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We study the holographic QCD in the hadronic medium by using the soft wall model. We discuss

the Hawking-Page transition between Reissner-Nordström anti-de Sitter (AdS) black hole and thermal

charged AdS of which the geometries correspond to deconfinement and confinement phases, respectively.

We also present the numerical result of the vector and axial-vector meson spectra depending on the

quark density.
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I. INTRODUCTION

Holographic QCD offers new approaches to understand
the strongly interacting regime of gauge theories based
on AdS/CFT duality [1,2]. The properties of QCD includ-
ing confinement and chiral symmetry breaking have been
discussed in asymptotically anti-de Sitter (AdS) geome-
tries [3–9].

The QCD-like models can be derived in both top-down
and bottom-up approaches. There are two methods to
construct AdS/QCD background in the bottom-up ap-
proach. One is introducing an infrared (IR) cutoff
[7,10–15], and the other is scaling the action or modifying
the background metric by introducing a scalar field or a
warp factor so that a smooth IR truncation is induced
[16–18]. The light-front holography [19] is constructed
by using both methods.

The phase transition between the confining and decon-
fining phases corresponds to the Hawking-Page transition
[20] of gravity between thermal AdS (tAdS) at low tem-
perature and the Schwarzschild AdS black hole at high
temperature in pure gauge theory [3]. The phase transition
of the holographic QCD in the hard wall [12] and the soft
wall model [16] was discussed in [21].

The holographic QCD can be improved by including the
chemical potential [22–34].

The charge of the Reissner-Nordström AdS black hole
(RNAdS BH) can be interpreted as quark charge when
branes fill the bulk [28]. The boundary value of the time-
component gauge field is the chemical potential whose
dual operator is the quark number density. The gravity
dual to deconfining phase of QCD is the RNAdS BH.
The thermal charged AdS (tcAdS) space, which is the
zero mass limit of the RNAdS BH, was proposed as the

dual geometry corresponding to the confining phase of
QCD [29].1 The Hawking-Page transition between con-
finement and deconfinement phases was studied in the
presence of the chemical potential or the quark density in
the hard wall model [29,30]. It has been also observed that
meson mass increases as the quark density increases in the
hard wall model [31].
In this report, we first discuss the holographic QCD in

the hadronic (or quark) medium by using the soft wall
model [16] where a nondynamical scalar field is introduced
to give a smooth IR truncation. The scalar field does not
affect the dynamics of the gravity as it scales the full
action. We next investigate numerically the spectra of the
vector and axial-vector mesons depending on the quark
density, where the correct boundary conditions consistent
with the analytic result of the vector meson are used.
The rest of this paper is organized as follows. In Sec. II,

we investigate the Hawking-Page transition between
RNAdS BH and tcAdS. In Sec. III, we study the vector
and axial-vector meson spectra depending on the quark
density. In Sec. IV, we summarize our results and discuss
issues for future work.

II. HAWKING-PAGE TRANSITION
IN THE SOFT WALL MODEL

We consider the holographic QCD in the hadronic (or
quark) medium using the soft wall model. According to the
AdS/CFT correspondence, the quark number operator in
the gauge theory side corresponds to the time component
of the bulk gauge field. So the dual geometry of the
hadronic medium should be a five-dimensional spacetime
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1By generalizing the flavor gauge symmetry to UðNfÞL �
UðNfÞR and adding a Chern-Simons term, the anomaly of
Uð1Þ axial symmetry [2] was described in [26], in which the
baryon number is identified with the instanton number defined
from the Chern-Simons term. In this paper, we will not consider
this Chern-Simons term which may affect nontrivially the dual
geometry.
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containing some electric charges. There are well-known
examples describing the asymptotic AdS space containing
the electric charges. One is the Reissner-Nordström AdS
black hole (RNAdS BH) corresponding to the deconfining
phase described by quarks and gluons in the gauge theory
side. The RNAdS BH in Euclidean spacetime signature is

ds2 ¼ R2

z2

�
fRNðzÞdt2E þ 1

fRNðzÞdz
2 þ �ijdx

idxj
�
; (2.1)

with

fRNðzÞ ¼ 1�mz4 þ q2z6; (2.2)

where i, j imply the three-dimensional spatial indices. The
parameters R, m, and q are the AdS radius, the black hole
mass, and charge, respectively. We follow the convention
of [30]. The time component of the corresponding bulk
gauge field is

A0 ¼ ið2�2��Qz2Þ; (2.3)

where � and Q are related to the chemical potential and
quark number density in the dual gauge theory. To satisfy
the Einstein and Maxwell equations, the quark number
density Q should be related to the black hole charge q:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2R2

2�2

s
q: (2.4)

In the confining phase the vacuum of the dual gauge
theory is filled up with hadronic matter as quarks cannot
exist alone due to the confinement. The dual geometry of it
was found in [29], which is another solution satisfying
Einstein and Maxwell equations. It is called a thermal
charged AdS (tcAdS) space [29], whose metric in
Euclidean signature is

ds2 ¼ R2

z2

�
ftcðzÞdt2E þ 1

ftcðzÞdz
2 þ �ijdx

idxj
�
; (2.5)

with

ftcðzÞ ¼ 1þ q02z6: (2.6)

The time component of the bulk gauge field is also in the
form of (2.3). As will be shown, although this tcAdS
solution is singular at z ¼ 1 it does not give any problem
to calculate the physical quantities due to the potential
barrier caused by the nondynamical scalar field in the
soft wall model.

The Hawking-Page transition in the hadronic medium
by using the hard wall model has been investigated [29,30].
The Hawking-Page transition in the soft wall model is also
studied for the case of q ¼ 0 [16,21]. We investigate the
Hawking-Page transition between the RNAdS BH and
tcAdS backgrounds in the soft wall model, which describes
the deconfinement phase transition of QCD in the hadronic
medium. On these backgrounds, the Euclidean gravity
action of the soft wall model is given by

S ¼
Z

d5x
ffiffiffiffi
G

p
e�� Tr

�
1

2�2
ð�Rþ 2�Þ þ 1

4g2
FMNF

MN

�
;

(2.7)

where the nondynamical scalar field is � ¼ cz2. The in-
dicesM and N denote five -dimensional indices, which run
over 0; 1; 2; 3; z. According to the AdS/CFT correspon-
dence, the on-shell gravity action corresponds to the
thermodynamic energy of the dual gauge theory, so we
evaluate the on-shell gravity action on (2.1) and (2.5) with
the gauge field (2.3).
For the deconfining phase, which is dual to the RNAdS

BH, we impose the Dirichlet boundary condition A0 ¼
i2�2� at the boundary z ¼ 0 to get the corresponding
on-shell gravity action,

SRN ¼ R3V3

�2

Z �RN

0
dtE

Z zþ

�
dze�cz2

�
4

z5
� 2q2z

�
; (2.8)

where V3, �, and �RN are the volume of the three-
dimensional space, the UV cutoff, and the inverse
Hawking temperature �RN ¼ 1=TRN.
As shown in [29,30], this on-shell gravity action is

proportional to the grand potential of the dual gauge the-
ory, which is a function of�. The black hole charge should
therefore be a function of the chemical potential �. To
determine this relation, we impose the regularity condition,
A0 ¼ 0, at the black hole horizon. Then, the black hole
charge or the quark number density can be rewritten as

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

3g2R2

s
2�2�

z2þ
; (2.9)

where zþ means the black hole horizon. The on-shell
gravity action becomes

SRN ¼ R3V3

�2

1

TRN

ðFðzþÞ � Fð�Þ þHðzþÞ �Hð�ÞÞ;
(2.10)

where

FðzÞ �
Z

dz
4e�cz2

z5
¼ e�cz2

z4
ðcz2 � 1Þ þ c2 Eið�cz2Þ;

HðzÞ � �2q2
Z

dzze�cz2 ¼ e�cz2q2

c
; (2.11)

with the exponential integral function EiðzÞ,

Ei ðzÞ ¼ �
Z 1

�z
dt

e�t

t
: (2.12)

In (2.10), Fð�Þ diverges in the limit as � ! 0, whereas the
other terms remain finite. We renormalize the on-shell
gravity action (2.10) to have a well-defined grand potential
of the boundary theory. We subtract the action of thermal
AdS (tAdS or Euclidean AdS space) corresponding to the
reference geometry, whose on-shell action is
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SAdS ¼ R3V3

�2

Z �0

0
dtE

Z 1

�
dz

4e�cz2

z5
¼ �R3V3

�2
�0Fð�Þ;

(2.13)

where �0 is the time periodicity in tAdS. Fð1Þ ¼ 0 has
been used. Matching the circumferences between the
RNAdS BH and tAdS at the UV cutoff �, �0 can be
rewritten as

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRNð�Þ

p
TRN

¼ 1

TRN

�
1�m

2
�4
�
þOð�6Þ: (2.14)

Using the expansion form of Fð�Þ,

Fð�Þ ¼ � 1

�4
þO

�
1

�2

�
; (2.15)

the renormalized on-shell action �SRN in the � ! 0 limit
becomes

�S RN ¼ SRN � SAdS

¼ R3V3

�2

1

TRN

�
FðzþÞ þm

2
þHðzþÞ � q2

c

�
: (2.16)

As (2.2) satisfies fðzþÞ ¼ 0, we get the black hole mass m
as a function of the black hole horizon zþ:

m ¼ 1

z4þ
þ q2z2þ: (2.17)

Furthermore, the black hole horizon zþ can be expressed in
terms of the Hawking temperature and chemical potential
as follows:

zþ ¼ 3g2R2

8�4�2�2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2T2

RN þ 16�4�2�2

3g2R2

s
� �TRN

�
: (2.18)

Using the relations (2.9) and (2.17), the renormalized on-
shell action (2.16) in terms of zþ and � becomes

�S RN ¼ R3V3

�2

1

TRN

�
FðzþÞ þ 1

2z4þ
þ 4�4�2�2

3g2R2z2þ

þ 8�4�2�2

3g2R2cz4þ
ðe�cz2þ � 1Þ

�
: (2.19)

Now, we calculate the on-shell action of tcAdS, whose
dual theory lies in the confining phase. Substituting the
solutions of (2.3) and (2.5) into (2.7), the on-shell action is
obtained as follows:

Stc ¼ R3V3

�2

Z �0

0
dtE

Z 1

�
dze�cz2

�
4

z5
� 2q02z

�
;

where �0 is the periodicity in the Euclidean time direction.
The integral range over z runs from the UV cutoff � to 1
because there is no black hole horizon for tcAdS. After
performing the integration, the on-shell action for tcAdS
becomes

Stc ¼ R3V3

�2
�0
�
�Fð�Þ � 1

c
e�c�2q02

�
; (2.20)

where Fð1Þ ¼ 0 and Hð1Þ ¼ 0 have been used. We re-
normalize the on-shell action due to the divergence of
Fð�Þ, as it is done for RNAdS BH. The circumferences
of tcAdS and tAdS at the UV cutoff should be the same.
The relation between the Euclidean time periodicities is
therefore

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ftcð�Þ

q
�0 ¼ �0 þOð�6Þ: (2.21)

By subtracting the tAdS on-shell action (2.13), the renor-
malized on-shell action of tcAdS, �Stc in the limit as � ! 0
becomes

�S tc ¼ Stc � SAdS ¼ �R3V3

�2
�0 q

02

c
: (2.22)

The grand potential of the dual gauge theory is

�tc ¼
�Stc
�0 ; (2.23)

which is a function of the chemical potential. So q0 should
be represented as a function of �. To determine q0 as a
function of �, we first assume a simple relation between
q0 and �:

q0 ¼ ��; (2.24)

where � is a constant. Using this, the total quark number is
obtained by the thermodynamic relation

N ¼ � @�tc

@�
¼ R3V3

�2

2�q0

c
: (2.25)

In [29], it was shown that imposing the Neumann boundary
condition instead of the Dirichlet one at the UV cutoff
corresponds to the Legendre transformation from the grand
potential to the free energy and the boundary action Sb is
the same as �N�0. So, through the calculation of the
boundary action we can determine the unknown parameter
�. The boundary action at the UV cutoff is

Sb ¼ � 1

g2

Z
@M

d4x
ffiffiffiffiffiffiffiffiffi
Gð4Þ

p
nMALFMNg

LN

¼ V3�
0

g2
4�2R�Q; (2.26)

where the unit normal vector is nM ¼ f0; 0; 0; 0;� z
R �ffiffiffiffiffiffiffiffiffiffiffiffi

ftcðzÞ
p g. Comparing (2.25) with (2.26), the constant � is
determined as

� ¼ 3c�2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

3R2g2

s
: (2.27)

Substituting (2.27) into (2.22), the renormalized action for
tcAdS becomes
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�S tc ¼ �R3V3

�2
�0 �

2�2

c
¼ � 6c�4R

g2
V3�

0�2: (2.28)

Usually the Hawking-Page transition occurs when the two
on-shell actions for the RNAdS BH and tcAdS are the
same. Before describing it, we first clarify �0. Following
[3], �0 can be expressed in terms of the Hawking tempera-
ture TRN by matching the time circumferences of these two
backgrounds at the UV cutoff:

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRNð�Þ
ftcð�Þ

s
1

TRN

¼ 1

TRN

�
1�m

2
�4
�
þOð�6Þ: (2.29)

From this, the action difference between the on-shell ac-
tions for the RNAdS BH and tcAdS, which is proportional
to the grand potential difference, becomes

�S � �SRN � �Stc

¼ R3V3

�2

1

TRN

�
FðzþÞ �m

2
�4Fð�Þ þHðzþÞ

� e�c�2

c
ðq2 � q02Þ

�
:

By expanding the Fð�Þ as

Fð�Þ ¼ � 1

�4
þO

�
1

�2

�
; (2.30)

the on-shell action difference becomes

�S ¼ R3V3

�2

1

TRN

�
e�cz2þ

z4þ
ðcz2þ � 1Þ þ c2 Eið�cz2þÞ þ

1

2z4þ

þ q2z2þ
2

þ e�cz2þq2

c
� q2

c
þ q02

c

�
;

where zþ, q, and q0 are functions of TRN and � as shown
in (2.18) and below:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�2

g2R2

s
2�2�

z2þ
¼

ffiffiffiffiffiffiffiffiffiffiffi
2

3

Nf

Nc

s
2�2�

z2þ
; (2.31)

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�2

g2R2

s
2�2�c ¼

ffiffiffiffiffiffiffiffiffiffiffi
3

2

Nf

Nc

s
2�2�c: (2.32)

We follow the convention of [28],

1

�2
¼ N2

c

4�2R3
;

1

g2
¼ NcNf

4�2R
; (2.33)

for the last equalities.
The Hawking-Page transition, which corresponds to

the confinement/deconfinement phase transition, occurs
at �S ¼ 0. We plot the confinement/deconfinement phase
diagram for Nf=Nc ¼ 0; 1=3; 2=3; 3=3 in Fig. 1. For

Nf=Nc ¼ 1 we find that � ¼ 45:6 MeV at Tc ¼ 0. This

value is close to our expectation for the hadronic chemical
potential.

III. MESON SPECTRA IN THE SOFT
WALL MODEL

In this section, we investigate meson masses depending
on the quark number density in the soft wall model. To
describe the light mesons, we concentrate on tcAdS be-
cause it corresponds to the confining phase. Since we will
not study the thermodynamic properties of the meson, it is
more convenient to use the Lorentzian tcAdS metric,

ds2 ¼ R2

z2

�
�ftcðzÞdt2 þ 1

ftcðzÞdz
2 þ �ijdx

idxj
�
; (3.1)

where ftcðzÞ is
ftcðzÞ ¼ 1þ q2z6; (3.2)

as defined in Sec. II. The background gauge field corre-
sponding to the quark number density is

A0 ¼ 2�2��Qz2; (3.3)

in the Lorentzian signature.
In the soft wall model [16], the gravity action describing

meson spectra of the dual gauge theory is given by

S ¼ �
Z

d5x
ffiffiffiffiffiffiffiffi�G

p
e�� Tr

�
jD�j2 þm2j�j2

þ 1

4g2
ðfðLÞMNf

ðLÞMN þ fðRÞMNf
ðRÞMNÞ

�
; (3.4)

where m2 ¼ � 3
R2 and the real part of � corresponds to the

chiral condensate of the dual gauge theory. Tr means the
trace over the flavor symmetry group indices. The super-
scripts (L) and (R) in the last term imply the left and right
parts of SUðNfÞL � SUðNfÞR flavor symmetry group with

fðL;RÞMN ¼ @Ma
ðL;RÞ
N � @Na

ðL;RÞ
M � i½aðL;RÞM ; aðL;RÞN �, where aM

implies the bulk fluctuation corresponding to vector or
axial-vector mesons. Usually, there exists nonzero chiral
condensate in the confining phase which breaks the chiral
symmetry spontaneously, so we set � as

FIG. 1. The deconfinement temperature depending on the
chemical potential.
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� ¼ vðzÞ
2

ffiffiffi
2

p 1ei2�
aTa

; (3.5)

where v is real. �a will be considered as fluctuations
corresponding to pseudoscalar mesons. After turning off
all bulk fluctuations aM and �a, the equation of motion
describing the chiral condensate is given by

0 ¼ @z

�
ftc
z3

e��@zv

�
þ 3

z5
e��v; (3.6)

where the gravitational backreaction of v is ignored and v
is considered as a background field describing the chiral
condensate like the original one [12]. Near the boundary
z ¼ 0, the asymptotic form of v is

v ¼ mqzþ 	z3 þ � � � ; (3.7)

where mq and 	 are the quark mass and chiral condensate,

respectively. The existence of the analytic solution of (3.6)
is not guaranteed so we will use the numerical solution
depending on two initial parameters to investigate the
meson spectra. We investigate the case of Nf ¼ 2 and

Nc ¼ 3. We set the five-dimensional coupling constant

in (3.4), g2 ¼ 12�2R
Nc

, following the convention of [16].

A. Vector meson

We transform the vector fields aðLÞM and aðRÞM to obtain
vector and axial-vector fields:

vM ¼ 1
2ðaðLÞM þ aðRÞM Þ; aM ¼ 1

2ðaðLÞM � aðRÞM Þ: (3.8)

The action describing the vector and axial-vector mesons
up to the quadratic order is

�S ¼ �
Z

d5x
ffiffiffiffiffiffiffiffi�G

p
e��

�
v2ð@M�� aMÞð@M�� aMÞ

þ 1

2g2

�
fðVÞ

2

MN þ fðAÞ
2

MN

��
; (3.9)

where fðVÞMN ¼ @MvN � @NvM and fðAÞMN ¼ @MaN � @NaM.
We study the model in the gauge where vz ¼ 0 and az ¼ 0.
Since Lorentz symmetry is broken we consider the vector
field fluctuation in the xi direction. The Fourier transform
of the vector field can be defined as

viðt; zÞ ¼
Z d!

2�
e�i!t~viðzÞ; (3.10)

with a condition m2
V ¼ !2. The vector field vM in the

action (3.9) does not couple to the scalar field v. The
equation of motion for the vector field vi under the trans-
formation (3.10) is

0 ¼ @z

�
ftc
z
e��@z~vi

�
þ m2

V

z~ftc
e��~vi: (3.11)

We introduce a dimensionless variable as follows:

~z ¼ ffiffiffi
c

p
z: (3.12)

All the other dimensionful parameters get scaled accord-
ingly:

ftcð~zÞ ¼ 1þ ~q2~z6; ~q ¼ q

c3=2
; ~mV ¼ mVffiffiffi

c
p : (3.13)

By the field redefinition ~vi ¼ e�Xc i with X ¼ ~z2 � logftc~z ,

the equation (3.11) reduces to the Schrödinger-like
equation,

0 ¼ c 00
i þ

�
X00

2
� X02

4
þ ~m2

V

f2tc

�
c i: (3.14)

Notice that the effective potential Veff ¼ �ðX00
2 � X02

4 þ ~m2
V

f2tc
Þ

has the positive infinite value at two boundaries z ¼ 0 and
z ¼ 1, so the wave function c i should be zero at these
two boundaries. This implies that the natural boundary
conditions for c i are

c ið0Þ ¼ c ið1Þ ¼ 0: (3.15)

In the case of zero quark density (q ¼ 0, ftc ¼ 1), the
effective potential becomes Veff ¼ ~z2 þ 3

4~z2
� ~m2

V and

Eq. (3.14) is exactly solvable. The solution for the differ-
ential equation is

c ðnþ1Þ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ 1Þ!

s
~z3=2e�~z2=2L1

nð~z2Þ; (3.16)

with associated Laguerre polynomials L1
nðxÞ � dLnðxÞ

dx . This

is the (nþ 1)th excited solution of (3.14) for the quantized
mass values ~m2

V ¼ ~m2
n � 4ðnþ 1Þ and corresponds to the

(nþ 1)th excited vector meson. From this result, we can
see the Regge behavior of the vector meson, m2

n � nþ 1,
in the zero density case.
There is no analytic solution for the case of nonzero

quark density. We will investigate the meson spectra nu-
merically. It is worth noting that the solution (3.16) satisfies
the set of the boundary conditions (3.15). It shows that

TABLE I. The first four excitations of the vector meson spec-
tra in GeV.

ffiffiffi
c

p ¼ 0:388 GeV.

qðGeV3Þ n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

0:0� ð0:388Þ3 0.776 1.097 43 1.344 07 1.552 00

0:1� ð0:388Þ3 0.822 85 1.342 96 1.880 84 2.424 65

0:2� ð0:388Þ3 0.876 29 1.531 63 2.212 19 2.898 22

0:3� ð0:388Þ3 0.922 70 1.676 81 2.457 37 3.242 78

0:4� ð0:388Þ3 0.963 61 1.797 28 2.657 26 3.521 60

0:5� ð0:388Þ3 1.000 35 1.901 51 2.828 44 3.759 33

0:6� ð0:388Þ3 1.033 86 1.994 13 2.979 48 3.968 48

0:7� ð0:388Þ3 1.064 77 2.077 93 3.115 47 4.156 39

0:8� ð0:388Þ3 1.092 74 2.154 79 3.239 70 4.327 77

0:9� ð0:388Þ3 1.120 37 2.225 99 3.354 45 4.485 87

1:0� ð0:388Þ3 1.146 02 2.292 49 3.461 34 4.633 00
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these are consistent boundary conditions for the numerical
analysis.

In Fig. 2, we plot vector meson masses for nþ 1 ¼
1; 2; 3; 4 depending on the quark density. The result is
also explicitly shown in Table I. The meson mass increases
as quark density increases. This is qualitatively consistent
with the vector meson spectra in the hard wall model [31].

B. Axial-vector meson

We study the axial-vector meson spectra. The axial
vector can be decomposed into a transverse component
and a longitudinal component as

aM ¼ �aM þ @M
: (3.17)

The �aM corresponds to the axial-vector meson. We choose
the axial gauge, �aZ ¼ 0. We consider the fluctuation fixing
�a0 ¼ 0 as the Lorentz boost symmetry is not manifest. As
the axial vector couples to the scalar field v in the action
(3.9), we solve the equation of motion for the scalar field as
well. Under the dimension scale (3.12), Eq. (3.6) becomes

@~z

�
ftc
~z3

e�~z2@~zv

�
þ 3

~z5
e�~z2v ¼ 0: (3.18)

The parameters in the scalar field (3.7) are scaled as

v ¼ ~mq~zþ ~	~z3 þ � � � ; ~mq ¼
mqffiffiffi
c

p ; ~	 ¼ 	

c3=2
:

(3.19)

By the Fourier transformed axial vector

�a iðt; zÞ ¼
Z d!

2�
e�i!t~�aið!; zÞ; (3.20)

the equation of motion is obtained as

@z

�
ftc
z
e��@z~�ai

�
� 1

z3
e��

�
R2g2v2 � z2

ftc
m2

A

�
~�ai ¼ 0:

(3.21)

We set R ¼ 1 in (3.21). By the field redefinition ~�ai ¼
eY=2�i with Y ¼ ~z2 � logftc~z , Eq. (3.21) can be rewritten as

� 00i þ
�
Y00

2
� Y02

4
� 1

~z2ftc

�
g2v2 � ~z2

ftc
~m2
A

��
�i ¼ 0: (3.22)

The mass spectra from the numerical solution of (3.18) and
(3.21) for mq ¼ 0:005 044 GeV and 	 ¼ ð0:2619 GeVÞ3
are plotted in Fig. 3. The result is also shown in Table II.
The meson mass increases as quark density increases.

IV. DISCUSSION

We have studied the holographic QCD in hadronic me-
dium by using the soft wall model, where the confinement
scale is induced by a nondynamical scalar field. We have
observed the Hawking-Page transition between Reissner-
Nordström AdS black hole and thermal charged AdS and
obtained the phase diagram, which is analogous to the
diagrams of the hard wall model. We have studied the

FIG. 3 (color online). The first four excitations of the axial
meson spectra formq ¼ 0:005 044 GeV and	 ¼ ð0:2619 GeVÞ3.

FIG. 2 (color online). The first four excitations of the vector
meson spectra.

TABLE II. The first four excitations of the axial meson spectra
in GeV for mq ¼ 0:005 044 GeV and 	 ¼ ð0:2619 GeVÞ3.ffiffiffi
c

p ¼ 0:388 GeV.

qðGeV3Þ n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

0:0� ð0:388Þ3 1.201 95 2.047 92 2.838 13 3.595 08

0:1� ð0:388Þ3 1.204 15 2.056 63 2.856 62 3.625 91

0:2� ð0:388Þ3 1.210 44 2.081 04 2.907 42 3.709 20

0:3� ð0:388Þ3 1.219 96 2.117 03 2.980 27 3.825 75

0:4� ð0:388Þ3 1.231 55 2.159 95 3.064 94 3.958 31

0:5� ð0:388Þ3 1.243 91 2.205 79 3.153 86 4.095 46

0:6� ð0:388Þ3 1.255 81 2.251 61 3.242 37 4.230 97

0:7� ð0:388Þ3 1.266 36 2.295 91 3.328 50 4.362 51

0:8� ð0:388Þ3 1.275 37 2.338 61 3.412 22 4.490 03

0:9� ð0:388Þ3 1.283 27 2.380 44 3.494 22 4.614 15

1:0� ð0:388Þ3 1.290 80 2.422 16 3.575 04 4.735 21
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vector and axial-vector meson spectra depending on the
quark density. In both cases the meson mass increases as
quark density increases. The Regge behavior is not ob-
served in the presence of the quark density.

We have discussed the model in the backgrounds of
RNAdS BH and tcAdS whose geometries are not modified
by the scalar field which induces the IR cutoff. It would be
interesting to study relevant physical quantities in the
geometry whose metric gets deformed by a scalar field.
We will report those results elsewhere.
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