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We study Lunin-Maldacena deformations of cosmological backgrounds of D ¼ 11 supergravity which

gives an easy way to generate solutions with nonzero 4-form flux starting from solutions of pure Einstein

equations which possess at least three Uð1Þ isometries. We illustrate this on the vacuum S-brane solution

from which the usual SM2-brane solution is obtained. Applying the method again, one either gets the

recently found S-brane system where a contribution of the Chern-Simons term to field equations is

nonzero or the SM2 ? SM2ð0Þ intersection, depending on which Uð1Þ directions are used during the

process. Repeated usage of the procedure gives rise to configurations with several overlapping S-branes,

some of which are new. We also employ this method to construct two more new solutions and make

comments about accelerating cosmologies that follow from such deformed solutions after compactifica-

tion to (1þ 3) dimensions.
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I. INTRODUCTION

Using symmetries to find new solutions is quite an
old and powerful idea. A string theory background which
is independent of d-toroidal coordinates has an Oðd; dÞ T-
duality symmetry (for a review, see [1]). Exploiting this
makes it possible to obtain new solutions starting from an
existing one. This approach, also played an important role
in the AdS/CFT context in understanding the gravity duals
of deformed conformal field theories [2]. If the ten-
dimensional gravity dual has a Uð1Þ �Uð1Þ symmetry in
its geometry then such a solution can be deformed using
the so-called TsT transformation where a shift is sand-
wiched in between two T dualities. For 11-dimensional
solutions one just needs an extra Uð1Þ for the dimensional
reduction to ten dimensions [2]. After that, the TsT trans-
formation is applied using the remaining two directions
and the result is lifted back to 11 dimensions. If the initial
D ¼ 11 background has more than three Uð1Þ isometries
then this process can be repeated to obtain a multipara-
meter deformation. In [3] general formulas for these de-
formed solutions in D ¼ 11 were obtained. With the help
of these, one can write down deformed solutions directly in
D ¼ 11without going through details of this rather lengthy
calculation. To use these formulas, it does not matter where
these Uð1Þ directions lie in the geometry; however, the
initial solution should satisfy certain conditions which
are not too restrictive as will be seen.

Solution generating techniques were applied frequently
to time-dependent backgrounds in the past (see, for ex-
ample, [4,5]) and actually in one of the first papers on the
construction of S-brane solutions [6] to supergravity theo-
ries, such a method was employed [7]. In this paper we

study Lunin-Maldacena deformations [2] of time-
dependent solutions of D ¼ 11 supergravity, which was
previously carried on for static M2 and M5 branes in [8].
Using a formula derived in [3] it is apparent that if the
initial solution has zero 4-form field strength, then after the
deformation, one gets a 3-form potential along the Uð1Þ
directions which are used during the process. This is an
interesting result since, in particular, it means that if we
have a cosmological solution of pure D ¼ 11 supergravity
with the geometry R1þ3 �M7, we can easily generalize
this to a solution which has a nonzero 4-form flux along
R1þ3 usingUð1Þ directions ofR3 which can be obtained by
periodic identifications. The new solution is electrically
charged and can be interpreted as a generalized SM2-brane
[7,9–12] with an arbitrary transverse space M7. Such
geometries are quite popular in attempts to realize inflation
using string/M-theory compactifications. The fact that hy-
perbolic compactifications produce a transient accelerating
phase in a 4-dimensional Einstein frame was first noted in
[13]. Shortly after, it was noticed that the transverse space
could also be flat [14] or spherical [15] when a nonzero flux
is present. An intuitive understanding of this fact was given
in [15] using the 4-dimensional effective theory descrip-
tion, where the problem reduces to studying a potential
function of scalar fields. The contribution of a 4-form flux
to this potential is always positive which enhances the
amount of acceleration. Hence, it is desirable to add flux
to a vacuum solution.
The plan of our paper is as follows. In the next section,

we recall the formula derived in [3] to obtain 1-parameter
Lunin-Maldacena deformations [2] of D ¼ 11 back-
grounds. In Sec. III, we illustrate this method on some
examples. Our first starting point is the vacuum S-brane
solution [12,13,16] of D ¼ 11 supergravity whose 4-form
field strength is zero. It contains several Uð1Þ directions
and by using three of them, we demonstrate that one
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obtains the SM2-brane solution [7,9–12] in a form
which has a direct zero flux limit. We also explain the
transformation of this to the familiar SM2-brane metric.
Applying the deformation further on the SM2-brane, one
either gets the recently found SM2-SM2-SM5 Chern-
Simons S-brane system, where the contribution of the
Chern-Simons term to the field equations is nonzero [17]
or the SM2 ? SM2ð0Þ intersection [18], depending on
which Uð1Þ directions are used during the process.
Changing the initial solution to an SM5-brane [6,10] one
gets either the same Chern-Simons S-brane system [18] or
the SM2 ? SM5ð1Þ intersection [18]. Successive applica-
tion of the method produces solutions with more S-branes
including standard intersections of S-branes and overlap-
pings of Chern-Simons S-brane systems. The latter ones
are new. There are also other intersections where there is
no supersymmetric analog. In Sub. III B, we use this
method to construct two more new solutions, one of which
is a new Chern-Simons S-brane system where there are two
nonintersecting SM2-branes inside an SM5. The second
one is an SM2-brane solution with a different transverse
space than the usual one. In Sec. IV, we study consequen-
ces of such deformations for accelerating cosmologies in
(1þ 3) dimensions. We show that the cosmology of a
deformed solution differs from the original one only
when we compactify on deformation directions. We also
find that for the two new solutions the number of e-foldings
is of order unity. We conclude in Sec. V with some com-
ments and possible extensions of this work.

II. DEFORMATIONS

In this section we explain how to generate Lunin-
Maldacena deformations [2] of an 11-dimensional back-
ground using a formula derived in [3]. The bosonic action
of the 11-dimensional supergravity is

S ¼
Z

d11x

� ffiffiffiffiffiffiffi�g
p

R� 1

2:4!

ffiffiffiffiffiffiffi�g
p

F2 � 1

6
F ^ F ^ A

�
; (1)

whose equations of motion are

RAB ¼ 1

2:3!
FACDEF

CDE
B � 1

6:4!
gABF

2; (2)

d � F ¼ 1
2F ^ F: (3)

There is also the Bianchi identity dF ¼ 0. This is quite a
simple theory in terms of number of fields and for a
solution it is enough to specify its metric and the 4-form
field strength only.

Assume that we have a solution of these equations with
the following two properties:

(i) Its metric contains I � 3 commuting isometries,
which do not mix with other coordinates.

(ii) Its 4-form field strength has at most one overlapping
with these I directions.

Then, one can obtain a new solution by reducing along
one of theseUð1Þ’s and then using the other two for the TsT
(two T dualities and a shift in between) transformation [2].
Once the three Uð1Þ directions for the deformation process
are decided, the choice of the reduction direction and
T-duality directions from these does not affect the final
answer. If one uses only a single 3-torus, one gets a 1-
parameter deformation. When I > 3 one can repeat this
process with different choices of three Uð1Þ’s and obtain a
multiparameter deformation. In [3] general formulas for
these new solutions were obtained subject to two condi-
tions above which considerably simplify the necessary
calculations. We now review the formula for the 1-
parameter case below.
Suppose that there are three Uð1Þ directions fx1; x2; x3g

which possibly mix among themselves but not with any
other coordinate in the metric and let T denote the 3� 3
torus matrix that corresponds to them. The entries of this
matrix are read from the metric of the original solution, i.e.
Tmn ¼ gmn. Then, starting with a solution fF4; gABg where
each term in F4 has at most one common direction with
fx1; x2; x3g, after the deformation we find [3]

~F4¼F4��i1i2i3?11F4þ�dðKdetTdx1^dx2^dx3Þ;
d~s211¼K�1=3g��dx

�dx�þK2=3gmndx
mdxn;

K¼½1þ�2 detT��1; (4)

where m; n ¼ f1; 2; 3g and �, � denote the remaining
directions. The new solution is given by f ~F4; ~gABg. The
Hodge dual ?11 is taken in the 11 dimensions, with respect
to the undeformed metric and im is the contraction with
respect to the isometry direction @=@xm, i.e. im � i@=@xm .
Here � is a real deformation parameter and when � ¼ 0we
go back to the original solution. From the last term in ~F4,
note that such a deformation always generates a 3-form
potential along the deformation directions even when the
original F4 ¼ 0, provided that detT is not constant. For
time-dependent solutions this term corresponds to the flux
of a generalized SM2-brane lying along the fx1; x2; x3g
directions. Its charge is proportional to the deformation
parameter �.

III. EXAMPLES

Now, we study Lunin-Maldacena [2] deformations of
some cosmological solutions ofD ¼ 11 supergravity using
the above formula (4). We first begin with the vacuum
S-brane solution to clarify our method and to establish its
connection to SM2-brane and Chern-Simons S-brane sys-
tems [17] through this deformation. Repeated usage of this
method gives rise to a large number of configurations with
several S-branes that can be divided into three classes. The
first set contains standard intersections of S-branes [18]
which have supersymmetric analogs. In the second one we
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have configurations where each S-brane pair makes a
standard intersection but the overall intersection has no
supersymmetric analog, which is different from those
studied in [19] since brane charges are independent. The
last category consists of overlappings between Chern-
Simons S-brane systems and S-branes. Solutions in the
first two groups can be constructed using intersection rules
found in [18], whereas those in the third one are new. In
Sec. III B, we use this deformation to construct two addi-
tional new solutions. The first one is a new Chern-Simons
S-brane system and the second one is an SM2 brane with a
different transverse space.

A. S-branes

The vacuum S-brane solution [12,13,16] of D ¼ 11
supergravity is given as

ds2¼e2�ðt�t1Þ=3ðdx21þdx22þdx23Þ

þe��ðt�t1Þ=3
Xk
i¼1

e2ðbit�ciÞd�2i

þe��ðt�t1Þ=3e2ðb0t�c0ÞG�ðn=n�1Þ
n;� ð�dt2þGn;�d�

2
n;�Þ;

F4¼0; (5)

where d�2
n;� is the metric on the n-dimensional unit

sphere, unit hyperbola or flat space and

Gn;�¼
8<
:
m�2sinh2½ðn�1Þmðt� t0Þ�; �¼�1 ðhyperbolaÞ;
m�2cosh2½ðn�1Þmðt� t0Þ�; �¼1 ðsphereÞ;
exp½2ðn�1Þmðt� t0Þ�; �¼0 ðflatÞ;

(6)

with kþ n ¼ 7 and n � 2. Constants satisfy

b0t� c0 ¼ � 1

n� 1

Xk
i¼1

bitþ 1

n� 1

Xk
i¼1

ci;

2nðn� 1Þm2 ¼ 2

n� 1

�Xk
i¼1

bi

�
2 þ 2

Xk
i¼1

b2i þ �2:

(7)

Here, we took the exponentials multiplying fx1; x2; x3g
directions the same since after the deformation we want
to have a homogeneous 3-dimensional space which will
correspond to the world volume of an SM2. We can set one
of the constants f�; b1; . . . ; bkg to 1 by a rescaling and one
of the integration constants ft0; t1; c1; . . . ; ckg to zero by a
shift in the time coordinate. Since there is no mixing in the
metric and the 4-form is zero, we can use any three from
x or � coordinates for the deformation by assuming that
they are periodic. Choosing deformation directions as
fx1; x2; x3g, we see that the 3� 3 torus matrix T is diagonal

with detT ¼ e2�ðt�t1Þ and applying (4) to the vacuum S-
brane solution (5) we find

d~s2 ¼ e2�ðt�t1Þ=3ð1þ �2e2�ðt�t1ÞÞ�2=3ðdx21 þ dx22 þ dx23Þ þ ð1þ �2e2�ðt�t1ÞÞ1=3e��ðt�t1Þ=3

�
�Xk
i¼1

e2ðbit�ciÞd�2i þ e2ðb0t�c0ÞG�n=ðn�1Þ
n;� ð�dt2 þGn;�d�

2
n;�Þ

�
;

~F4 ¼ �d½e2�ðt�t1Þð1þ �2e2�ðt�t1ÞÞ�1dx1 ^ dx2 ^ dx3�; (8)

where � is the deformation parameter, and when � ¼ 0 we
go back to the vacuum S-brane solution (5). Note also that
even though we started with a solution with no 4-form
field, after the deformation we have a solution with ~F4�0.
This is an SM2-brane solution located at fx1; x2; x3g; how-
ever, its metric is not in the familiar form which contains
cosh functions. To understand the relation, we scale
fx1; x2; x3g coordinates with ��1=3 and all other coordinates
and constants fm;�; b1; . . . ; bkg with �1=6 in (5) before
performing the deformation, which makes � disappear in
K. Then, deforming this rescaled metric using fx1; x2; x3g
directions we get

d~s02 ¼ H�1=3ðdx21 þ dx22 þ dx23Þ þH1=6

�Xk
i¼1

e2ðbit�ciÞd�2i

þ e2ðb0t�c0ÞG�n=ðn�1Þ
n;� ðGn;�d�

2
n;� � dt2Þ

�

~F0
4 ¼ q�H�1dt ^ dx1 ^ dx2 ^ dx3;

H � q2cosh2�ðt� t1Þ; q � 2�; (9)

which is the standard SM2-brane solution [7,9–12]
with k smearings whose transverse space is of the form
R1 � � � � � Rk ��n;�. Note that � ! 0 is not well de-
fined anymore, i.e., this solution is valid only when q � 0.
This analysis clarifies the passage from the SM2-brane
solution (8) to the vacuum S-brane solution (5).
From this point it is possible to continue with more

deformations since there are (kþ 3) appropriate coordi-
nates in the initial solution (5). We have two options which
are consistent with our rules: Either we choose one Uð1Þ
direction from the world volume of SM2 and two from
outside or we choose all of them transverse to the SM2. For
the first choice, if we take fx3; �1; �2g directions for de-
forming the solution given in (9), then this adds another
SM2 along these directions and we get the standard
SM2 ? SM2ð0Þ intersection [18], where the world volume
of the second SM2 is inhomogeneous with some exponen-
tials of time which is due to the choice that we made for
homogeneous directions in our initial vacuum (5). For the
latter, without loss of generality let us use f�1; �2; �3g
coordinates to deform the solution (9). Since these do not
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overlap with any of the directions of the 4-form field
strength of (9) and they do not mix with any coordinate
in the metric, we are allowed to use the deformation

formula (4). Again the 3� 3 torus matrix T is diagonal
and after the deformation of the SM2 solution (9) with the
parameter �1 we find

dŝ211 ¼ K2=3H1=6
X3
i¼1

e2ðbit�ciÞd�2i þ K�1=3H1=6
Xk
i¼4

e2ðbit�ciÞd�2i þ K�1=3H�1=3ðdx21 þ dx22 þ dx23Þ

þ K�1=3H1=6G�n=ðn�1Þ
n;� e2ðb0t�c0Þ½�dt2 þGn;�d�

2
n;��;

K ¼ ½1þ �2
1q cosh�ðt� t1Þe2ðbt�cÞ��1; b � ðb1 þ b2 þ b3Þ; c ¼ ðc1 þ c2 þ c3Þ;

F̂4 ¼ ~F0
4 � �1q�Volð�kÞ ^ Volð�n;�Þ þ �1q cosh�ðt� t1Þ½� tanh�ðt� t1Þ þ 2b�e2ðbt�cÞ

½1þ �2
1q cosh�ðt� t1Þe2ðbt�cÞ�2 dt ^ d�1 ^ d�2 ^ d�3:

(10)

This is nothing but a slight generalization of the solution
given in [17] which was previously obtained by directly
solving the field equations (2) and (3). It is more general
because exponentials in front of the f�1; �2; �3g coordinates
in the metric are not all equal and it is possible to have two
smearings instead of one. Moreover, in [17] the constant �1

does not appear explicitly, and hence it does not reduce to
the single SM2-brane (9) by setting a constant to zero
unlike the solution above. If we take constants as b1 ¼
b2 ¼ b3 � d=6 and c1 ¼ c2 ¼ c3 � t2=6 so that the sec-
ond SM2 has a homogeneous world volume and n ¼ 4,
then after some further redefinitions of constants and re-
scaling of coordinates,1 two solutions agree completely.
Looking at F̂4 we see that this new solution describes two
SM2-branes located at fx1; x2; x3g and f�1; �2; �3g and an
SM5-brane at fx1; x2; x3; �1; �2; �3g. Note that F̂4 ^ F̂4 � 0
and therefore the contribution of the Chern-Simons term to
the field equations (3) is nonzero [17].

From the deformation formula (4) we see that there is
no way to obtain the SM5-brane solution [6,10] from
any vacuum solution. However, we can start directly with
the SM5-brane solution. Since the 4-form field of an
SM5-brane lies along the transverse space there are two
options for deformations that are compatible with our
rules: Either all 3 are chosen from the world volume of
SM5 or two are chosen from the world volume and one
from the outside. In the first case, after applying (4) one
gets again (10) after some obvious choices of constants.
Whereas, from the latter starting from an SM5 with in-
homogeneous world volume and 1-smearing one obtains
the standard SM2 ? SM5ð1Þ intersection [18]. Thus, we
have all the standard double intersections between SM2
and SM5 branes [18] except SM5 ? SM5ð3Þ.

Now, a large number of S-brane configurations can be
constructed by applying more deformations that are com-
patible with our conditions. To increase this number one

can use SM2, SM5, and SM5 ? SM5ð3Þ as a basis and
systematically perform deformations. In finding the list of
resulting configurations it is enough to remember the fol-
lowing set of rules about positions of available deformation
directions:

SM2!2 transverseSM2?SM2ð0Þ; SM2!3 transverseCSS
SM5!2worldvolume

SM2?SM5ð1Þ; SM5!3worldvolume
CSS;

where CSS stands for the Chern-Simons S-brane system in
which there are two nonintersecting SM2-branes inside an
SM5. Of course, when there is more than one brane in the
initial system these two rules should be used simulta-
neously. In this way, we can get all the standard S-brane
intersections listed in [18] which have static supersym-
metric analogs. There are also intersections where each
S-brane pair makes a standard intersection but the overall
intersection has no supersymmetric analog; however, their
construction still follows intersection rules found in [18].
Besides these, overlappings between CSS systems and
CSS systems with extra S-branes are allowed which are
new in the S-brane literature. For example, consider the
SM2 ? SM2ð0Þ intersection that we mentioned above
where SM2’s are located at fx1; x2; x3g and fx3; �1; �2g.
If we deform this using f�3; �4; �5g we get an overlapping
of two CSS systems (10) where there is an additional
SM2 at f�3; �4; �5g and two SM5’s are located at
fx1; x2; x3; �3; �4; �5g and fx3; �1; . . . ; �5g. Instead of this,
if we use f�2; �3; �4g then we find a CSS system with an
additional SM2 at f�2; �3; �4g where the SM5-brane is
located at fx1; x2; x3; �2; �3; �4g. Similarly, using
fx3; �2; �3g we get SM2 ? SM2 ? SM2ð0Þ intersection
[18], whereas fx2; �2; �3g gives another SM2 ? SM2 ?
SM2ð�1Þ solution where each pair has one common di-
rection but there is no overall common intersection where
�1 indicates this fact. The last one is different from the
solution found in [19] since SM2-brane charges are
independent.

1To go from the above solution (10) to the one found in [17],
first set � ¼ 1 and define �2

1qe
�t2 ! e�t2 . Then perform the

changes �i ! �i�
1=3
1 , q ! �q��1

1 , xi ! xi�
�1=3
1 , i ¼ 1, 2, 3.

After these, the constant �1 disappears.
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B. Two new solutions

Of course, it is straightforward to generate additional
new solutions using this mechanism. For example, deform-
ing the power-law solution given in [20] (see also [11,21])
we arrive at

d~s2¼ð1þ�2�3
1t

�2=7Þ�2=3�1t
�2=21ðdx21þdx22þdx23Þ

þð1þ�2�3
1t

�2=7Þ1=3½�1t
�2=21ðdx24þ���þdx27Þ

þ�2t
�2=3d�2

3;�1��3t
�8=3dt2�;

~F4¼�t�2

2
dt^Volð�3;�1Þ

þ�d

�
�3
1t

�2=7

1þ�2�3
1t

�2=7
dx1^dx2^dx3

�

�����3
2

2
dx4^���^dx7; (11)

where constants are fixed as ð�1Þ21 ¼ 27�4=224, ð�2Þ3 ¼
2=ð7�2Þ, and �3 ¼ ð�1Þ7ð�2Þ3. This is another SM2-SM2-
SM5 Chern-Simons system for which ~F4 ^ ~F4 � 0. The
initial SM2-brane has hyperbolic world volume �3;�1 and

can be called a flux SM6-brane too [21]. The other SM2 is
located at fx1; x2; x3g and the SM5 world volume contains
both of them.

As a second example we deform the vacuum solution
found in [22] and find

d~s2 ¼ e2�t=3ð1þ �2e2�tÞ�2=3ðdx21 þ dx22 þ dx23Þ
þ ð1þ �2e2�tÞ1=3e��t=3G�7=6

7;�

�
�
�e�=3dt2 þG7;�

Xn
i¼1

e�i=3d�2
mi;�

�
;

~F4 ¼ 2��e2�t

ð1þ �2e2�tÞ2 dt ^ dx1 ^ dx2 ^ dx3; (12)

where the �mi;�’s are mi � 2 dimensional spaces with

the same type of constant curvature specified by �
and

P
n
i¼1 mi ¼ 7. This represents an SM2-brane loca-

ted at fx1; x2; x3g with a transverse space of the form
Mm1;� � � � � �Mmn;�. The function G7;� is given by (6)

with m ¼ �=
ffiffiffiffiffiffi
84

p
and warping constants �i and � are

determined as

�i ¼ 1

2
ln

�
6

ðmi � 1Þ
Yn
j¼1

�
mi � 1

mj � 1

�
mj
�
;

� ¼ Xn
i¼1

mi�i ¼ 7

2
ln

�
6
Yn
i¼1

ðmi � 1Þ�mi=7

�
:

(13)

When the transverse space is only one piece (that is,
n ¼ 1), all �i’s and � become zero and the above solution
reduces to the usual SM2-brane (8) with no smearings. If
desired, this again can be put into a form where cosh
functions appear in the metric as we did above in (9),

which replaces the transverse part of (9) with the above
product space structure.

IV. ACCELERATING COSMOLOGIES

Hyperbolic compactifications to 4 dimensions may lead
to a short period of accelerating cosmologies [13].
Unfortunately, in all the examples studied so far, such as
[13–15,17,22], the amount of e-foldings is only of order 1
and hence these are not useful for explaining early time
inflation. Yet, such solutions might be relevant for the
presently observed acceleration of our Universe [23].
After compactification from D ¼ 11 to

(1þ 3) dimensions, the 4-dimensional part of all the above
S-brane solutions in the Einstein frame has the form:

ds2E ¼ �S6dt2 þ S2ds2M3
; (14)

where S is some function of time that depends on the
solution and M3 is a three-dimensional homogeneous
space. This universal structure is due to a particular prop-
erty of these solutions. Namely, the function in front of the
time coordinate in the metric is given as multiplication of
powers of other functions appearing in the metric where
powers are the dimensions of spaces that these functions
multiply. Now, the proper time is given by d	 ¼ S3dt and
the expansion and acceleration parameters can be found,
respectively, as

H ¼ S�1 dS

d	
¼ S�4 dS

dt
; a ¼ d2S

d	2
¼ � 1

2
S�3 d2

dt2
S�2:

(15)

An accelerating phase requires H > 0 and a > 0.
The effect of the deformation (4) on a metric is to bring

factors of K. If after the deformation we compactify on a
(1þ 3)-dimensional space whose spatial part M3 was not
used for the deformation, then it is immediately seen that in
the Einstein frame (14) the factor K does not appear in the
function S. Hence, the cosmology of compactication on
ðt;M3Þ will be the same before and after the deformation.
On the other hand, if we use three coordinates ofM3 for the

deformation, then we get a factor ofK�1=4 in the S function
and the cosmology will now be different. This is actually
not a surprise, since the main effect of such a deformation
is to produce a 3-form potential along the deformation
directions (possibly with some additional fluxes) which
will change the 4-dimensional cosmology only if we com-
pactify on these coordinates. This argument, together with
the fact that we want M3 to be a homogeneous space,
implies that increasing the number of standard intersec-
tions [6] will not improve the amount of e-foldings as was
explicitly checked for double intersections in [22].
The above discussion shows that for the SM2-brane

solution (8) only compactification on ft; x1; x2; x3g may
lead to a result different than the vacuum (5). In this case
the S function is given as
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S ¼ e��t=4ð1þ �2e2�tÞ1=4e�½ðb1þ���þbkÞt=2ðn�1Þ�

� e½ðc1þ���þckÞ=2ðn�1Þ�G�n=4ðn�1Þ
n;� ; (16)

where kþ n ¼ 7 and k � 5. The enhancement of the
4-form flux on acceleration [15] can be clearly seen in
this example. For the vacuum case (� ¼ 0) an accelera-
ting phase happens only when � ¼ �1 [13], whereas
when � � 0 the expansion factor gets slightly bigger for
� ¼ �1 and acceleration exists also for � ¼ 0 and � ¼ 1
[14,15,22]. For � � 0 previously only k ¼ 0 [14] and
k ¼ 1 [22] cases were analyzed explicitly. We found that
increasing the number of flat product spaces does not lead
to a significant modification and still the acceleration is of
order 1.

Similarly, for the Chern-Simons S-brane system (10)
compactification on ft; x1; x2; x3gwill give the same answer
similar to the SM2-brane (9) as was explicitly observed in
[17]. However, compactification on ft; �1; �2; �3g in (9) and
(10) will give different S functions and hence different
cosmologies. For this case, choosing b1¼b2¼b3�d=6
and c1 ¼ c2 ¼ c3 � t2=6 and we find

S ¼ ½1þ �2
1q cosh�ðt� t1Þedt�t2�1=4e�½ðnþ2Þðdt�t2Þ=12ðn�1Þ�

� e�½ðb4þb5Þt�ðc4þc5Þ=2ðn�1Þ�G�n=4ðn�1Þ
n;� ; (17)

where 2 � n � 4. In [17] this compactification with no
smearings (n ¼ 4) was studied and an accelerating interval
was found for each �. However, the amount of e-folding
was again of order unity. When n ¼ 3 and n ¼ 2 there is a
short period of acceleration too; however, there is no major
change in the expansion factor.

For the new Chern-Simons S-brane system that we con-
structed above (11), after the compactification we get a
different cosmology from the original one only if we
compactify on ft; x1; x2; x3g. In this case we have

S ¼ ð1þ �2t�2=7Þ1=4t�9=14: (18)

However, from (15) we find that acceleration is always
negative with or without deformation. Even though, we
have flux along ft; x1; x2; x3g and some part of the trans-
verse space is hyperbolic, we do not get an accelerating
phase.

Finally, for the new SM2 solution with product trans-
verse space (12), if we compactify on ft; x1; x2; x3g the S
function is given as

S ¼ e�=12e��t=4ð1þ �2�3
1e

2�tÞ1=4G�7=24
7;� ; (19)

whose form is almost identical to the SM2-brane case (16).
Hence, it immediately follows that when � ¼ 0 there is
acceleration only for� ¼ �1 [22]. However, it also occurs
for � ¼ 1 and � ¼ 0 after the 4-form becomes nonvanish-
ing, alas only of order 1.

V. CONCLUSIONS

In this paper we looked at applications of Lunin-
Maldacena deformations [2] to cosmological solutions of
D ¼ 11 supergravity. The method becomes especially use-
ful if we have a solution of pure Einstein equations which
has an R3 part in its geometry. Then, using the deformation
this can be generalized to a solution with a 3-form potential
along these directions. To realize inflation is a big chal-
lenge for string/M theory and compactifications with
different transverse space geometries and fluxes is a prom-
ising way to attack this puzzle. Furthermore, this also
shows that to construct flat SM2-brane solutions with
general transverse spaces, it is enough to concentrate
only on Einstein equations (2) with F4 ¼ 0. We hope
that with this simplification it will be easier to construct
such solutions which may have better cosmological
features.
As we saw, using the deformation repeatedly it is

possible to obtain configurations with several S-branes,
some of which are new solutions. If we extend our basis
of initial solutions to include SM2 ? SM2ð�1Þ and
SM2 ? SM5ð0Þ intersections found in [19] which have
no supersymmetric analogs, then we will obtain intersec-
tions between these, standard S-branes and Chern-Simons
S-brane systems too. Cosmological aspects of such solu-
tions need further examination. It may be interesting to
apply this method to intersections of S-branes with
p-branes [24,25].
We carried on our investigation using the formula (4)

derived in [3] which makes the calculations very simple.
In fact, once Uð1Þ directions are decided it only remains to
calculate a determinant. In this formula it is assumed that
three Uð1Þ directions have no mixing with any other coor-
dinate in the metric. However, this condition can be re-
laxed. In [3] formulas where mixing of these with one or
two more directions which are not necessarily Uð1Þ are
also provided. In employing (4) we can in principle use any
three Uð1Þ’s in the geometry which are consistent with our
rules. For example, if there is an n-dimensional maximally
symmetric piece in the geometry, then its SOðnÞ Cartan
generators can be deformed, which will give an SM2-brane
with an unconventional world volume. Another conse-
quence that follows from (4) is that it is not possible to
obtain the SM5-brane solution from a vacuum or to add a
single SM5 to an existing solution. Moreover, there seems
to be no way to construct nonstandard SM2 ? SM2ð�1Þ
and SM2 ? SM5ð0Þ intersections [19]. For such cases, it
may be necessary to use a more general U-duality trans-
formation which is worth exploring.
In the last decade an elegant way to construct cosmologi-

cal solutions ofD ¼ 11 supergravity, which includes SM2-
branes [26] and their intersections [27] with flat transverse
spaces, using Kac-Moody algebras have been developed
(for a review and more references, see [28,29]). It will be
interesting to work out generalization of this approach to
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cover also SM5-branes and to understand the action of
Lunin-Maldacena deformations in this framework.

We can of course apply our method to static solutions as
well. However, deformation of a static vacuum does not
give an M2-brane but a static SM2 [21] whose world
volume is Euclidean. The connection between one of the
static versions of our Chern-Simons S-brane system [17]
and composite M-brane solution [30] was already noted in
[17]. The composite M-brane solution [30] and its inter-
sections [31] were obtained using U-duality and their

anisotropic black generalization was also studied [32].
We expect our approach to be useful in construction of
Poincaré symmetric versions of these black brane solu-
tions. We aim to examine these problems in the near future.
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