Þ�ðx� � y�Þ	Aðx�Þ:
(5)

One can further evaluate the contraction of two Wilson
lines by expanding them in powers of �, which leads to

hTrUyð�þ yÞUðyÞiA
¼ ðN2

c � 1Þ exp
�
�g2Nc½�Að0?Þ � �Að�?Þ�

�
Z 1�

y�
d��	Að��Þ

�
: (6)

Collecting all the pieces one obtains

Mij
WW¼N2

c�1

4�3

�
Z
dy�d2y?d2�?e�i ~k?� ~�?½�@i?@

j
?�Að�?Þ�	Aðy�Þ

�exp

�
�g2Nc½�Að0?Þ��Að�?Þ�

�
Z 1�

y�
d��	Að��Þ

�
: (7)

Integrating out y? and y� we end up with

Mij
WW¼N2

c�1

4�3
S?

�
Z
d2�?e�i ~k?� ~�?

�@i?@
j
?�Að�?Þ

1
4�A

�2
?Q

2
s

ð1�e�ð�2
?Q

2
s=4ÞÞ;

(8)

where S? ¼ �R2
A is the transverse area of the target

nucleus, �A ¼ R1�
�1� dy�	Aðy�Þ, and Q2

s ¼
�sNc�A ln

1
�2
?�

2
QCD

is the saturation scale. By appropriate

projections one can now obtain both TMD gluon distribu-
tions in a large nucleus. For the unpolarized distribution
one has

xfg1;WWðx;k?Þ¼�ij
?M

ij
WW

¼N2
c�1

Nc

S?
4�4�s

�
Z
d2�?e�i ~k?� ~�?

1

�2
?
ð1�e�ð�2

?Q
2
s=4ÞÞ; (9)

ANDREAS METZ AND JIAN ZHOU PHYSICAL REVIEW D 84, 051503(R) (2011)

RAPID COMMUNICATIONS

051503-2



in full agreement with already existing calculations
[20,21]. For the distribution of linearly polarized gluons
we find

xh?g
1;WWðx;k?Þ¼ð4k̂i?k̂j?�2�ij

?ÞMij
WW

¼N2
c�1

4�3
S?

�
Z
d�?

K2ðk?�?Þ
1

4�A
�?Q2

s

ð1�e�ð�2
?Q

2
s=4ÞÞ: (10)

To arrive at the result in (10) we made use of the Bessel
functions K
ðxÞ ¼ i


2�

R
�
�� d� expfix cos�þ i
�g, and the

recursion relation d
dx ½K
ðxÞ

x
 � ¼ � K
þ1ðxÞ
x
 . Note that both

fg1;WW and h?g
1;WW depend, in particular, also on the CGC

parameter Qs.
Let us now discuss the expression in Eq. (10) in the limit

of high and low transverse momenta. For k? � Qs, the
integral is dominated by small distances �? � 1=Qs and
can be evaluated by expanding the exponential

expf� �2
?Q

2
s

4 g, leading to

xh?g
1;WWðx; k?Þ ’ 2S?

N2
c � 1

4�3

�A

k2?
ðk? � QsÞ: (11)

For �QCD � k? � Qs the dominant contribution comes

from large distances �? � 1=Qs, where one can neglect
the exponential. We further neglect the logarithmic �?
dependence in the saturation scale Qs and arrive at

xh?g
1;WWðx;k?Þ ’ 2S?

N2
c � 1

4�3

�A

Q2
s

ð�QCD � k? �QsÞ:

(12)

On the other hand, in these limits the unpolarized gluon
distribution takes the form

xfg1;WWðx; k?Þ ’ S?
N2

c � 1

4�3

�A

k2?
ðk? � QsÞ; (13)

xfg1;WWðx; k?Þ

’ S?
N2

c � 1

4�3

1

�sNc

ln
Q2

s

k2?
ð�QCD � k? � QsÞ: (14)

From those results one immediately finds that for large k?
the distribution of linearly polarized gluons saturates the

positivity limit, which in our notation reads h?g
1 � 2fg1 [6].

This is actually not a very surprising result because, like for
the unpolarized gluon distribution, the correct perturbative

tail [26–28] can be recovered for h?g
1 at large k?, for which

one also finds complete linear polarization. In contrast, the

ratio h?g
1;WW=f

g
1;WW is suppressed in the region of small k?,

where gluon rescattering effects play a more important
role.

III. DIPOLE DISTRIBUTION

We now proceed to the calculation of the dipole distri-
bution. In that case the operator definition reads [24,25,29]

Mij
DP ¼ 2

Z d��d2�?
ð2�Þ3Pþ eixP

þ���i ~k?� ~�?hAjTrFþið�� þ y�; �? þ y?ÞU½��y
�þy F

þjðy�; y?ÞU½þ�
�þyjAi

¼ �ij
?
2

xfg1;DPðx; k?Þ þ
�
1

2
k̂i?k̂

j
? � 1

4
�ij
?

�
xh?g

1;DPðx; k?Þ; (15)

where U½��
� ¼ Unð0;�1; 0ÞUnð�1; ��;�?Þ and U½þ�

� ¼
Unð0;þ1; 0ÞUnðþ1; ��;�?Þ are gauge links in the fun-
damental representation. In the covariant gauge, the only
nontrivial component of the field strength tensor is
Fþiðy?Þ ¼ �@i?�ðy?Þ, which can be viewed as the real-
ization of the eikonal approximation in the McLerran-
Venugopalan model. By noticing this fact, one may easily
see that Un½þ1; ��;�?�Fþið�ÞUny½�1; ��;�?� /
@i?U

ny½�1;þ1;�?� [25]. This relation finally leads to

Mij
DP ¼

ki?k
j
?Nc

2�2�s

S?
Z d2�?

ð2�Þ2 e
�i ~k?� ~�?e�ðQ2

sq�
2
?=4Þ; (16)

where Q2
sq ¼ �sCF�A ln

1
�2
?�

2
QCD

is the quark saturation mo-

mentum. Contracting Mij
DP with the different tensors one

readily finds

xh?g
1;DPðx; k?Þ ¼ 2xfg1;DPðx; k?Þ

¼ k2?Nc

�2�s

S?
Z d2�?

ð2�Þ2 e
�i ~k?� ~�?e�ðQ2

sq�
2
?=4Þ;

(17)

which means that the positivity bound is saturated for any

value of k?. Note that both fg1;DP and h?g
1;DP depend, in

particular, also on the CGC parameter Qsq. At large k?,
the correct perturbative tails are recovered for both the
WW and the DP distributions in the unpolarized and the
polarized case, while the DP-type distributions are more
suppressed than the WW-type distributions at small k?.
For more discussion and additional physical insights about
the difference between the two type distributions, see
[19,25] and references therein.
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IV. OBSERVABLES

The extraction of gluon TMDs through two-particle
correlations in various high energy scattering processes at
small x relies on an effective TMD factorization valid in
the correlation limit [24,25], where the transverse momen-
tum imbalance between two final state particles (or jets) is
much smaller than the individual transverse momenta.
Normally, higher twist contributions at small x are equally
important as the leading twist contribution because of
the high gluon density. Therefore, in order to arrive at the
mentioned effective TMD factorization, an analysis in-
cluding all higher twist contributions would be crucial.
For the unpolarized case it has been shown that the results
from the effective TMD factorization are in agreement
with the results obtained by extrapolating the CGC calcu-
lation to the correlation limit [24,25]. By applying a cor-
responding power counting in the correlation limit, we find
a complete matching between the effective TMD factori-
zation and the CGC calculation in the polarized case as
well. For simplicity, we will express our results in terms of
k? dependent gluon distributions rather than multipoint
correlation functions.

First, we discuss dijet production in lepton nucleus
scattering. In fact, we consider the process �	 þ A !
qðp1Þ þ �qðp2Þ þ X for both transversely and longitudi-
nally polarized photons. (We also keep the quark mass
mq in the calculation.) Because there are only final state

interactions between the q �q pair and the target nucleus, the
correct gluon TMD entering the factorization formula is
the WW distribution, in which the final state interactions,
to all orders, are resummed in future-pointingWilson lines.
The calculation provides

d�	
TA!q �qþX

dP:S:
¼ �ðx�	 � 1ÞH�	

Tg!q �q

�
xfg1;WWðx; k?Þ

� ½z2q þ ð1� zqÞ2��2fP2
? �m2

qP
2
?

½z2q þ ð1� zqÞ2�ð�4f þ P4
?Þ þ 2m2

qP
2
?

� cosð2�Þxh?g
1;WWðx; k?Þ

�
; (18)

d�	
LA!q �qþX

dP:S:
¼ �ðx�	 � 1ÞH�	

Lg!q �q

�
xfg1;WWðx; k?Þ

þ 1

2
cosð2�Þxh?g

1;WWðx; k?Þ
�
; (19)

where x�	 ¼ zq þ z �q, with zq, z �q being the momentum

fractions of the virtual photon carried by the quark and
antiquark, respectively. The phase space factor is defined
as dP:S: ¼ dy1dy2d

2P?d2k?, where y1, y2 are rapidities
of the two outgoing quarks in the lab frame. Moreover,
~P? ¼ ð ~p1? � ~p2?Þ=2, and �2f ¼ zqð1� zqÞQ2 þm2

q. The

transverse momenta are defined in the �	A cm frame. In the
correlation limit, one has jP?j ’ jp1?j ’ jp2?j � jk?j ¼
jp1? þ p2?j. The (azimuthal) angle between ~k? and ~P? is
denoted by �. The hard partonic cross sections H�	

T;Lg!q �q

can be found in Ref. [25]. Our calculation for these
coefficients agrees with the results of [25]. The cosð2�Þ
modulation of the cross section allows one to address
the distribution of linearly polarized gluons. For intermedi-
ate values of x this was already pointed out in Ref. [11].
Our calculation indicates that the largest azimuthal
asymmetry can be expected for longitudinally polarized
photons.
Let us now turn to the dipole distribution at small x.

From a theoretical point of view, the simplest process to

address h?g
1;DP seems to be back-to-back virtual photon plus

jet production in pA collisions, i.e., pþ A ! �	ðp1Þ þ
qðp2Þ þ X. For this reaction, the multiple gluon attach-
ments to the initial and final state quark line can be
resummed which leads to the dipole type gluon distribu-
tion. Moreover, in the forward rapidity region of the pro-
ton, one may simplify the calculation by adopting a hybrid
strategy [23] in which the dense target nucleus is treated as
color glass condensate, while on the side of the dilute
projectile proton one uses ordinary integrated parton dis-
tributions. Even though, to the best of our knowledge, a
general proof of this method is still missing, we use it here
for the process under discussion. The differential cross
section, obtained in the effective TMD factorization, reads

dpA!�	qþX

dP:S:
¼ X

q

xpf
q
1 ðxpÞfHqg!�	qxf

g
1;DPðx; k?Þ þ cosð2�ÞHcosð2�Þ

qg!�	qxh
?g
1;DPðx; k?Þg

¼ X
q

xpf
q
1 ðxpÞxfg1;DPðx; k?ÞHqg!�	q

�
1þ cosð2�Þ 2Q2t̂

ŝ2 þ û2 þ 2Q2t̂

�
; (20)

where the partonic cross sections are given by

Hqg!�	q ¼
�s�eme

2
q

Ncŝ
2

�
� ŝ

û
� û

ŝ
� 2Q2 t̂

ŝ û

�
; Hcosð2�Þ

qg!�	q ¼
�s�eme

2
q

Ncŝ
2

��Q2t̂

ŝ û

�
: (21)
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Here we used the partonic Mandelstam variables ŝ ¼
ðp1 þ p2Þ2, û ¼ ðp1 � pÞ2, and t̂ ¼ ðp2 � pÞ2, with p
denoting the momentum carried by the incoming quark
from the proton. Note that the cos2�modulation drops out
for prompt (real) photon production. In the second line in
Eq. (20) we made use of the relation (17), implying that the
azimuthal dependence of the cross section is completely
determined by kinematical factors.

V. SUMMARY

We derived both the WW distribution and the dipole
distribution of linearly polarized gluons in a large nucleus
by using the CGC formalism. The WW distribution satu-
rates the positivity bound at large values of k?, while it is
power-suppressed (compared to the unpolarized distribu-
tion) in the region of low k?. The dipole distribution
saturates the bound for any value of k?. It is worthwhile
to point out that in the quark target model, treated to lowest

nontrivial order in perturbation theory, h?g
1 also saturates

the bound for small x and large k? [9]. We also computed

h?g
1 at large k? in the intermediate x region within standard

collinear twist-2 factorization [28]. Taking the dominant

contribution at small x again leads to saturation of the
positivity limit. It would be interesting to explore how
the distribution of linearly polarized gluons behaves under
QCD evolution effects. We aim at addressing this impor-
tant issue in future work.
We further argued that the WW and the dipole gluon

distribution can be probed by measuring a cos2� asym-
metry for dijet production in deep-inelastic scattering, and
for virtual photon-jet production in pA collisions, respec-
tively. Such observables can, in principle, be measured at
a future Electron Ion Collider, at the RHIC, and at the
LHC. Studying such effects could open a new path in
spin physics. Moreover, the results for the asymmetries
constitute parameter-free predictions of the CGC frame-
work. Therefore, exploring these observables may open
complementary ways to test this effective theory of small
x physics.
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