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Using analytic techniques developed for Hamiltonian dynamical systems, we show that a certain

classical string configuration in AdS5 � X5 with X5 in a large class of Einstein spaces is nonintegrable.

This answers the question of integrability of string on such backgrounds in the negative. We consider a

string localized in the center of AdS5 that winds around two circles in the manifold X5.
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I. INTRODUCTION

Chaotic motion has been one of the most studied aspects
of nonlinear dynamical systems as its application extends
to many areas [1]. Although its mathematical roots date
back to Poincarè and the three-body problem, it was really
during the last part of the twentieth century when chaotic
motion study flourished, largely thanks to new advances in
computing power. Naturally, under the shadow of quantum
mechanics, it is logical to try to understand the quantum
properties in systems whose classical limit is chaotic; this
area has become known as quantum chaos [2]. In the
context of the AdS/CFT correspondence [3], there is a
particularly special chance to understand some of these
questions as we have a setting in which the classical regime
of a theory is dual to the highly quantum regime of another.
Understanding classical chaos and the corresponding quan-
tization in the context of string theory provides a new
framework with enhanced interpretational opportunities.

The simplest version of the AdS/CFT correspondence
[3] states a complete equivalence between strings on
AdS5 � S5 with Ramond-Ramond fluxes and N ¼ 4
supersymmetric Yang-Mills (SYM) with gauge group
SUðNÞ. Chaotic behavior of some classical configurations
of strings in the context of the AdS/CFT has been recently
established for several interesting string theory back-
grounds: ring strings in the Schwarzschild black hole in
asymptotically AdS5 backgrounds [4], strings in the AdS
soliton background [5] and in AdS5 � T1;1 [6], which is a
coset but not a maximally symmetric one.

In general the question of integrability is settled through
a numerical analysis of the system [1]. Over the last
decades an analytical approach has been developed to
determine whether a system is integrable. Some powerful
results due to Ziglin [7,8] and further refined by Morales-
Ruiz and Ramis [9] turn the question of integrability of
some simple systems into an algorithmic process. In this

paper we study a large class of systems that appear in string
theory. We generalize some of our previous results for
classical strings on AdS5 � T1;1 [6] to include more gen-
eral backgrounds of the form AdS5 � X5, where X5 is in a
general class of five-dimensional Einstein spaces admitting
a Uð1Þ fibration.

II. ANALYTIC NONINTEGRABILITY

The general basis for proving nonintegrability of a sys-

tem of differential equations _~x ¼ ~fð ~xÞ is the analysis of the
variational equation around a particular solution �x ¼ �xðtÞ
[9,10]. The variational equation around �xðtÞ is a linear
system obtained by linearizing the vector field around
�xðtÞ. If the nonlinear system admits some first integrals,
so does the variational equation. Thus, proving that the
variational equation does not admit any first integral within
a given class of functions implies that the original non-
linear system is nonintegrable. In particular, one works in
the analytic setting where, inverting the solution �xðtÞ,
one obtains a (noncompact) Riemann surface � given by
integrating dt ¼ dw= _�xðwÞ with the appropriate limits.
Linearizing the system of differential equations around
the straight line solution yields the normal variational
equation (NVE), which is the component of the linearized
system which describes the variational normal to the
surface �.
Given a Hamiltonian system, the main statement of

Ziglin’s theorems is to relate the existence of a first integral
of motion with the monodromy matrices around the
straight line solution [7,8]. The simplest way to compute
such monodromies is by changing coordinates to bring the
normal variational equation into a known form (hypergeo-
metric, Lamé, Bessel, Heun, etc.).
Morales-Ruiz and Ramis proposed a major improve-

ment on Ziglin’s theory by introducing techniques of dif-
ferential Galois theory [11–13]. The key observation is to
change the formulation of integrability from a question of
monodromy to a question of the nature of the Galois group
of the NVE. Intuitively, if we go back to Kovalevskaya, we
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are interested in understanding whether the Kolmogorov-
Arnold-Moser (KAM) tori are resonant or not resonant, or,
in simpler terms, if their characteristic frequencies in the
action-angle formalism are rational or irrational. (See the
pedagogical introductions provided in [9,14].) This state-
ment turns out to be dealt with most efficiently in terms of
the Galois group of the NVE. The key result is now stated
as this: If the differential Galois group of the NVE is
nonvirtually Abelian, that is, if the identity-connected
component is a non-Abelian group, then the Hamiltonian
system is nonintegrable. The calculation of the Galois
group is rather intricate, but the key simplification comes
through the application of Kovacic’s algorithm [15].
Kovacic’s algorithm implements Picard-Vessiot theory
for second order homogeneous linear differential equations
with polynomial coefficients, giving a constructive answer
to the existence of integrability by quadratures. Fortu-
nately, Kovacic’s algorithm is implemented in most
computer algebra software including MAPLE and
MATHEMATICA. It is a little tedious but straightforward to

check the algorithm manually. So, once we write down our
NVE in a suitable linear form with polynomial coefficients,
it becomes a simple task to check their solvability in
quadratures. An important property of the Kovacic’s algo-
rithm is that it works if and only if the system is integrable;
thus a failure of completing the algorithm equates to a
proof of nonintegrability. This route of declaring systems
nonintegrable has been successfully applied to various
situations. Some interesting examples include general ho-
mogeneous potentials [16], cosmological models [17],
fluid dynamics [18], generalizations of the Hénon-Heiles
system [14] and various others [9].

III. WRAPPED STRINGS IN GENERAL AdS5 �X5

The methods of analytic nonintegrability can be applied
to a large class of spaces in string theory. Let us start by
considering a five-dimensional Einstein space X5, with
Rij � gij. Any such Einstein space furnishes a solution to

the type IIB supergravity equations known as a Freund-
Rubin compactification [19]. The solution takes the form

ds2 ¼ ds2ðAdS5Þ þ ds2ðX5Þ; F5 ¼ ð1þ ?ÞvolðAdS5Þ;
where vol is the volume five-form and ? is the Hodge dual
operator. Of particular interest in string theory is the case
when X5 is Sasaki-Einstein, that is, on top of being
Einstein, it admits a spinor satisfying r��� ���.

The configuration that we are interested in exploring is a
string sitting at the center of AdS5 and winding in the
circles provided by the base space. More explicitly, con-
sider the AdS5 metric in global coordinates: ds2 ¼
�cosh2�dt2 þ d�2 þ sinh2�d�2

3. Then, our solution is

localized at � ¼ 0. Largely inspired by the Sasaki-
Einstein class, we consider spaces X5 that are a Uð1Þ
fiber over a four-dimensional manifold. In the case of

topologically trivial fibration, we are precluded from ap-
plying our argument; those manifolds can be considered
separately. The general local structure of Sasaki-Eintein
metrics is

ds2
X5
S�E

¼
�
dc þ i

2
ðK;idz

i � K;�id�z
iÞ
�
2 þ K;i �jdz

id�zj; (1)

where K is a Kähler potential on the complex base with
coordinates zi with i ¼ 1, 2. This is the general structure
that will serve as our guiding principle, but we will not be
limited to it. Roughly, our ansatz for the classical string
configuration is zi ¼ rið�Þei�i�, where � and � are the
worldsheet coordinates of the string. Crucially, we have
introduced winding of the strings characterized by the
constants �i. The goal is to solve for the functions rið�Þ.
To apply the tools of analytic nonintegrability to the

class of solutions above we will: (1) Select a particular
solution, that is, define the straight line solution. (2) Write
the normal variational equation (NVE). (3) Check if the
identity component of the differential Galois group of the
NVE is Abelian, that is, apply the Kovacic’s algorithm to
determine if the NVE is integrable by quadrature.
Given this ansatz above, we can now summarize the

general results. We prove that the corresponding effective
Hamiltonian systems have 2 degrees of freedom and admit
an invariant plane � ¼ fr2 ¼ _r2 ¼ 0g whose normal varia-
tional equation around integral curves in � we study
explicitly.

A. Tp;q

These 5-manifolds are not necessarily Sasaki-Einstein;
however, some of them are Einstein which allow for con-
sistent string backgrounds. More importantly, some of
these spaces provide exact conformal sigma models and
are thus exact string backgrounds in all orders in �0 [20].
However, they are never maximally symmetric, and the
integrability discussed for AdS5 � S5 is not applicable. In
this section, we provide a unified treatment of this class for
generic values of p and q. The metric has the form

ds2 ¼ a2ðdc þ p cos�1d�1 þ q cos�2d�2Þ2
þ b2ðd�21 þ sin2�1d�

2
1Þ þ c2ðd�22 þ sin2�2d�

2
2Þ:

The classical string configuration we are interested is
�1 ¼ �1ð�Þ, �2 ¼ �2ð�Þ, c ¼ c ð�Þ, t ¼ tð�Þ, �1 ¼ �1�,
�2 ¼ �2�, where �i are constants quantifying how the
string winds along the �i directions. Recall that t is from
AdS5. The Polyakov Lagrangian is

L ¼ � 1

2	�0 ½ _t2 � b2 _�21 � c2 _�22 � a2 _c 2

þ �2
1ðb2 � a2p2Þsin2�1 þ �2

2ðc2 � a2q2Þsin2�2
þ 2�1�2pqa

2 cos�1 cos�2�: (2)

There are several conserved quantities; the correspond-
ing nontrivial equations are
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€�1þ�1

b2
sin�1½�1ðb2�a2p2Þcos�1�a2�2pqcos�2�¼0;

€�2þ�2

c2
sin�2½�2ðc2�a2q2Þcos�2�a2�1pqcos�2�¼0:

There is immediately some insight into the role of the
fibration structure. Note that the topological winding in
the space which is described by p and q intertwines with
the wrapping of the strings �1 and �2. The effective
numbers that appear in the interaction part of the equations
are �1p and �2q. For example, from the point of view of
the interactions terms, taking p ¼ 0 or q ¼ 0 is equivalent
to taking one of the �i ¼ 0 which leads to an integrable
system of two noninteracting gravitational pendulums.

We take the straight line solution to be �2 ¼ _�2 ¼ 0.
The equation for �1 becomes

€� 1þ�1

b2
½�1ðb2�a2p2Þcos�1�a2�2pq�sin�1¼0: (3)

Let us denote the solution to this equation ��1; it can be
given explicitly but we will not need the precise form. This
solution also defines the Riemann surface � introduced
before. The NVE is obtained by considering small fluctua-
tions in �2 around the above solutions and takes the form:

€
þ �2

c2
½�2ðc2 � a2q2Þ � �1pq cos ��1�
 ¼ 0: (4)

Our goal is to study the NVE. To make the equation
amenable to the Kovacic’s algorithm, we introduce the
following substitution: cosð ��1Þ ¼ z. In this variable, the
NVE takes a form similar to the Lamé equation:

fðzÞ
00ðzÞ þ 1

2
f0ðzÞ
0ðzÞ

þ �2

c2
½�2ðc2 � a2q2Þ � �1pqz�
ðzÞ ¼ 0; (5)

where prime now denotes differentiation with respect to

z and fðzÞ¼ _��
2
1sin

2ð ��1Þ¼ ð6E2� 1
3ð4�1�2zþ�2

2ð1�z2ÞÞÞ
ð1�z2Þ. Equation (5) is a second order homogeneous
linear differential equation with polynomial coefficients,
and it is, therefore, ready for the application of Kovacic’s
algorithm. For generic values of the above parameters, the
Kovacic’s algorithm does not produce a solution, meaning
the system defined in Eq. (3) is not integrable.

The case of T1;1 is particularly interesting because for
this case the supergravity solution is supersymmetric, and a
lot of attention has been paid to extending configurations of
AdS5 � S5 to the case of AdS5 � T1;1 [21–26].

B. Yp;q

These spaces have played a central role in the develop-
ment of the AdS/CFT correspondence as they provide an
infinite class of dualities. These spaces are Sasaki-Einstein,
but they are not coset spaces as was the case for the Tp;q

discussed above. Following the general discussion of
Sasaki-Einstein spaces above, we write the metric on these
spaces as

ds2¼1

9
ðdc �ð1�cyÞcos�d�þyd�Þ2

þ1�cy

6
ðd�2þsin2�d�2ÞþpðyÞ

6
ðd�þccos�d�Þ2;

and pðyÞ ¼ ½a� 3y2 þ 2cy3�=½3ð1� cyÞ�. The classical
string configuration is described by the ansatz � ¼ �ð�Þ,
y ¼ yð�Þ, � ¼ �1�, � ¼ �2�. The Polyakov Lagrangian
is simply

L ¼ � 1

2	�0

�
_t2 � 1� cy

6
_�2 � 1

6pðyÞ _y
2 � 1

9
_c 2

þ 1� cy

6
�2
1sin

2�þ pðyÞ
6

ð�2 þ c�1 cos�Þ2

þ 1

9
ð�2y� �1ð1� cyÞ cos�Þ2

�
: (6)

As in previous cases, the equations of motion for t and c
are integrated immediately, leaving only two nontrivial
equations for � and y. The straight line solution can be
taken to be � ¼ _� ¼ 0. Then the equation for y is simpli-
fied to

€y� p0

p
_y2 þ pp0

2
ð�2 þ c�1Þ2

þ 2

3
pð�2 þ c�1Þðyð�2 þ c�1Þ � �1Þ ¼ 0:

To be able to write the NVE in a form conducive to
the application of Kovacic’s algorithm, we substitute
ysðtÞ ¼ y, and the NVE takes the form

ð1� cyÞ _y2ðtÞ d
2


dy2
þ qðyÞ
ðyÞ (7)

þ ð €yðtÞð1� cyÞ � c _y2ðtÞÞ d

dy

¼ 0; (8)

where _y and €y can be written in terms of y as

_y 2ðtÞ¼6ðEþpðyÞVðy;0ÞÞ

¼6pðyÞðpðyÞ
6

ð�2þc�1Þ2þ1

9
ð�2y��1ð1�cyÞÞÞ

and

qðyÞ¼�1ð1�cyÞ
�
5=3�1�cða�3y2þ2cy3Þð�2þc�1Þ

ð3�3cyÞð1�cyÞ
�2=3ð�2þc�1Þy

�
:

With these identifications we have rewritten the NVE as
a homogeneous second order linear differential equation
with polynomial coefficients. The Kovacic’s algorithm
again fails to yield a solution, pointing to the fact that the
system is generically nonintegrable.
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IV. THE EXCEPTIONAL CASE: S5

In this section we provide an integrable example where
the Kovacic’s algorithm should succeed. To expose the
Sasaki-Einstein structure of S5, it is convenient to write
the metric as a Uð1Þ fiber over P2. The round metrics on
S5 may be elegantly expressed in terms of the left-invariant
one-forms of SUð2Þ. The left-invariant one-forms can be
written as �1 ¼ 1

2 ðcosðdc Þd�þ sinðc Þ sinð�Þd�Þ, �2
1
2 �ðsinðc Þd�� cosðc Þ sinð�Þd�Þ, �3 ¼ 1

2 ðdc þ cosð�Þd�Þ.
In terms of these one-forms, the metrics on P2 and S5 may
be written as follows:

ds2
P2 ¼ d�2 þ sin2ð�Þð�2

1 þ �2
2 þ cos2ð�Þ�2

3Þ;
ds2

S5
¼ ds2

P2 þ ðd�þ sin2ð�Þ�3Þ2;
(9)

where � is the local coordinate on the Hopf fiber and A ¼
sin2ð�Þ�3 ¼ sin2ð�Þðdc þ cosð�Þd�Þ=2 is the one-form
potential for the Kähler form on P2.

The classical string configuration is � ¼ �ð�Þ, � ¼
�ð�Þ, � ¼ �ð�Þ, � ¼ �1�, c ¼ �2�. The Lagrangian is

L ¼ � 1

2	�0

�
_t2 � _�2 � 1

4
sin2� _�2 � _�2

þ 1

4
sin2�ð�2

1sin
2�þ ð�2 þ �1 cos�Þ2Þ

�
: (10)

The nontrivial equations of motion are

€�þ 1

8
sinð2�Þ½ _�2 � 2�1�2 cos�� �2

1 � �2
2� ¼ 0;

€�þ 2 _� _� cotð�Þ þ �1�2 sin� ¼ 0: (11)

Inspection of the above system shows that we have various
natural choices. We discuss the two natural choices of
straight line solutions in what follows.

A. � straight line

Let us assume � ¼ _� ¼ 0; then the equation for �
becomes

€�� 1

8
ð�1 þ �2Þ2 sinð2�Þ ¼ 0: (12)

We call the solution of this equation �s. The NVE is

€
þ 2 cotð�sÞ _�s _
þ �1�2
 ¼ 0: (13)

With sinð�Þ ¼ z, the NVE may be written as

rðzÞ d
2

dz2

ðzÞ þ qðzÞ d

dz

ðzÞ þ �1�2z

2
ðzÞ ¼ 0; (14)

with

rðzÞ ¼ z2ð2Eþ 1=8ð�1 þ �2Þ2ð1� 2z2ÞÞð1� z2Þ
and

qðzÞ ¼ �1=8zð�32Eþ 48Ez2 � 2�2
1 þ 9�2

1z
2 � 8�2

1z
4

� 4�1�2 þ 18�1�2z
2 � 16�1�2z

4 � 2�2
2

þ 9�2
2z

2 � 8�2
2z

4Þ:
This equation is now in the form conducive to Kovacic’s
algorithm which succeeds and gives a solution. Since the
above approach obscures the nature of integrability of
AdS5 � S5, we now consider another example which
leaves no doubt about the integrability.

B. � straight line

Let us assume the straight line is now given by � ¼
	=2, _� ¼ 0. The equation for � becomes

€�þ �1�2 sin� ¼ 0: (15)

Let us call the solution to this equation �s. Then the NVE is

€
þ 1

4
ð _�2s � 2�1�2 cosð�sÞ � �2

1 � �2
2Þ
 ¼ 0: (16)

Note that the equation of motion for �s implies

€�þ �1�2 sin� ¼ 0 ! d

d�
ð _�2s � 2�1�2 cos�sÞ ¼ 0;

! _�2s � 2�1�2 cos�s ¼ C0: (17)

Thus the NVE equation can be written as a simple
harmonic equation:

€
þ 1

4
ðC0 � �2

1 � �2
2Þ
 ¼ 0: (18)

We do not require Kovacic’s algorithm to tell us that there
is an analytic solution for this equation. The power of
differential Galois theory also guarantees that the result
is really independent of the straight line solution (Riemann
surface) that one chooses. We conclude this subsection
with the jovial comment that we now know a very precise
sense in which string theory in AdS5 � S5 is like a
harmonic oscillator.

V. CONCLUSIONS

In this paper we have shown that certain classical string
configurations corresponding to a string winding along
two of the angles of a general class of five-dimensional
Einstein manifolds X5, realized as a nontrivial S1 fibration
over a 4D base, are nonintegrable. The result highlights the
limit of integrability within the AdS/CFT correspondence.
Integrability has been one of the main areas of study for
almost ten years. The paper forces the AdS/CFT to expand
with the newly discovered fact that most configurations
beyond AdS5 � S5 are nonintegrable; this requires a new
dictionary.
In all the previous examples in the literature, homoge-

neity of the potential played a crucial role in the proof
[9,16,17]. A mathematical curiosity arises from the fact
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that traditionally, due to the works of Hadamard and later
of Anosov, chaos has been associated with the motion of
particles in negatively curved spaces through the Jacobi
equation. The class of five-dimensional Einstein spaces
used here has positive curvature. The main mechanism
for nonintegrability is provided by the winding of the
strings which is a property unique to strings and there-
fore not well understood. More precisely, we found an
interesting interplay between topology c1 ¼

R
dA and

dynamics as the Chern class determines the possibility of
an interaction term in the dynamical system. As pointed
out in the main text, in various cases, the interaction, and
therefore nonintegrability, appears as the product of the
Chern number and the winding number of the string.

The direct connection between analytic nonintegrability
and chaotic behavior is still open. This question has been
discussed in the literature, and we refer the reader to [9] for
further details. For the sake of disclosure, we note that we

have not directly proved that the systems discussed here are
chaotic. However, together with our previous publication
[6], we believe the case for outright chaotic behavior is
overwhelmingly strong.
Our work now opens the door to the interpretation of

many chaotic quantities in the context of the AdS/CFT
correspondence. For example, the meaning of Lyapunov
spectrum, Kolmogorov-Sinai entropy and fractal dimen-
sion are but a few of the quantities expecting their quantum
analogs in this context.
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Basel, 1999).

[10] A. Goriely, Integrability and Nonintegrability of
Dynamical Systems (World Scientific, Singapore, 2001).

[11] J. J. Morales-Ruiz and C. Simó, J. Diff. Equ. 107, 140
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