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In the context of softly broken N ¼ 2 supersymmetric quantum chromodynamics, with a hierarchical

gauge symmetry breaking SUðNþ1Þ!v1
UðNÞ!v2

1, v1 � v2, we construct monopole-vortex complex

solitonlike solutions and examine their properties. They represent the minimum of the static energy under

the constraint that the monopole and antimonopole positions sitting at the extremes of the vortex

are kept fixed. They interpolate the ’t Hooft-Polyakov-like regular monopole solution near the monopole

centers and a vortex solution far from them and in between. The main result, obtained in the theory

withNf ¼ N equal-mass flavors, is concerned with the existence of exact orientational CPN�1 zero modes,

arising from the exact color-flavor diagonal SUðNÞCþF global symmetry. The ‘‘unbroken’’ subgroup

SUðNÞ � SUðN þ 1Þ, with which the naive notion of non-Abelian monopoles and the related difficulties

were associated, is explicitly broken at low energies. The monopole transforms nevertheless according to

the fundamental representation of a new exact, unbroken SUðNÞ symmetry group, as does the vortex

attached to it. We argue that this explains the origin of the dual non-Abelian gauge symmetry.
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I. INTRODUCTION

The last several years havewitnessed remarkable progress
in our understanding of vortex configurations in spontane-
ously broken gauge theories, which carry continuous,
non-Abelian internal zero modes: the non-Abelian vortices
[1,2]. Their rich group-theoretical and dynamical properties
have been the subject of intense study [3–17].

The physics of non-Abelianvortices is deeply related to the
understanding of the concept of the non-Abelian monopole
and that of the quark confinement; see e.g. Ref. [3]. Indeed, a
detailed, fully quantum-mechanical analysis of four-
dimensional gauge theories with N ¼ 2 supersymmetry
has given important hints about the low-energy, effective
dual gauge symmetry. In particular, fully quantum-
mechanical light non-Abelian monopoles appear as the
infrared degrees of freedom in the so-called r vacua of
N ¼ 2 supersymmetric QCD with Nf quark multiplets,

playing the role of the order parameter for confinement
(of non-Abelian variety) and for dynamical symmetry
breaking [18].

The discovery of the non-Abelian vortex was partly
motivated [2] by the desire to understand the physics of
the quantum r vacua, r ¼ 2; . . . ; Nf=2, from a more

familiar semiclassical viewpoint. In fact, semiclassically
the connection between the vortex solutions and
regular ’t Hooft-Polyakov monopoles arises from the

consideration of a hierarchical gauge symmetry breaking,
e.g.

SUðN þ 1Þ!v1
UðNÞ!v2

1; v1 � v2 � �SUðNÞ: (1)

The monopole is supported by �2ðSUðNþ1Þ=UðNÞÞ¼Z;
the low-energy vortex solutions correspond to nontrivial
elements of �1ðUðNÞÞ ¼ Z. The exact sequence of homo-
topy groups relates the two solitons of different codimen-
sion [4], and the global symmetry consideration tells us
that the non-Abelian vortex implies non-Abelian mono-
poles sitting at its extremes. For 1> v1 � v2 > 0, one
is inevitably led to consider metastable monopole-vortex
complex solitons.
The aim of this paper is to pursue further the study of

such a monopole-vortex complex, including the numerical
analysis of the field configurations involving both the mag-
netic monopole region and the asymptotic vortexlike re-
gion, with all fields approaching smoothly their vacuum
expectation value (VEV) away from the complex. In this
sense this paper is a continuation of the work by Auzzi et al.
[5]. We clarify also some aspects of the non-Abelian ori-
entational moduli, extensively studied in the last several
years in the context of the vortex solutions, and show how
the properties of the non-Abelian orientational moduli can
be extended to the whole monopole-vortex complex.
The organization of the paper will be the following. In

Sec. II after a brief introduction of the model we will focus
our attention on the main characters of our paper: the
vortex and the monopole; particular care will be given to
the study of the symmetries present at different energy
scales. In Sec. III these two objects will be glued together
and we will study the monopole-vortex complex as a
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whole. We will present both numerical and analytical
results concerning the profile functions for the various
fields and for the magnetic field; furthermore through a
careful identification of the symmetries possessed by the
complex we will be able to analyze the low-energy dynam-
ics of the orientational zero modes living on the complex.
The conclusions and results obtained in this work are
presented in Sec. IV. We give a more detailed analysis of
the full set of equations of motion and the consistency of
our ansatz in the two appendixes.

II. THE MODEL

To be concrete, we shall work with the softly broken
N ¼ 2 supersymmetricmodels, due to themany advantages
they offer. The fields are those of theN ¼ 2 gaugemultiplet
(the gauge field, the gauge fermion, the adjoint scalar and
fermion) together with hypermultiplets. To be precise, we
take an SUðNcÞ (Nc ¼ N þ 1) gauge theory with Nf ¼ N

flavors of hypermultiplets (quarks), and the mass parameters
are tuned such that at two hierarchically different scales the
gauge symmetry is broken as in Eq. (1). The Lagrangian of
the underlying SUðN þ 1Þ theory has the structure
L ¼ 1

4�
Im�

�Z
d4�Trð�ye�2V�Þ

þ 1

2

Z
d2�TrðW�W�Þ

�
þLðquarksÞþ

Z
d2��Tr�2; (2)

LðquarksÞ ¼ X
i

�Z
d4�ðQy

i e
�2VQi þ ~Qie

2V ~QyiÞ

þ
Z

d2�ð ffiffiffi
2

p
~Qi�Qi þmi

~QiQ
iÞ
�
; (3)

where mi are the bare masses of the quark fields and the
complex coupling constant reads

� � �

2�
þ 4�i

g2
: (4)

The mass of the adjoint chiral multiplet � breaks supersym-
metry toN ¼ 1.

After elimination of the auxiliary fields the bosonic
Lagrangian takes the form

L ¼ � 1

4g2
ðFA

��Þ2 þ 1

g2
jD��

Aj2 þ jD�q
ij2

þ jD�~q
yij2 � V1 � V2; (5)

V1 ¼ 1

8

X
A

�
� i

g2
fABC�By�C þ qyi tAqi � ~qit

A~qyi
�
2

¼ 1

8

X
A

�
ðTAÞba

�
� 2

g2
½�y; ��ab þ qyai qib � ~qai ~q

yi
b

��
2
;

V2 ¼ g2
X
A

j��A þ ffiffiffi
2

p
~qit

Aqij2 þ j½mi þ
ffiffiffi
2

p
��y~qyij2

þ j½mi þ
ffiffiffi
2

p
��qij2; (6)

where A ¼ 1; 2; . . . ; ðN þ 1Þ2 � 1 and the sum over
i ¼ 1; 2; . . . ; Nf as well as a; b ¼ 1; 2; . . . ; N þ 1 is

implicit. In the construction of the monopole-vortex
complex soliton solutions it turns out to be sufficient to
consider the VEVs and fluctuations around them which
satisfy

½�y; �� ¼ 0; qi ¼ ~qyi; (7)

therefore V1 can be set identically to zero in what
follows.
The vacuum expectation values of the scalar fields

are determined from the minima of the potential
following from Eq. (6); e.g. see Ref. [18]. They are found
to be

qia ¼ �i
adi; ~qai ¼ �a

i
~di; for i ¼ 1; 2; . . . ; r;

a ¼ 1; 2; . . . ; N þ 1;
(8)

qia ¼ 0; ~qai ¼ 0; for i ¼ rþ 1; . . . ; Nf; (9)

di ~di¼�miþ �

Nþ1�r

Xr
k¼1

mk; ðdi>0Þ; j~dij¼di; (10)

� ¼ 1ffiffiffi
2

p diagð�m1;�m2; . . . ;�mr; c; . . . ; cÞ;

c ¼ 1

N þ 1� r

Xr
k¼1

mk;
(11)

where the integer

r ¼ 0; 1; . . . ;minfNf;Nc � 1g; Nc ¼ N þ 1; (12)

labels the possible (classical) vacua. The vacua of a given r
are further classified according to which set of r (out ofNf)

masses are used to construct the solution, leading to the
total of

#vacua ¼ XminfNf;Nc�1g

r¼0

ðNc � rÞ Nf

r

� �
: (13)

As explained in Ref. [18], by choosing a generic set of
bare masses mi and by deforming with the N ¼ 1 mass
term �Tr�2 the continuous vacuum degeneracy is lifted
altogether, leaving this discrete set of vacua. At small mi

and � (� �) the interactions become strong in the infra-
red, in all these vacua. These are indeed the vacua we are
interested in.1

1This is one of the motivations for considering the system with
generic masses and with � � 0 first, and then eventually taking
the equal-mass or massless limit. On the contrary, if we consid-
ered directly the massless theory, or equal-mass cases, we would
find flat directions (continuum vacuum degeneracy); at a generic
point along such Higgs branches, the coupling constant remain
small at all scales.
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By tuning the bare squark masses mi to an equal, com-
mon value m, we see that an exact color-flavor diagonal
SUðrÞ symmetry survives in a vacuum with a given r. For
definiteness, below we shall work with the classical r ¼ N
vacuum, where

h�i¼v1
1N�N 0N�1

01�N �N

� �
; hqi¼h~qyi¼v2

1N�N

01�N

� �
(14)

and

v1 � � mffiffiffi
2

p ; v2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þm�

q
(15)

are obtained by taking such a limit. Note that in this
vacuum the gauge group SUðN þ 1Þ is completely broken;
at the same time, however, the color-flavor diagonal global
SUðNÞ symmetry

qU¼ U
1

� �
qU�1; ð�U;AU

i Þ¼ U
1

� �
ð�;AiÞ U�1

1

� �
(16)

(U2SUðNÞ�SUðNþ1Þ) remains unbrokenbybothVEVs.
It is an exact global symmetry of the whole system.
The system is in the so-called color-flavor locked phase.
A hierarchical symmetry breaking pattern (1) is realized if

jmj � j�j � �; ∴ jv1j � jv2j: (17)

Remarks:
(i) The terms containing the adjoint scalar mass � play

two crucial roles in our model. On the one hand, they
induce the small squark condensates (14), bringing
the system into a completely Higgsed phase. The
existence of the vortex solutions in the low-energy
approximation and their properties all rely on this
parameter. Note that due to supersymmetry, the high-
energy approximate monopole solution (v2 ¼ 0) and
low-energy approximate vortex solutions (v1 ¼ 1)
are both BPS (Bogomol’nyi-Prasad-Sommerfeld)-
saturated.
On the other hand, nonvanishing � introduces terms
in V2 which make both the low-energy vortex and
high-energy monopole ‘‘solutions’’ unstable (non-
BPS). It is these terms which allow the two solitons
of different codimensions to get smoothly combined
into a monopole-vortex complex.

(ii) Of course such a complex ‘‘soliton’’ is not a true
solution of the field’s equations of motion; it is only
so under the condition that the monopole center
positions are kept fixed. Under the assumption
of a hierarchical gauge symmetry breaking (17),
this is not a problem: it is a perfectly sensible
(Born-Oppenheimer) procedure, as the motion of
the massive monopole can be neglected in the first

instance, in the study of low-energy fluctuations of
orientational zero modes of the whole complex.

(iii) Actually the case can be made stronger for
working with non-BPS objects as these complex
solitons. Just as in the case of the real-world
quark-antiquark-chromoelectric string composites
(the mesons), our monopole-vortex-antimonopole
complex will get stabilized after the quantization
of the radial or rotational motions are appropriately
taken into account. Of course, only the ground
state for each flavor quantum number will be truly
stable, as the pair production of the mono-
pole-antimonopole from the vacuum, though
suppressed, cannot be rigorously set to zero.
But the same holds for the real-world meson
states! The fact that these are not topologically
stable as static configurations is therefore not a
shortcoming at all; rather it is the necessary price
to pay to understand the real-world confinement
mechanism.

(iv) Our semiclassical consideration is valid for the
parameter region

jmij ¼ jmj � j�j � �:

As the bare quark masses and the adjoint scalar
mass � are decreased to small values of the order
of �, the system becomes strongly coupled and
the classical r ¼ N vacua we started with turn
into the weakly coupled, dual quantum r ¼ 0
vacua [18]. This means that the vortex (and
monopole) orientational zero modes fluctuate
strongly and Abelianize. A possible route to reach
the quantum r vacua (2 � r � Nf=2), where light

non-Abelian monopoles appear as the infrared
degrees of freedom, through a careful tuning of
bare masses and through the consequent vortex
solutions with orientational moduli living on
CPr�1 � CPN�r�1, was discussed by some of
us in Ref. [6].

A. Vortex solution far from the monopole center

In the vacuum (14) the ðN þ 1Þ-th color component
of the squark fields has a mass of the order of v1 and can
be integrated away, in the study the low-energy dynamics.
At mass scales much lower than v1 the theory is an
SUðNÞ �Uð1Þ gauge theory with Nf ¼ N massless fla-

vors, in the color-flavor locked phase. The vortex solutions
in these systems have been a subject of intense study for the
last several years [3–17]. A lowest-winding vortex solution
oriented in the (1, 1) direction in color-flavor space2 has the
form

2These vortices are precisely those studied in [7] for the
special case of N ¼ 2. The ðN þ 1Þ-th color component of the
(massive) squark fields is vanishing and not shown in Eq. (18).

NON-ABELIAN MONOPOLE-VORTEX COMPLEX PHYSICAL REVIEW D 84, 045024 (2011)

045024-3



q ¼ ei’q1ð	Þ
q2ð	Þ1N�1

 !
;

Ai ¼ 
ij
xj

	2

2
66641� fð	Þ

N

1

1N�1

�N

0
BB@

1
CCAþ 1� fNAð	Þ

N

N � 1

�1N�1

0

0
BB@

1
CCA
3
7775; i ¼ 1; 2;

� ¼
�
v1 þ �ð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN þ 1Þp � 1

1N�1

�N

0
BB@

1
CCAþ �NAð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN � 1Þp
N � 1

�1N�1

0

0
BB@

1
CCA;

(18)

with the profile functions satisfying the appropriate boundary conditions

q1;2ð1Þ ¼ v2; fð1Þ ¼ fNAð1Þ ¼ �ð1Þ ¼ �NAð1Þ ¼ 0;

q1ð0Þ ¼ 0; @	q2ð0Þ ¼ @	�ð0Þ ¼ @	�NAð0Þ ¼ 0; fð0Þ ¼ fNAð0Þ ¼ 1:
(19)

We have introduced above the cylindrical coordinates

z; 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ’ ¼ tan�1

�
y

x

�
;

which are convenient in the description of the vortex
configuration; the gauge field above in fact contains
only the ’ component, A’ ¼ � 1

	 ½	 	 	�, where ½	 	 	�
is the expression in the square bracket appearing
in Eq. (18).

The � dependent terms in Eq. (6), coming from the
adjoint scalar mass term �Tr�2, imply that the field �
behaves nontrivially [Eq. (18)]: the vortex solution is nec-
essarily non-BPS [7]. Its properties have been carefully
studied by Auzzi et al. [7] in the case of the low-energy
SUð2Þ �Uð1Þ, Nf ¼ 2 theory. It has been shown that,

independent of the sign of � or of m1 ¼ m2, the vortex
tension is less than the BPS vortex (for � ¼ 0). The
behavior of the profile functions is quite similar, for small
�, to the case of the BPS vortex analyzed earlier, except for
the presence of the small nonvanishing profile functions for
� in and around the vortex core.

For our purpose below, it is necessary to consider these
vortex solutions in a gauge where the scalar quark fields do
not wind at infinity. The SUðNÞ �Uð1Þ � SUðN þ 1Þ
gauge transformation needed is

UðsingularÞ ¼
e�i’

1N�1

ei’

0
@

1
A; (20)

and the vortex solution is indeed transformed into the
form

q ¼ q1ð	Þ
q2ð	Þ1N�1

� �
; (21)

A’ ¼ 1

	

2
6664fð	ÞN

1

1N�1

�N

0
BB@

1
CCA

þ fNAð	Þ
N

N � 1

�1N�1

0

0
BB@

1
CCA
3
7775; (22)

while the � field remains invariant as in Eq. (18). In this
(singular) gauge all the topological features are hidden in
the gauge-field singularity along the vortex core (	 ¼ 0),

A’ð	Þ !	!0 1

	

1 0 0
0 0N�1 0
0 0 �1

0
@

1
A: (23)

The magnetic flux is nevertheless regular everywhere and
given by

Bz ¼ 1

	

@ð	A’Þ
@	

¼ 1

	

2
6664@fð	Þ@	

1

N

1

1N�1

�N

0
BB@

1
CCA

þ @fNAð	Þ
@	

1

N

N � 1

�1N�1

0

0
BB@

1
CCA
3
7775; (24)

with the Bx, By components vanishing, so that the total flux

is given by

F z ¼ 2�
Z

d		Bz ¼ �2�
1 0 0
0 0N�1 0
0 0 �1

0
@

1
A: (25)

Note that such a vortex leaves an SUðN � 1Þ �Uð1Þ
subgroup of the color-flavor diagonal global symmetry
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SUðNÞCþF intact, and as a result develops orientational
zero modes living in

CPN�1 
 SUðNÞ
SUðN � 1Þ �Uð1Þ ; (26)

they are sort of Nambu-Goldstone modes, propagating
along the vortex string. More concretely, there is a con-
tinuous infinity of degenerate vortex solutions related by

qU ¼ U

1

 !
qU�1; AU

i ¼ U

1

 !
Ai

U�1

1

 !
;

�U ¼ U

1

 !
�

U�1

1

 !
: (27)

Note that the color-flavor N � N SUðNÞ matrix U
belongs to the coset Eq. (26) as an individual vortex
solution (22) preserves the subgroup SUðN � 1Þ �Uð1Þ
generated by

0 0
0 ei�AT

A

� �
�U;

eiðN�1Þ�0 0
0 e�i�01N�1

 !
�U; (28)

where the TA’s are the standard SUðN � 1Þ generators.
The existence of the exact orientational zero modes of

Eq. (27) possessed by the low-energy vortex solutions
characterizes these solitons as non-Abelian vortices [1,2].
They possess a genuine moduli space of solutions, all
having the same tension. Their low-energy fluctuations
(i.e. fluctuations carrying energies much lower than the
characteristic vortex scale, v2) can be shown to be
effectively described as a two-dimensional sigma model
on CPN�1¼SUðNÞ=SUðN�1Þ�Uð1Þ. Dynamical fea-
tures of these fluctuations, detailed moduli-space struc-
tures, and their group-theoretic properties have been
the focus of considerable attention in the last several years
[3–17].

Remarks:
(i) Note that even though the light squark fields have

only the firstN color components, the gauge field has
a nonvanishing (N þ 1,N þ 1) element [see Eq. (24)
or Eq. (22)] due to the fact that theUð1Þ gauge group
descends from the underlying SUðN þ 1Þ gauge
group. This turns out to be crucial in the considera-
tion of the vortex-monopole complex below. In this
respect, the present model (i.e. the model of [2,5,7]),
where the SUðNÞ �Uð1Þ theory arises as a low-
energy approximation of a spontaneously broken
SUðN þ 1Þ theory, differs essentially from the genu-
ine UðNÞ model studied by other groups [1,8–11],
where all scalar and gauge field components live in
N � N color space. Even though they share many
interesting features of the non-Abelian vortex
solutions with our model, it is not possible in these
latter models to relate the non-Abelian orientational

moduli of the low-energy vortex to the notion of the
non-Abelian monopole, which ‘‘lives’’ in the larger
SUðN þ 1Þ gauge group space.

(ii) When the SUðNÞ and Uð1Þ coupling constants
are set to be equal—this would be the case for
the theory just below the higher gauge-symmetry
breaking mass scale v1—the vortex solution above
reduces exactly to the Abelian Abrikosov-Nielsen-
Olesen vortex [7], embedded in the (1, 1) corner
of the color-flavor space. We shall use below
such a simplification e.g. for solving the
monopole-vortex complex numerically (Sec. III B)
but the more general discussion on the orienta-
tional moduli (Sec. III D) of the complex is
independent of it.

B. The monopole

As the underlying SUðN þ 1Þ gauge group is simply
connected, the vortex solutions reviewed above cannot be
stable in the full theory, which contains the massive mono-
pole excitations. A vortex must end at the two end points
where monopoles related to the symmetry breaking
SUðN þ 1Þ ! SUðNÞ �Uð1Þ are situated. The properties
of such a monopole solution can be studied to first ap-
proximation by neglecting the small VEV v2 or equiva-
lently by studying the system sufficiently close to the
monopole center, i.e. at the distances R,

1

jv2j � R
 1

jv1j ; (29)

from the center. For q ¼ ~qy ¼ 0 and for real�A neither V1

nor V2 contribute, so the field configuration inside a sphere
of such radius R should be approximately equal to the
standard BPS-’t Hooft-Polyakov monopole solution [19],
embedded in an appropriate corner of SUðN þ 1Þ gauge
group. By choosing an SUð2Þ � SUðN þ 1Þ group gener-
ated by

S1 ¼ 1

2

0 1

0N�1

1 0

0
BB@

1
CCA; S2 ¼ 1

2

0 �i

0N�1

i 0

0
BB@

1
CCA;

S3 ¼ 1

2

1 0

0N�1

0 �1

0
BB@

1
CCA; (30)

[which is broken to Uð1Þ by the VEV of �] a monopole
solution can be constructed explicitly as [20]

AiðrÞ¼Aa
i ðrÞSa;

�ðrÞ¼ ðNþ1Þv1

raSa
r

�ðrÞþv1

�N�1
2

1N�1

�N�1
2

0
BB@

1
CCA;
(31)
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where3

Aa
i ðrÞ ¼ 
aji

rj

r2
aðrÞ; (32)

is the standard BPS-’t Hooft-Polyakov solution with

aðrÞ¼1� gv1r

sinhðgv1rÞ; �ðrÞ¼ cothðgv1rÞ� 1

gv1r
; (33)

the latter behaving asymptotically as

aðrÞ ! 1; �ðrÞ ! signðv1Þ; r ! 1; (34)

[for the antimonopole, �ðrÞ ! ��ðrÞ]. The constant in the
�ðrÞ field is added so that it reduces asymptotically to the
vacuum expectation value of Eq. (14), in a fixed direction
[here chosen as ð0; 0;1Þ]. The ‘‘magnetic flux’’ emanated
from the magnetic monopole is given by

Bi ¼ 1

2

ijkFjk !r!1 riðS 	 rÞ

r4
; (35)

which of course is a well-known radial Dirac monopole
field, embedded in the Si color directions.

The ‘‘monopole’’ mass (the energy of the configuration
around its center) can be approximately calculated as4

H ¼
Z
jrj<R

d3xTr

�
1

2g2
ðFijÞ2 þ 1

g2
jDi�j2

�
: (36)

Rewriting the Hamiltonian as

H¼ 1

g2

Z
jrj<R

d3xTr

�
1

2
jFij�
ijkðDk�Þj2þ@kð
ijkFij�Þ

�
;

(37)

our monopole configuration is seen to satisfy approxi-
mately the non-Abelian Bogomol’nyi equations

Bk ¼ Dk�; (38)

so that the monopole mass is given approximately by

H ¼ 2

g2

Z
jrj¼R

dS 	 Tr½�B� ¼ 4�

g2
ðN þ 1Þjv1j; (39)

where R is in the range given in Eq. (29). The monopole
mass is, naturally, gauge independent. On the contrary, the
‘‘magnetic flux’’ (35) is a gauge dependent quantity.
To match the ‘‘vortex part’’ of the solution discussed
in the previous subsection, it is necessary to choose a
particular gauge in which the adjoint scalar field does not
wind at infinity (the so-called singular gauge) in order to
describe the complex. By introducing the spherical
coordinates

r

r
¼ ðsin� cos’; sin� sin’; cos�Þ;

the required gauge transformation is given by

�!V�Vy; Ai!VðAi�i@iÞVy; V¼e�i’S3ei�S2ei’S3 ;

(40)

where the Si’s are the SUð2Þ � SUðN þ 1Þ generators of
Eq. (30). The adjoint scalar field is simply transformed to
the fixed direction in the color space (chosen here in the S3
direction),

�ðrÞ ¼ ðN þ 1Þv1S3�ðrÞ þ v1

� N�1
2

1N�1

� N�1
2

0
B@

1
CA;

(41)

whereas the gauge field has a slightly more complicated
form. In view of our task below, of connecting the mono-
pole solution to the low-energy vortex, it is convenient to
express the gauge field in the new gauge in the components
in the cylindrical coordinate system,

A	¼cos�

r
ðS2cos’�S1 sin’ÞðaðrÞ�1Þ;

A’¼ 1

	
½S3ð1�cos�Þ�sin�ðS1cos’þS2 sin’ÞðaðrÞ�1Þ�;

Az¼�sin�

r
ðS2cos’�S1 sin’ÞðaðrÞ�1Þ; (42)

where the conversion between spherical and cylindrical
coordinates involve the relation

z ¼ r cos�; 	 ¼ r sin�; (43)

while the azimuthal angle ’ is common in the two coor-
dinate systems. The gauge field displays the well-known
Dirac string singularity along the negative z direction in
this gauge,

A’j�¼� 
 2S3
	

: (44)

The asymptotic (r � 1
jv1j ) behavior of the magnetic field

B can be found by dropping terms multiplied by the factor
ðaðrÞ � 1Þ appearing in Eq. (42); only A’ survives and

B	 ’ S3
	

r3
; B’ ’ 0; Bz ’ S3

z

r3
; (45)

which of course is a well-known radial Dirac monopole
field, embedded in the S3 color direction. This radial
magnetic field can be seen more easily by directly trans-
forming the asymptotic magnetic field in Eq. (35) by
Bi ! VBiV

y, which yields

Bi ’ riS3
r3

; (46)

The total magnetic flux through the surface of a sphere of
radius R around the center is then given by

3The index a ¼ 1; 2; 3 refers to the SUð2Þ group utilized to
construct the solution; the gauge field Ai and the adjoint scalar �
are both ðN þ 1Þ � ðN þ 1Þ matrices in the SUðN þ 1Þ color
group.

4We take the adjoint scalar field � to be real here and hence
normalize it canonically as a real scalar field.
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Z
jrj¼R

dS 	 B ¼ 4�S3 ¼ 2�
1 0

0N�1

0 �1

0
@

1
A; (47)

independently of R.

III. MONOPOLE-VORTEX COMPLEX

The equality in the magnitude between the vortex flux
(25) through a plane perpendicular to the vortex axis, and
the magnetic monopole flux (47) through the surface of a
tiny sphere around the monopole, is an example of the
‘‘flux matching’’ [5,12], showing that the vortex and mono-
pole together form a smooth soliton complex. Below we
elaborate this monopole-vortex complex in more detail.

A. Generalities

The first crucial observation is that such a smooth com-
plex requires a compatible orientation between that of the
vortex (in the color-flavor mixed space) and that of the
monopoles (in the color space). For concreteness, the (1, 1)
corner of SUðNÞCþF is selected for the winding for the
vortex solution Eq. (18), and the associated monopole
solution is accordingly embedded in the SUð2Þ subgroup
of the color SUðN þ 1Þ group, in the (1, N þ 1) plane.
Naturally, both the monopole and vortex can be rotated into
any other directions by color-flavor transformations; in
order to maintain the energy they must be rotated simulta-
neously (see below).

The relative sign of the flux in Eqs. (25) and (47)
indicates that the monopole studied in the preceding sub-
section is actually positioned at the rightmost end point of
the vortex (as in Fig. 1). The outgoing magnetic flux (in the
direction of S3) of the monopole is carried away in the
vortex bundle on its left.
Another crucial observation is about the behavior of the

gauge field. The monopole field in the ‘‘singular’’ gauge,
Eq. (42), exhibits the well-known Dirac string singularity
along the negative z direction, Eq. (44). This behavior
matches precisely that of the gauge field along the vortex
core, Eq. (23), confirming further the relative positioning
of the vortex with respect to the monopole. The Dirac
string singularity, Eqs. (23) and (24), is entirely harmless
as it appears multiplied by the squark field in the squark
kinetic term jD�qj2; the latter drops to zero along the

vortex core. The color magnetic field is smooth every-
where, as noted already.
Note that the choice of the particular gauge (the so-

called singular gauge) needed for matching the Dirac
singularity of the gauge field, is precisely the one which
guarantees the smooth field configuration everywhere. In
particular, in this gauge no fields ‘‘wind’’ around either the
vortex axis or the monopoles. The scalar fields approach
their vacuum expectation value everywhere outside the
complex, as in Eqs. (21) and (41). See Fig. 2.
In order to describe the field configurations interpolating

the vortex and monopole, fq; A;�gMV, we make an ansatz
of the form

q ¼ q1ð	; zÞ
q2ð	; zÞ1N�1

 !
;

A	 ¼ cos�

r
ðS2 cos’� S1 sin’Þ�ð	; zÞ;

A’ ¼ 1

	

�
fð	; zÞ
N

1

1N

�N

0
BB@

1
CCAþ fNAð	; zÞ

N

N � 1

�1N�1

0

0
BB@

1
CCA� sin�ðS1 cos’þ S2 sin’Þ�ð	; zÞ

�

Az ¼ � sin�

r
ðS2 cos’� S1 sin’Þ�ð	; zÞ;

� ¼
�
v1 þ �ð	; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN þ 1Þp � 1

1N

�N

0
BB@

1
CCAþ �NAð	; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN � 1Þp
N � 1

�1N�1

0

0
BB@

1
CCA:

(48)

The profile functions fq1; q2; f; fNA;�; �; �NAg, with
appropriate boundary conditions, can be determined
numerically as we will do in the following section.

B. Numerical solution

In order to study these configurations numerically, we
note that if the SUðNÞ and Uð1Þ coupling constants are set

to be equal our monopole-vortex complex is exactly the
monopole-vortex complex generated by the symmetry
breaking

SUð2Þ!v1
Uð1Þ!v2

1; v1 � v2; (49)

embedded in a larger color-flavor space. It is therefore
sufficient for our purpose here to consider the minimal
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FIG. 1 (color online). The behavior of the magnetic field in the soliton complex near the monopole region. In (a) is shown a
streamline plot while the intensity of the magnetic field is also shown in (b) by means of the color scheme. For negative values of the
cylindrically radial coordinate 	, the plot is simply a mirror in order to illustrate a cross section of the system.

FIG. 2 (color online). The behavior of the four profile functions for the gauge and scalar fields of Eq. (57). Note that the gauge and
squark fields approach quickly the familiar vortex behavior: the gauge field is strongest along the vortex core where the squark field
drops to zero. Note also that between the figures for ‘ð	; zÞ and for qð	; zÞ, the z axis is inverted in order to exhibit better their
nontrivial ð	; zÞ dependence. Away from the monopole-vortex complex all scalar fields reach quickly and uniformly their vacuum
expectation values. (a) gauge profile function fð	; zÞ), (b) gauge profile function ‘ð	; zÞ, (c) scalar profile function 1ffiffi

2
p sð	; zÞ, and (d)

squark profile function qð	; zÞ.

MATTIA CIPRIANI et al. PHYSICAL REVIEW D 84, 045024 (2011)

045024-8



case, Eq. (49). The generators of the SUð2Þ group are ta ¼
�a=2, where �a are the Pauli matrices and the scalar field
has the form

�a ¼ � ffiffiffi
2

p
m�a3 þ �a;

where �a is the fluctuation around the VEV. The
Lagrangian is then

L ¼ � 1

4g2
ðFa

��Þ2 þ 1

g2
jD��

aj2 þ jD�q
ij2

� g2

8
j � �a3 þ ��a þ qyi �aqij2

�
��������
�
m12 �m�3 þ 1ffiffiffi

2
p �a�a

�
qi
��������

2

; (50)

where we have set

 � 4�m; � � 2
ffiffiffi
2

p
�;

and our convention for the covariant derivatives and field
strength is

Fa
�� ¼ @�A

a
� � @�A

a
� � 
abcAb

�A
c
�; (51)

D �q ¼ @�qþ i

2
Aa
��

aq; (52)

D ��
a ¼ @��

a � 
abcAb
��

c: (53)

After the symmetry breaking at v1, the second color com-
ponent of the squark field becomes massive, so we can set

q ¼ q1ðr; zÞ
0

� �
:

The equations of motion for the system are

D�F
��a ¼ 
abc½�ybD��c þ�bðD��cÞy�

þ ig2

2
½qyi �aD�qi � ðD�qiÞy�aqi�; (54)

D�D��
a¼��g4

8
ð��a3þ��aþqyi �aqiÞ

� g2ffiffiffi
2

p qyi �a
�
m12�m�3þ 1ffiffiffi

2
p �b�b

�
qi; (55)

D�D�q ¼ �g2

4
ð��a3 þ �Reð�aÞ þ Trðqy�aqÞÞð�aqÞ

�
��������m12 �m�3 þ 1ffiffiffi

2
p �a�a

��������
2

q; (56)

where we have defined jXj2 ¼ XyX. In order to solve these
equations numerically, we introduce an ansatz adequate for
the SUð2Þ theory, which is somewhat simpler than Eq. (48),

A	¼ z

	2þz2
ð�2 cos’��1 sin’Þfð	;zÞ�1

2
;

Az¼ 	

	2þz2
ð�1 sin’��2 cos’Þfð	;zÞ�1

2
;

A’¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2þz2

p ð�1 cos’þ�2 sin’Þ

�fð	;zÞ�1

2
þ�3

1

2	
‘ð	;zÞ;

�a¼� ffiffiffi
2

p
m�a3þ�a; �a¼�a3sð	;zÞ; q¼ q1ðr;zÞ

0

 !
:

(57)

Substituting this ansatz into the equations of motion, writ-
ten extensively in Eqs. (B1)–(B3), one obtains the coupled
differential equations (B5a)–(B5g). A priori this system of
equations seems to be an overdetermined system with
respect to the function fð	; zÞ. However as we have shown
in the previous sections, the chosen ansatz is well suited for
both the monopole and the vortex, and hence we have
assumed the existence of a solution to all the equations,
solving only the system (B5d)–(B5g). After the solution
was obtained, we plugged it into the constraint equations
(B6a) and (B6b) as well as the remaining second-order
equation (B5b) and indeed verified that the solution sat-
isfies all equations.
In solving the system of these differential equations the

relaxation method is very useful. We introduce a fictitious
time dependence into each of the profile functions and then
write all the equations as

Ei ¼ @hi
@t

; (58)

where Ei denotes the equation of motion for the profile
function hi, which is obeyed when Ei ¼ 0. It is important
that the equation Ei is of second order in spatial derivatives
and that the sign of the Laplace operator is positive: Ei ¼
@2jhi þ 	 	 	 with j summing over spatial dimensions. In this

way the equation with the fictitious time dependence re-
sembles (a modified form of) the well-known heat equa-
tion, and when a stationary solution has been found, i.e.
@thi ¼ 0, the equation of motion for hi has been obtained.
First we need to impose some reasonable initial condi-

tions (i.e. a guess of the right solution) for the profile
functions at t ¼ 0 and let the system evolve till a static
solution is found. This was done by patching together three
different solutions to the equations of motion. The first
solution is the non-BPS solution of the vortex (of infinite
length), which is easily obtained numerically; see Fig. 3
and also [7]. The second solution needed is for the mono-
pole and here it turned out to be most efficient to simply
use the analytical solution of the BPS-’t Hooft-Polyakov
monopole. The third solution is simply the Higgs vacuum.
Now patching the solutions together by using a piecewise
function in the z, 	 coordinates, we obtained an initial
‘‘solution’’; see Fig. 4.
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The final ingredient in solving the vortex-monopole
complex is probably the most crucial, namely, the bound-
ary conditions. Physical arguments tell us that the complex
is not really semiclassically stable as it stands. Hence,
one could worry that the relaxation method would shrink
the system to merely the Higgs vacuum. In order to circum-
vent that, we implemented boundary conditions for the
system very similarly to what we did for Abelian soliton
junctions in Ref. [21], viz. fixing the monopole positions
and hence the string length. In this way, the complex is a
minimum of the energy—given the condition we impose.
In Fig. 4 we have also shown the boundary conditions
(BCs). The three sides far from the complex all have
Dirichlet BCs, i.e. the Higgs vacuum. At the vortex string
in the middle of the z axis also Dirichlet BCs are imposed,
namely, the non-BPS vortex solution described above is
used as the boundary condition—this is what fixes the
string length. For the remaining pieces on the z axis, we
have imposed Neumann BCs due to cylindrical symmetry
of the problem.

The numerical calculation5 gave the results shown in
Fig. 2 for the profile functions fð	; zÞ, ‘ð	; zÞ, sð	; zÞ, and
qð	; zÞ. Note that both scalar fields (the adjoint and
fundamental) approach their VEVs smoothly far from the
monopole-vortex complex in all directions. The monopole-
vortex complex is immersed in the Higgs vacuum. Far from
the monopole centers, the fields reduce to those of the
(non-BPS) vortex, Fig. 3, whereas they reduce to the
’t Hooft-Polyakov monopole solution in the small spheri-
cal region near the monopole center.
These profile functions give rise to the magnetic field

shown in Figs. 1 and 5; as expected the magnetic flux
coming out of the monopole (isotropically near the mono-
pole center and in the direction of S3) is carried away in a
vortex bundle located on its left, and gets reabsorbed by the
antimonopole sitting at the far left extreme of the vortex.

C. Macroscopic picture and duality

Recently the monopole-vortex complex in the simplest
gauge symmetry breaking (49),

SUð2Þ!v1
Uð1Þ!v2

1; v1 � v2; (59)

has been discussed [22,23] in the London limit; in this limit
the monopole is a point and the vortex a line, without
width. In this approximation it is possible to perform the
electromagnetic duality transformation explicitly, and the
resulting dual theory can be solved for the electric and
magnetic fields explicitly, in the presence of the monopole-
vortex complex. In the presence of a static heavy monopole
of unit charge sitting at r ¼ 0, and with a semi-infinite
vortex extending on its left, the magnetic (and electric if
� � 0) fields are given by [23]

Ei ¼ F0i ¼ �g2

8�2
BðmonÞ
i ;

Bi ¼ 1

2

ijkFjk ¼ BðmonÞ

i þ BðvorÞ�3
i ;

(60)

where

BðmonÞ
i ¼ 1

g
@iGðrÞ;

BðvorÞ ¼ m2

g

Z 0

�1
dz0Gðx; y; z� z0Þ;

(61)

and GðrÞ is the Green function, having the Yukawa form

GðrÞ ¼ 4�

��þm2
�3ðrÞ ¼ e�mr

r
; m � gv2ffiffiffi

2
p : (62)

Such a construction, in the case of a more general symme-
try breaking

CC

H
ig

gs
 v

ac
uu

m

Higgs vacuum

H
iggs vacuum

non−BPS vortex solution NN

B B

A

FIG. 4. The figure shows how the initial conditions are made
by patching approximate solutions together. A denotes the non-
BPS vortex solution, B the BPS monopole solution, and C is the
Higgs vacuum. The boundary conditions are also shown. The
thick line denotes the Higgs vacuum, the dashed denotes the
vortex solution, while the dotted line denotes Neumann bound-
ary conditions.

0 5 10 15

0.5

1.0

1.5

2.0

FIG. 3 (color online). The profile functions in the transverse
plane in the vortex region (far from the monopole). The solid line
denotes the adjoint scalar field 1ffiffi

2
p sð	Þ, the dash-dotted line

denotes the squark field qð	Þ, and finally dashed line denotes
the gauge field function ‘ð	Þ.

5The numerical analysis has been done with the MATHEMATICA

package.

MATTIA CIPRIANI et al. PHYSICAL REVIEW D 84, 045024 (2011)

045024-10



SUðN þ 1Þ!v1
SUðNÞ �Uð1Þ!v2

1;

(N � 2) and in the presence of a color-flavor diagonal
symmetry, is not known; but as noted above, in the ap-
proximation g1 ¼ gN the results, Eqs. (60)–(62), represent
the color-magnetic or electric flux in the S3 direction
[Eq. (30)].

D. Orientational zero modes

Let us now return to the symmetry breaking of interest
here,

SUðNþ1Þcolor�SUðNÞflavor!v1
UðNÞcolor�SUðNÞflavor

!v2
SUðNÞCþF; v1�v2; (63)

and consider the monopole-vortex complex (48). The
color-flavor diagonal SUðNÞCþF symmetry (16) is an exact
symmetry of our SUðN þ 1Þ system in the Higgs phase: it
is not an approximate symmetry of the low-energy
SUðNÞ �Uð1Þ gauge system. On the other hand, the
monopole-vortex complex (48) is not invariant under the
full SUðNÞCþF symmetry: it transforms as

qU ¼ U

1

 !
qU�1; AU

i ¼ U

1

 !
Ai

U�1

1

 !
;

i ¼ 	;�; �U ¼ U

1

 !
�

U�1

1

 !
; (64)

where U 2 SUðNÞCþF. Of course, not all SUðNÞCþF

elements transform the configuration nontrivially. The
complex (48) is obviously invariant under the SUðN � 1Þ
subgroup generated by

0
TA

0

0
@

1
A; A ¼ 1; 2; . . . ; ðN � 1Þ2 � 1: (65)

The Uð1Þ subgroup of SUðNÞCþF, generated by

Tð0Þ ¼ N � 1
�1N�1

� �
(66)

acts in a subtler way on the monopole-vortex complex. The
pure vortex configuration (18) of the low-energy theory is
clearly invariant under such a Uð1Þ transformation, but the
monopole-vortex complex is not obviously invariant.
The problem is that the complex (48) lives in a larger,

SUðN þ 1Þ gauge space, i.e. it has necessarily nonvanishing
color components in the (N þ 1)-th row and/or (N þ 1)-th
column. However, decomposing Eq. (66) as

Tð0Þ

0

 !
¼ Tð1Þ þ ðN � 1ÞS3;

Tð1Þ ¼
N�1
2

�1N�1

N�1
2

0
BB@

1
CCA; (67)

in terms of two ðN þ 1Þ � ðN þ 1Þ matrices, one sees that

fq; A;�gMV is invariant under Tð1Þ transformations, whereas
they transform under ei�S3 simply as

fq; A;�gMV ! fq; A;�gMVjfS1 ! S1 cos�� S2 sin�;

S2 ! S2 cos�þ S1 sin�g: (68)

This can be easily seen to be equivalent to the shift of the
azimuthal angle

’ ! ’� �; (69)

in other words, it is equivalent to (i.e. can be undone by) a
spatial rotation of angle � around the monopole-vortex
axis, ẑ.

FIG. 5 (color online). The magnetic field in the complete monopole-vortex-antimonopole soliton complex. For negative values of the
cylindrically radial coordinate 	, the plot is simply a mirror in order to illustrate a cross section of the system.
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To summarize, nontrivial zero modes (64) of the com-
plex are generated by

0 by
b 0N�1

� �
; (70)

where the complex (N � 1)-component vector b repre-
sents the local inhomogeneous coordinates of

CPN�1 
 SUðNÞ
SUðN � 1Þ �Uð1Þ ; (71)

just as what was found by studying exclusively the low-
energy vortex solutions (26)–(28).

E. Demise and resurrection of the SUðNÞ symmetry

In the small region around the monopole, (29), the tiny
VEV v2 may be effectively set to zero; as the squark fields
are then trivial (q � 0) the transformations (64) look lo-
cally as global color transformations of the monopole
solution.

This shows that the isomorphism between the vortex
moduli [2] and the monopole moduli6—both found to be
CPN�1—is certainly not a coincidence. Nevertheless, at-
tempts to understand the moduli space of the monopoles
[representing �2ðSUð2Þ=Uð1ÞÞ] as something arising from
its various possible embeddings in the larger color space
G=H ¼ SUðN þ 1Þ=SUðNÞ �Uð1Þ, face inevitably the
known difficulties:

(i) Topological obstruction [24];
(ii) Non-normalizable gauge zero modes [25];
(iii) Nonlocal nature of Goddard-Nuyts-Olive (GNO)

duality [26].

The first two issues have been discussed many times in the
literature, and need not be reviewed here (see however
below for observations concerning these points). It is
perhaps worthwhile however to recall the third point,
which is apparently the simplest of the three and,
at the same time, the deepest. The GNO quantization
condition [26]

2� 	 � 2 Z; (72)

where � are nonvanishing root vectors ofH, and where the
asymptotic gauge field is written as (in an appropriate
gauge)

Fij ¼ 
ijkBk ¼ 
ijk
rk
r3

ð� 	HÞ; � ¼ �; (73)

in terms of the Cartan subalgebra generators H of H, tells
us that the set of degenerate monopoles are labeled by the
dual weight vector �. The duality implied by such a
formula is clearly a natural generalization of the electro-
magnetic duality. The transformations of the monopole
under the dual, magnetic group correspond to some
nonlocal field transformations in the original
description.7Simply, it is not the right question to ask
how the monopole solutions associated with the gauge
symmetry breaking G ! H transform under the ‘‘unbro-
ken’’ global color subgroup H.
Let us return to the symmetry breaking (63)

SUðNþ1Þcolor�SUðNÞflavor!v1
UðNÞcolor�SUðNÞflavor

!v2
SUðNÞCþF; v1�v2: (75)

The ‘‘magnetic monopole’’ solution arising from the
breaking at the scale v1 cannot be rotated without spending
energy under the SUðNÞcolor: the latter is broken by the
smaller squark VEV, v2, Eq. (14). It costs energy to vary
the embedding of the SUð2Þ subgroup Si within the
SUðN þ 1Þcolor [Eq. (30)], as the squark fields have a
preferred color-flavor locked direction [Eq. (22)]. Forcing
so (rotating the SUð2Þcolor embedding) would distort
the complex and yield a higher-energy configuration
(an excited state). In other words, the subtle issues of the
non-normalizable zero modes and the topological obstruc-
tion for defining the global color (i) and (ii), have been
converted into an explicit breaking of the symmetry.
However, the system has an exact color-flavor diagonal

SUðNÞCþF symmetry. Individual monopole-vortex com-
plex configurations break it. They live in the continuous
moduli of the solution space

SUðNÞCþF=UðN � 1Þ 
 CPN�1:

The simultaneous color-flavor SUðNÞCþF transformations
acting on the original fields keep the energy unchanged;
they induce movements on CPN�1. The complex trans-
forms as in the fundamental multiplet N of an SUðNÞ.
This then represents a new, exact non-Abelian symmetry

for the monopole: the latter transforms according to the
fundamental representation of an SUðNÞ group.

6Here we neglect the Uð1Þ zero modes related to the electric
charge of the monopole; in the Higgs phase they survive only in
the vicinity of the monopole center. See also Ref. [23].

7The fact that in most papers in which these issues are
discussed the gauge group is taken to be SUðNÞ appears to
have helped to obscure this point, as the dual of SUðNÞ=ZN is
again SUðNÞ. It is however sufficient to generalize the discus-
sion, for instance, to the case of a gauge symmetry breaking

SOð2N þ 2Þ
Z2

! SOð2NÞ �Uð1Þ
Z2

; (74)

in this case the monopole transforms according to the dual of
SOð2NÞ=Z2: under Spinð2NÞ. The monopoles are predicted to
transform according to one of the 2N�1 dimensional spinor
representations [13].
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The fluctuations of the associated zero modes propa-
gate only along the vortex; this makes sense because,
according to the standard lore, the dual gauge group is in
a confinement phase, the original local gauge group being
in the Higgs phase. The monopoles are confined by the
color-magnetic vortex, which in the dual picture represents
the color-electric confining string.

IV. CONCLUSION

In this paper we elaborated further on some earlier analy-
ses [4,5] of the monopole-vortex complex soliton, arising in
systems with hierarchically broken gauge symmetries. In a
vacuum with an exact unbroken color-flavor symmetry
(color-flavor locked phase), such a complex acquires orien-
tational zero modes, analogous to those extensively studied
recently in the context of non-Abelian vortices [3–17]. The
field configurations are studied both qualitatively and nu-
merically, verifying that they constitute a smooth ‘‘con-
strained’’ minimum of the energy, with the monopole and
antimonopole positions kept fixed. Thewhole complex pos-
sesses the orientational degeneracy (arising from the exact
color-flavor symmetry): it implies a new, exact continuous
symmetry for the monopole, confined by the vortex. This,
we argue, is the semiclassical origin of the dual gauge
symmetry. Their fluctuations propagate in the monopole-
vortex-antimonopole worldsheet strip, the monopole and
antimonopole acting as the source or sink for the massless
(Nambu-Goldstone-like) excitations, propagating along the
vortex in between. Extending the direct derivation of the
two-dimensional vortex worldsheet sigma models on
CPN�1 [2,9,10] (or in Hermitian symmetric spaces,
SOð2NÞ=UðNÞ, USpð2NÞ=UðNÞ, etc., depending on the
model considered [13]) to the case of monopole-vortex
complex is a somewhat nontrivial task, presently under
investigation. Our microscopic study here should serve as
the basic starting point for such an analysis.
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Fondation Hugot for the hospitality and support during the
revision of this paper. The authors thank J. Evslin and
T. Fujimori for discussions.

APPENDIX A: BPS MONOPOLE
AND VORTEX SOLUTIONS

Here we will briefly check that the BPS equations for the
monopole and the vortex are compatible with our second-
order equations of motion.

1. Monopole

Let us start with the monopole; the BPS equation reads

Fij ¼ 
ijkDk�; (A1)

while the covariant derivative of the latter can be written
as

D iFij ¼ 
ijkDiDk� ¼ 1

2

ijk½Di;Dk��

¼ i

2

ijk½Fik; �� ¼ i½�;Dj��; (A2)

where we have used the BPS equation in the last equality.
This equation agrees with Eq. (54) in the BPS limit,
with �a real (taking into account a factor of 1=2 for the
canonical normalization of the kinetic term) and setting
q ¼ 0.
From the BPS equation (A1) we obtain for the adjoint

scalar

D kDk� ¼ 1

2

ijkDkFij ¼ 0; (A3)

due to the Bianchi identity. This equation agrees with
Eq. (55) in the BPS limit, taking � ¼ 0 and q ¼ 0.

2. Vortex

The vortex BPS equations are for SUðNÞ �Uð1Þ

F0
ij � 
ijg

2
0½Trðqyt0qÞ � � ¼ 0; (A4)

Fa
ij � 
ijg

2
NTrðqytaqÞ ¼ 0; (A5)

D iq� i
ijDjq ¼ 0; (A6)

where the upper (lower) sign gives a BPS vortex (antivor-
tex) and a ¼ 1; . . . ; N2 � 1 is the SUðNÞ adjoint index
(in the N ¼ 1 case only the first of the gauge equations
appears). We consider here a symmetry breaking pattern
like SUðN þ 1Þ ! SUðNÞ �Uð1Þ ! 1 and the BPS equa-
tions come about at low energy in this system in the limit of

� ! 0 while  ¼ � ffiffiffi
2

p
�h�0i is kept constant. We will

check this explicitly below.
General case: SUðN þ 1Þ ! SUðNÞ �Uð1Þ ! 1. The

Lagrangian of the SUðN þ 1Þ system is

L ¼ � 1

4g2
ðFA

��Þ2 þ 1

g2
jD��

Aj2 þ jD�q
ij2 � g2j��A

þ 1ffiffiffi
2

p qyi tAqij2 � j½m1Nþ1 þ
ffiffiffi
2

p
��qij2; (A7)

which leads to the equations of motion

D �F
��A ¼ fABC½�ByD��C þ�BðD��CÞy�

þ ig2½qyi tAD�qi � ðD�qiÞytAqi�; (A8)
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D �D��
A ¼ ��g4ffiffiffi

2
p ð ffiffiffi

2
p

��A þ qyi tAqiÞ

� ffiffiffi
2

p
g2qyi tAðm1Nþ1 þ

ffiffiffi
2

p
�Þqi; (A9)

D�D�q ¼ �g2ð ffiffiffi
2

p
�Reð�AÞ þ TrðqytAqÞÞðtAqÞ

� jm1Nþ1 þ
ffiffiffi
2

p
�j2q; (A10)

where A ¼ 1; . . . ; ðN þ 1Þ2 � 1 is the SUðN þ 1Þ adjoint
index and jXj2 ¼ XyX. Let us now truncate the theory
to the low-energy SUðNÞ �Uð1Þ sector, i.e. we will inte-
grate out the massive components of the squarks q and also
the adjoint and gauge fields corresponding to broken gen-
erators, as they will have a mass of the order of jv1j. The
vortex solution requires ��, � ¼ 0; 1; . . . ; N2 � 1 (which
is the adjoint field written in terms of the SUðNÞ �Uð1Þ
group with corresponding index �) to be fixed at the VEV
h��i ¼ ��0�0. As already mentioned the BPS limit cor-
responds to taking � ! 0, with the product ��0 kept

finite. We have
ffiffiffi
2

p h��it� þm ¼ 0. Hence, in this limit
the second equation is trivially satisfied.

For the first equation we have

D iF
�
ij ¼ �ig2Tr½qyt�Djq� ðDjqÞyt�q�: (A11)

We can combine the Eqs. (A4) and (A5) by setting the two
coupling constants to be equal, g0 ¼ gN ¼ g (and choos-
ing the upper sign), which yields

Fij � 
ij
g2

2
½qqy � 2t0� ¼ 0: (A12)

Acting with the covariant derivative yields (note that it acts
in the adjoint way on both terms)

D iFij ¼ 
ij
g2

2
½ðDiqÞqy þ qDiq

y�

¼ � ig2

2
½ðDjqÞqy � qDjq

y�; (A13)

where we have used the BPS equation (A6) in the last
step. Multiplying by t� and taking the trace gives us
Eq. (A11).
The third equation reduces to

D iDiq ¼ g2ðTrðqyt�qÞ � ��0Þðt�qÞ

¼ g2

2
½qqy � 2t0�q; (A14)

with  ¼ � ffiffiffi
2

p
��0. Using the BPS equation (A6) we

obtain

D iDiq ¼ � i

2

ij½Di;Dj�q ¼ F12q: (A15)

Now upon insertion of the field strength (A12) into
the above equation we see that it is exactly that of
Eq. (A14).

APPENDIX B: NUMERICAL ANALYSIS
IN SUð2Þ THEORY

Writing out the equations of motion (54)–(56) explicitly
in terms of the fundamental fields gives the results
below.

1. Gauge fields

@i@iA
ja�@i@

jAia�
abcð2Aib@iA
jcþ@iA

ibAjc�Ab
i @

jAicÞþðAiaAb
i A

jb�AajAb
i A

ibÞ
¼
abc½�cy@j�b�ð@j�cyÞ�b� ffiffiffi

2
p

m�b3ð@j�cþ@j�cyÞ��ð2Aja�by�b�Ajbð�a�byþ�b�ayÞÞ

þ ffiffiffi
2

p
mð½2�c3�ba��b3�ca��a3�bc�Ajbð�cþ�cyÞÞ�4m2ðAja��a3Aj3Þþ ig2

2
½�a3ðqy@jq�ð@jqyÞqÞþ iAjaqyq�:

(B1)

2. Scalar fields

@i@i�
a � 2
abcAib@i�

c � 
abc@iAb
i �

c þ Aa
i A

ib�b � �aAibAb
i �

ffiffiffi
2

p
m½
ab3ð@iAb

i Þ þ AibAib�a3 � Ai3Aia�

¼ ��g4

8
½ð�þ qyqÞ�a3 þ ��a� � g2

2
qyð�ab þ i
ab3Þ�bq: (B2)
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3. Squark fields

@i@iqþ i

2
ð@iA3

i Þqþ iA3
i @

iq� 1

4
AiaAa

i q ¼ �g2

4
ð�þ �Reð�3Þ þ qyqÞq� 1

2
ðj�3j2 þ j�1 þ i�2j2Þq; (B3)

i

2
@iðA1

i þ iA2
i Þqþ iðA1

i þ iA2
i Þ@iq ¼ ��g2

4
ðReð�1Þ þ iReð�2ÞÞq� 1ffiffiffi

2
p ð�1y þ i�2yÞq

þ 1

2
ð�3yð�1 þ i�2Þ � �3ð�1y þ i�2yÞÞq: (B4)

Inserting the ansatz (57) into the equation rewritten in cylindrical coordinates we obtain the system of equations for the
profile functions,

z@z2fþ 	@	@zfþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p
	

½ð1� ‘Þ@	fþ ðf� 1Þ@	‘� �
2	z@	f

	2 þ z2
þ 	2 � z2

	2 þ z2
@zf

¼ � z2

	2

ðf� 1Þð1� ‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p þ g2

2
zðf� 1Þq2 þ zðf� 1Þ3

	2 þ z2
þ zðf� 1Þð1� ‘Þ2

	2
þ 2zðf� 1Þðs� ffiffiffi

2
p

mÞ2; (B5a)

	@2	fþ z@	@zfþ 2z2

	2 þ z2
@	f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p
	

½ðf� 1Þ@z‘þ ð1� ‘Þ@zf� � z

	

�
	2 � z2

	2 þ z2

�
@zf

¼ � zðf� 1Þð1� ‘Þ
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p þ g2

2
	ðf� 1Þq2 þ 	ðf� 1Þ3

	2 þ z2
þ 1

	
ðf� 1Þð1� ‘Þ2 þ 2	ðf� 1Þð ffiffiffi

2
p

m� sÞ2; (B5b)

	@	@zf� z@2	fþ @zf� z

	
@	fþ 2zðf� 1Þ@z‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 þ z2
p þ ðf� 1Þð	2 � z2Þ@	‘

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p � zð1� ‘Þ@zfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p þ ð	2 þ 2z2Þð1� ‘Þ@	f
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p
¼ zðf� 1Þð‘� 2Þ‘

	2
; (B5c)

@2	fþ @2zfþ 2
zðf� 1Þ@	‘
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p � zð1� ‘Þ@	f
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p � ð	2 � z2Þ@	f
	ð	2 þ z2Þ � 2ðf� 1Þ@z‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 þ z2
p þ ð1� ‘Þ@zfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 þ z2
p � 2z@zf

	2 þ z2

¼ g2

2
ðf� 1Þq2 þ 2ðs� ffiffiffi

2
p

mÞ2ðf� 1Þ � zðf� 1Þð1� ‘Þ
	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

p þ ðf� 1Þ
	2

þ ðf� 1Þ3
	2 þ z2

; (B5d)

@2	‘þ @2z‘� 1

	
@	‘þ

3	ðf� 1Þð	@zf� z@	fÞ
ð	2 þ z2Þ3=2 ¼ zðf� 1Þ2

ð	2 þ z2Þ3=2 �
ð1� ‘Þðf� 1Þ2

	2 þ z2
þ g2

2
‘q2; (B5e)

@2	sþ @2zsþ 1

	
@	s ¼ 1

2
g2q2sþ �g4

8
ðq2 � þ �sÞ þ ðs� ffiffiffi

2
p

mÞðf� 1Þ2
	2 þ z2

; (B5f)

@2	qþ @2zqþ 1

	
@	q ¼ 1

2
s2qþ g2

4
ðq2 � þ �sÞqþ ðf� 1Þ2q

2ð	2 þ z2Þ þ
‘2q

4	2
: (B5g)

Note that plugging Eq. (B5c) into Eq. (B5a) yields Eq. (B5d).

4. Constraint equations

	@zf� z@	fþ 2ðf� 1Þ
s� ffiffiffi

2
p

m
½	@zs� z@	s� ¼ 0; (B6a)

2ðf� 1Þ½	@zq� z@	q� þ q½	@zf� z@	f� þ 1

	
ðf� 1Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ z2

q
� zÞq ¼ 0: (B6b)
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