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It was pointed out some time ago that there can be two variations in which the divergences of a quantum

field theory can be tamed using the ideas presented by Lee and Wick. In one variation the Lee-Wick

partners of the normal fields live in an indefinite metric Hilbert space but have positive energy and in the

other variation the Lee-Wick partners can live in a normal Hilbert space but carry negative energy.

Quantum mechanically the two variations mainly differ in the way the fields are quantized. In this article

the second variation of Lee and Wick’s idea is discussed. Using statistical mechanical methods the energy

density, pressure and entropy density of the negative energy Lee-Wick fields have been calculated. The

results exactly match with the thermodynamic results of the conventional, positive energy Lee-Wick

fields. The result sheds some light on the second variation of Lee-Wick’s idea. The result seems to say that

the thermodynamics of the theories do not care about the way they are quantized.
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I. INTRODUCTION

The Lee-Wick field theories [1,2] originated in an at-
tempt to address the problem related with the infinities in
quantum field theories. Recently some authors have tried to
implement Lee-Wick’s idea in a higher-derivative version
of a quantum field theory [3,4]. All these theories assumed
the existence of some partners of the standard model
particles. The main ideas of the Lee-Wick standard model
in Ref. [3] have been extended in Ref. [5] where the authors
use two Lee-Wick partners for each standard model field:
one with negative and the other with positive norm. Later,
this idea has been used in Ref. [6] to improve gauge
coupling unification without introducing additional fields
in the higher-derivative theory. The Higgs sector of the
Lee-Wick standard model has also been constrained in
Ref. [7].

There has been at least one attempt [8] to use the
concepts of these Lee-Wick constructions in cosmology
where the authors were able to show the bouncing nature of
the universe whose energy is dominated by the energies of
a scalar field and its Lee-Wick partner. In Ref. [9] the
authors tried to formulate a possible thermodynamic theory
of particles which includes the Lee-Wick partners using a
method of statistical field theory previously formulated by
Dashen, Ma and Bernstein in Ref. [10].

The present article mainly focusses on a variant of the
original Lee-Wick idea,1 which was concerned about the
taming of the divergences in a quantum field theory. In

1984 Boulware and Gross [12] tried to show that the
original proposal of Lee andWick was related to a complex
implementation of the Pauli-Villars regularization scheme
[13]. The complexity of the idea arises from the fact that
the Pauli-Villars regulator fields in the Lee-Wick theories
are not just ad hoc regulator fields, they also have dynam-
ics. To implement the Pauli-Villars idea Lee and Wick
introduced massive partner fields for all the normal fields
in the theory. The scheme becomes involved when one tries
to quantize the partner fields. It turns out that the partner
fields can be quantized in twoways. In oneway the norm of
the states of the partner fields on the underlying Hilbert
space remains definite and in the other case the norm of the
states of the partner fields on the Hilbert space becomes
indefinite. In the former case the energy of the Lee-Wick
partner fields turns out to be negative and in the later case
the energy of the Lee-Wick partner fields remain positive.
Both the options, as stated above, have their merits and

demerits. In the first option, where the partner field states
have positive definite norms but negative energy, the theory
remains quantum mechanically understandable but does
not have a proper ground state. There are run-away solu-
tions. In the other option, where the Lee-Wick partner field
states live on an indefinite metric Hilbert space but carry
positive energy, there are zero-norm states which can grow
indefinitely. This option also gives rise to run-away solu-
tions. Historically Lee andWick preferred to work with the
theory defined on an indefinite metric. The difficulties
of the run-away solutions were addressed by applying
future boundary conditions which again made the theory
noncausal.
The present article deals with the option which Lee and

Wick discarded, a quantum field theory of Lee-Wick fields
whose states do live on a definite metric Hilbert space but
has negative energy. The motivation for such an unconven-
tional work comes from a very interesting result related to
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the thermodynamics of the standard Lee-Wick theory as
given in Ref. [9]. It turns out that the thermodynamics of
the indefinite metric, positive energy Lee-Wick partners is
exactly the same as definite metric but negative energy
Lee-Wick fields. This similarity of the thermodynamics of
the two different scenarios gives us a glimpse of the path
which Lee and Wick did not take historically.

There are a plethora of problems related with the option
which is presented in this article, the most important of
them being that the theory is energetically unstable.
Presently we do not give all the pathological properties
of the alternative Lee-Wick prescription, nor do we know
the cures of all the formal (pathological) diseases of the
theory. The formal aspects of the negative energy Lee-
Wick sector remains mostly open for further investigation
in the near future. In spite of all the conceptual difficulties
related to run-away solutions the result presented is too
strong to be taken as a coincidence. Interestingly, the
energy instability of the model plays an important role in
the thermodynamics of the unusual fields and indirectly
affects the results presented in this article which match
surprisingly with the thermodynamics of the positive en-
ergy Lee-Wick fields. Readers who are purely interested in
the formal aspects of the alternative Lee-Wick prescription
can go through Ref. [12] for a more lucid and formal
development of the basic ideas.

The present article is presented in the following manner.
A brief introduction on the unusual regulator fields and
their properties is presented in the next section. Section III
discusses the technique to find out the thermal distribution
function of the regulator fields. In Sec. IV the energy
density, pressure and entropy density of a gas comprising
of elementary particles and their unusual field partners are
calculated using the thermal distribution functions. The
last section (Sec. V) summarizes the important results
obtained in this article.

II. CANONICAL QUANTIZATION OF THE
POSITIVE ENERGYAND NEGATIVE ENERGY

LEE-WICK FIELDS

In the paper written by Grinstein, O’Connell and Wise,
[3] on Lee-Wick standard model, the authors proposed a
higher-derivative field theory as the underlying theory of
nature. The quadratic kinetic terms of the normal field
theories, both bosonic and fermionic, are regained by in-
troducing new degrees of freedom. It turns out that the
Lagrangians of the new fields have wrong signs. In their
work Grinstein, O’Connell and Wise [3] did not give any
prescription for the canonical quantization of the new
fields. In a later work by Fornal, Grinstein and Wise [9]
the authors derived the thermodynamics of the unusual
new degrees of freedom using methods of statistical field
theory. In this section we first canonically quantize these
new partner fields. This exercise will immediately show
that these fields do carry positive energy. In the next step

we give the prescription for obtaining negative energy
fields in the Lee-Wick paradigm.

A. Indefinite metric positive energy case

We do the quantization for the scalar field with the
understanding that the other bosons in the theory do follow
the same quantization rules. If the Lagrangian of the Lee-
Wick partner of an usual scalar field be represented as �,
then according to [3], the noninteractive part of its
Lagrangian is given as

L� ¼ �1
2@��@

��þ 1
2m

2
��

2; (1)

where m� is the mass of the � field. The field � can be

expanded, in the Fourier space, in the same fashion as a
standard scalar field:

�ðxÞ ¼
Z d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ32�ðpÞp ½aðpÞe�ip�x þ �aðpÞeip�x�; (2)

where �ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�

q
is the dispersion relation of the

Lee-Wick partner excitation. The partner field can be
quantized by the following condition:

½�ðt;xÞ; ��ðt; yÞ� ¼ i�3ðx� yÞ; (3)

where �� � �L�=� _� ¼ � _�. The quantization condition

for the partner fields yields the following unusual commu-
tation relation

½aðpÞ; �aðqÞ� ¼ ��3ðp� qÞ; (4)

while the other commutators involving aðpÞ and �aðqÞ are
all zero. The equation above predicts that the field excita-
tions of the partner fields will have indefinite norm in the
Hilbert space. The unusual commutation relation between
the creation and annihilation operators of the � field ex-
citations is related to the negative sign of the canonically
conjugate momentum corresponding to the � field.
If eigenstates of the number operator,

NðpÞ ¼ � �aðpÞaðpÞ; (5)

are defined by the following way

NðpÞjnðpÞi ¼ nðpÞjnðpÞi; (6)

where nðpÞ is a positive integer interpreted as the number
of particles with momentum p then the Hamiltonian of the
field configuration is

H ¼
Z

�ðpÞNðpÞd3p; (7)

where we have dropped the zero-point contribution in the
Hamiltonian. The important point to note is the negative
sign in the definition of the number operator. In this case if
we stick to the conventional definition of the number
operator (the same operator without the negative sign)
then it can be shown that it will have negative eigenvalues.

KAUSHIK BHATTACHARYA AND SURATNA DAS PHYSICAL REVIEW D 84, 045023 (2011)

045023-2



The quantity � �aðpÞaðpÞ has a positive spectrum. This
unconventional behavior of the number operator originates
from the unconventional commutation relation of the cre-
ation and annihilation operators of the field excitations as
given in Eq. (4). The negative sign of the original
Lagrangian of the � field is balanced by the negative sign
of the number operator and consequently the Hamiltonian
of the field turns out to be positive.

For the fermionic case one can take the Lagrangian of
the Lee-Wick partner field to be

L ¼ �c y�0ði6@�mc Þc ; (8)

where mc is the mass of c field excitations.2 The negative

sign of the Lagrangian in Eq. (8) gives the unusual sign in
conjugate momentum. The fermionic field can be ex-
panded in the Fourier basis as

c ðxÞ ¼
Z d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ32�ðpÞp
� X

s¼1;2

½asðpÞusðpÞe�ip�x þ �bsðpÞvsðpÞeip�x�; (9)

where asðpÞ and bsðpÞ are the annihilation operators of the
fermionic and antifermionic excitations of the c field.
Quantizing the fermion field c in the conventional sense

fc ðt;xÞ; �c ðt; yÞg ¼ �3ðx� yÞ; (10)

one gets

a2sðpÞ¼ �a2sðpÞ¼0; fasðpÞ; �as0 ðkÞg¼��s;s0�
3ðp�kÞ: (11)

In the fermionic case one can define the number operator
for the fermions and antifermions exactly in the same way
as given in Eq. (6) and the form of the Hamiltonian will be
similar to that in Eq. (7). In this case also the Lee-Wick
excitations will have positive energy but indefinite norm.
An excellent exposition of the relationship between the
unusual commutation relations of the creation and annihi-
lation operators (of the bosonic/fermionic fields) and the
indefinite metric it induces in the Hilbert space is presented
in the first two appendices of Ref. [2].

In Ref. [9] the authors tried to envisage the Lee-Wick
partners as intermediate resonances. According to them the
normal scalar particles scatter with each other as �ðp1Þ þ
�ðp2Þ ! �ðp0

1Þ þ�ðp0
2Þ through two Lee-Wick reso-

nances. The scattering in reality happens like �ðp1Þ þ
�ðp2Þ ! �ð~p1Þ þ �ð~p2Þ and then �ð~p1Þ þ �ð~p2Þ !
�ðp0

1Þ þ�ðp0
2Þ where �ð~p1Þ and �ð~p2Þ stands for the

Lee-Wick fields. In this formalism the Lee-Wick partners
are unstable resonances, with a negative decay width,
and their existence is ephemeral. Writing the S matrix as
S ¼ 1� iT one can write the T matrix amplitude for
�ðp1Þ þ�ðp2Þ ! �ð~p1Þ þ �ð~p2Þ as

h~p1; ~p2jT ðEÞjp1;p2i ¼ 2��ðE1 þ E2 � �1 � �2Þ
� �3ðp1 þ p2 � ~p1 � ~p2ÞMðEÞ;

(12)

where the energy E ¼ E1 þ E2 and momentum p ¼
p1 þ p2 are such that ðp1 þ p2Þ2 ¼ m2

� which sets the

threshold value for the creation of the Lee-Wick reso-
nances. Here �i stands for the energy of the Lee-Wick
fields and m� is the mass of the Lee-Wick excitations.

The important ingredient in Ref. [9] lies in the prescrip-
tion used for writing MðEÞ:

M ðEÞ ¼ � 1

2

g2

E2 � p2 �m2
� þ im��

; (13)

where g specifies the coupling of the normal fields with
the Lee-Wick fields. The interesting part of the above
prescription lies in the overall minus sign of MðEÞ and
the negative sign in front of the decay width � in the
denominator. The authors of Ref. [9] then utilize a con-
ventional relation between the scattering matrix elements
and the grand partition function of a thermodynamic
system to predict the various thermodynamic parameters.
Thermodynamics of ephemeral resonance fields with
negative decay widths is highly nontrivial but in principle
one can find it out as done in Ref. [9].

B. When the states have positive
definite norm but negative energy

In the present case we will try to find out the thermody-
namics of the negative energy Lee-Wick fields which live
in a normal Hilbert space. To do this one can start from the
same Lagrangian for the real scalars as used in Ref. [3] and
as given in Eq. (1). The field expansion of the � field can be
kept exactly the same as in Eq. (2). To have a definite
metric starting with a negative Lagrangian one has to
quantize the fields with the wrong sign as

½�ðt;xÞ; ��ðt; yÞ� ¼ �i�3ðx� yÞ: (14)

This quantization condition yields the usual commutation
relation between the creation and annihilation operators of
the � field excitations. The � field excitations will now lie
in a normal Hilbert space (i.e. the states having definite
norm). The price one has to pay for a cross over from the
indefinite norm landscape to the positive norm landscape is
the ground state. If we stick to the definition of the number
operator as defined in Eq. (5) then NðpÞ will have negative
eigenvalues. Consequently the Hamiltonian of the field
configuration can still be written as

H ¼
Z

�ðpÞNðpÞd3p;

but unlike the previous case the Hamiltonian will be having
negative eigenvalues. Although this Hamiltonian will have
zero as an eigenvalue, but unlike the indefinite norm case,

2The interested reader can consult Refs. [14,15] related to
fermions leaving in an indefinite metric.
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this eigenvalue is not the least but the maximum of the
eigenspectrum. Consequently the definite norm Lee-Wick
field excitations do not have a proper ground state. If we
interpret Eq. (5), for the indefinite metric case, as the sum
of positive energy excitations then Eq. (5) has to be inter-
preted as a sum of positive energy de-excitations of the
definite metric field.

From a very similar analysis it can be shown that if one
changes the quantization condition for the fermions from
that given in Eq. (10) to

fc ðt;xÞ; �c ðt; yÞg ¼ �i�3ðx� yÞ; (15)

and defines the number operator for the particles asNðpÞ ¼
�aðpÞaðpÞ, which has positive eigenvalues, one gets a
Hamiltonian as

H ¼ �
Z

�ðpÞNðpÞd3p: (16)

The negative sign in the Hamiltonian arises because the
Lagrangian of the fermionic field as given in Eq. (8) carries
a negative sign. Similarly the antifermions also carry nega-
tive energy. In this article we are following the convention
of Lee and Wick as given in the first appendix in Ref. [2].
In their convention the fermionic algebra can be set by a set
of two anticommutation relations (one for the positive
definite norm, the other for the indefinite norm) for the
creation and annihilation operators of the fermions and
correspondingly there will be two expressions of the num-
ber operator. According to Lee and Wick a fermionic
system can be quantized by the following set of rules:

a2sðpÞ ¼ �a2sðpÞ ¼ 0;

fasðpÞ; �as0 ðkÞg ¼ ��s;s0�
3ðp� kÞ;

NðpÞ ¼ � �asðpÞasðpÞ:
(17)

When dealing with the indefinite metric theory we chose
the minus sign in the anticommutator and the minus sign in
the number operator. On the other hand when we are
dealing with fermion fields whose states live in a normal
Hilbert space we choose the positive sign of the anticom-
mutator and the positive signed number operator.

III. THERMAL DISTRIBUTION FUNCTIONS
OF THE REGULATOR FIELDS

If some one assumes the existence of such exotic nega-
tive energy Lee-Wick fields, may be during the earliest
phases of the universe, then one can calculate the thermo-
dynamics of the negative energy Lee-Wick fields. The
calculation of the thermodynamics of the negative energy
fields starts with the prediction of a thermal distribution
function of such fields. In this section the thermal distri-
bution function of both the bosonic and the fermionic Lee-
Wick partners are calculated.

For the bosonic excitations of the negative energy Lee-
Wick fields we know that the number operator and

Hamiltonian has the form as given in Eq. (5) and (7).
In the present case the Hamiltonian of the fields as given
in Eq. (7) has negative eigenvalues because the fields are
assumed to be quantized with the wrong sign as in Eq. (14).
Because of the presence of on-shell excitations the thermal
vacuum becomes j�i � jnðp1Þ; nðp2Þ; � � �i where nðp1Þ is
the number of excitations carrying momentum p1. The
action of the number operator on such a vacuum is

NðpÞj�i ¼ nðpÞj�i: (18)

As the value of nðpÞ actually turns out to be negative for the
kind of Lee-Wick theory we are considering so in reality
jnðpÞj gives the number of particles with momentum p and
energy �ðpÞ which are missing from the thermal vacuum.
In this analysis we will consider a noninteracting real
scalar field for which the chemical potential � ¼ 0. In
the present case with a Hamiltonian of the form as given
in Eq. (7), where the number operator has negative eigen-
values, the single particle partition function will be,

zBLW ¼ Tre��H ¼ X1
jnðpÞj¼0

e�jnðpÞj�ðpÞ; (19)

where � ¼ 1
T . From the last equation it is seen that the

series representing the single particle partition function for
the Lee-Wick partner of a standard model boson does not
converge for �> 0. Consequently we regularize the last
expression by cutting off the summation for a finite value
of nðpÞ as:

zBLW ¼ XM�1

jnðpÞj¼0

e�jnðpÞj�ðpÞ ¼ 1� e��ðpÞM

1� e�"ðpÞ
; (20)

where M is a dimensionless cutoff which can be made
indefinitely big at the end of the calculation.
Next we calculate the thermal distribution function of

the field excitations from the expression of the single cell
partition function of the field excitations as given in
Eq. (20). In conventional statistical mechanics we can
find the single cell distribution function via

fðpÞ ¼ 1

�

�
@ lnz

@�

�
V;�

; (21)

where � is an auxiliary chemical potential whose exact
nature is not important for our purpose. In presence of an
auxiliary chemical potential the single particle partition
function can be written as

zBLW ¼ XM�1

jnðpÞj¼0

e�jnðpÞjf�ðpÞ��g ¼ 1� e�f�ðpÞ��gM

1� e�f�ðpÞ��g : (22)

Applying conventional methods, the distribution function
can also be written as

fBðpÞ ¼ 1

�

�
@ lnzBLW
@�

�
V;�

; (23)
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which comes out to be,

fBðpÞ ¼ � e�f�ðpÞ��g

1� e�f�ðpÞ��g þM
e�f�ðpÞ��gM

1� e�f�ðpÞ��gM : (24)

Now setting the auxiliary chemical potential to be zero we
get the distribution function of the fields as:

fBðpÞ ¼ � 1

e���ðpÞ � 1
þ M

e���ðpÞM � 1
: (25)

This is the distribution function of the fields whose
Lagrangian is as given in Eq. (1). These fields are quan-
tized via Eq. (14). These are not the fields which appear in
the standard model of particle physics. The distribution
function as plotted in Fig. 1 shows that the average exci-
tation per energy level is negative definite. Obviously these
systems describe a physical theory which is nontrivial and
the negative sign of the distribution is only meaningful
when compared with the positive definite distribution of
the normal standard model bosons. In general these kind of
distributions will produce negative energy density and
pressure but once these energy density and pressure is
added with the positive energy density and pressure of
the standard model bosons we get a net positive energy
density and pressure. The important point to notice about
the distributions is that there is no pile up of quantas near
�ðpÞ ¼ 0 as is in the case of the Bose-Einstein distribution.
The reason being that the spectra of the Lee-Wick excita-
tions with negative energy, as given in Eq. (25), has two
infinite spikes as the energy tends to zero and they cancel
each other near the origin.

If we take the Lagrangian of the fermionic fields as given
in Eq. (8) and quantize them via Eq. (15) then the anti-
commutators of the creation and the annihilation operators,
which define the fermionic excitations of the c field
discussed in the last section, is given as

a2sðpÞ¼ �a2sðpÞ¼0; fasðpÞ; �as0 ðkÞg¼�s;s0�
3ðp�kÞ; (26)

where s, s0 may be some internal quantum numbers. We
can proceed in a similar way as done before and calculate
the thermal distribution of these excitations. If we use the
conventional number operator NðpÞ � �asðpÞasðpÞ, which
has positive eigenvalues as 0 and 1, then the Hamiltonian
of a single oscillator is

HðpÞ ¼ � 1

2
�ðpÞ½ �asðpÞasðpÞ � asðpÞ �asðpÞ�

¼ ��ðpÞ
�
NðpÞ � 1

2
�3ð0Þ

�
; (27)

where 1
2 �ðpÞ�3ð0Þ is the zero-point energy. The negative

sign of the Hamiltonian is due to the negative sign of the
Lagrangian of the c field. A similar analysis can be done
for the antifermions also. If we use this oscillator
Hamiltonian to calculate the single particle partition func-
tion there will be no problem related to the convergence of
the series. The single particle partition function for the
anticommuting fields turns out to be

zFLW ¼ X1
nðpÞ¼0

e�nðpÞf�ðpÞ��g ¼ 1þ e�f�ðpÞ��g; (28)

where � is an auxiliary chemical potential. Now applying
the formula in Eq. (23) and setting� ¼ 0 at the end we get
the distribution function for the definite metric Lee-Wick
partners of the standard model fermions as

fFðpÞ ¼ � 1

e���ðpÞ þ 1
: (29)

Unlike the previous case, in the present scenario the dis-
tribution function has no dependence on the dimensionless
regulator M.
The distribution functions of these unusual fermionic

fields at different temperatures are plotted as a function of
energy in Fig. 2. The negative sign of the distribution

FIG. 1. The plot of the distribution function as given in
Eq. (25). The topmost curve is for a normal Bose-Einstein
distribution and the lower two curves correspond for fBðpÞ for
the ultraviolet cutoff M ¼ 100 and 200. The inverse temperature
in all the cases is :01 GeV�1 and the energy �ðpÞ is in GeV.

FIG. 2. The plot of the distribution function as given in
Eq. (29). The topmost curve is for a normal Fermi-Dirac distri-
bution at � ¼ :01 GeV�1 and the lower two curves correspond
for fFðpÞ for � values :01 GeV�1 and :1 GeV�1 and the energy
�ðpÞ is in GeV.
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function signifies that the present field configurations
arises due to a de-excitation or loss of positive energy
particles. The vacuum defined is not stable and there exists
much less energetic states than the vacuum itself. These
kind of fields are unstable. The maximum energy of the
field configurations is zero.

IV. ENERGY DENSITY, PRESSURE AND ENTROPY
DENSITY FROM THE DISTRIBUTION FUNCTION

A. The bosonic case

To calculate the relevant thermodynamic quantities for
the bosonic field from a statistical mechanical point of
view we will employ Eq. (25). The energy density can be
calculated using the following known equation

	 ¼ g

ð2�Þ3
Z

�ðpÞfBð�Þd3

p ¼ g

2�2

Z 1

0
�ðpÞfBð�Þjpj2djpj; (30)

where g stands for any intrinsic degree of freedom of the
particle. For a relativistic excitation �2 ¼ p2 þm2 where
m is the mass of the bosonic excitations. Changing the
integration variable from jpj to � one gets

	 ¼ � g

2�2

Z 1

0

�
�3 �m2

2
�

�
d�

e��� � 1

þ Mg

2�2

Z 1

0

�
�3 �m2

2
�

�
d"

e���M � 1
: (31)

In the above integral it is assumed that jpj � m and to
have a closed integral the lower limit of the integral is
assumed to be zero. In the extreme relativistic limit the
system temperature T � m. Both of the integrals can only
be done when �< 0, and in that case the result of the last
integral is

	 ¼ � g

2�2

�
�4T4

15
�m2�2T2

12

�

þ g

2�2

�
�4T4

15M3
�m2�2T2

12M

�
: (32)

Analytically continuing the above result for �> 0 and
taking M ! 1 we see that for normal temperatures the
energy density for extreme relativistic excitations of the
bosonic fields is of the following form

	 ¼ �g

�
�2T4

30
�m2T2

24

�
: (33)

As expected, the energy density turns out to be negative for
the excitations in this case. The pressure of the bosonic
field excitations can be found out from

p ¼ g

ð2�Þ3
Z jpj2

3�
fBð�Þd3p ¼ g

2�2

Z 1

0

jpj4
3�

fBð"Þdjpj:
(34)

Following similar steps as in the case of the energy density,
it is seen that the pressure of extremely relativistic excita-
tions of the bosonic fields turns out to be

p ¼ �g

�
�2T4

90
�m2T2

24

�
: (35)

The entropy density of the bosonic field is simply given by

s ¼ 	þ p

T
¼ �g

�
2�2T3

45
�m2T

12

�
: (36)

These values of the energy density, pressure and entropy
density exactly match the corresponding values calculated
for the conventional, positive energy Lee-Wick partners. In
[9] the authors were trying to formulate thermodynamics
for a higher-derivative theory. The higher-derivative theory
was converted into standard theory (theory up to a second
derivative) with the introduction of Lee-Wick partners
whose states have indefinite norms. The authors in the
previous work did not quantize the system explicitly but
were working with the form of the propagators of the Lee-
Wick partners.
If we assume that in the early universe for each bosonic

degrees of freedom in the standard model there exists a
corresponding Lee-Wick bosonic degree of freedom whose
field configuration has negative energy then the net energy
density, pressure and entropy density of the early universe
turns out to be

	B ¼ 	SM þ 	 ¼ gm2T2

24
; pB ¼ pSM þ p ¼ gm2T2

24
;

sB ¼ sSM þ s ¼ gm2T

12
; (37)

which are all positive as expected. Here the energy density,
pressure and entropy density for the standard model

bosonic particles are 	SM ¼ g �2T4

30 , pSM ¼ g �2T4

90 and

sSM ¼ g 2�2T3

45 respectively [16].

B. The fermionic case

In this subsection we apply Eq. (29) to find the energy
density, pressure and entropy density of the fermionic
excitations. In this case the distribution function do not
have any dependence on the regulator M. For relativistic
excitations the integrals which give the energy density and
pressure for the fermionic case are exactly similar with the
bosonic case except that now we have to use the distribu-
tion for the fermions. The integrals can be easily done,
granted�< 0, but the results can be analytically continued
for positive temperatures. The results in this case are listed
below. The energy density, pressure and entropy density of
the Lee-Wick partners are as follows:

	 ¼ �g

�
7�2T4

240
�m2T2

48

�
; (38)
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p ¼ �g

�
7�2T4

720
�m2T2

48

�
; (39)

s ¼ �g

�
7�2T3

180
�m2T

24

�
: (40)

The energy density and pressure quoted above are equiva-
lent to the energy density and pressure for the positive
energy Lee-Wick partners as calculated in [9] for the
special case of g ¼ 2. If we assume that to each unusual
fermionic degree of freedom there corresponds one stan-
dard fermionic degree from the standard model, then the
total fermionic contribution is

	F ¼ 	SM þ 	 ¼ gm2T2

48
; pF ¼ pSM þ p ¼ gm2T2

48
;

sF ¼ sSM þ s ¼ gm2T

24
(41)

which are all positive. Here the energy density, pressure
density and entropy density for the standard model

fermionic particles are 	SM ¼ g 7�2T4

240 , pSM ¼ g 7�2T4

720 and

sSM ¼ g 7�2T3

180 , respectively [16].

It is worth pointing out here that there is some confusion
regarding higher-derivative theories of fermions. The con-
fusion is regarding the number of Lee-Wick partners (one
left-handed and the other right-handed) of the chiral fer-
mions. The authors of Ref. [9] claim that there will be two
positive energy Lee-Wick partners of a chiral fermion
which are interrelated. Where as in Ref. [17] the author
claims that the two positive energy Lee-Wick partners of
the chiral fermion may not be interdependent. In that case
the Lee-Wick degrees of freedom exceeds the one of its
standard model partner yielding negative energy, pressure
and entropy density. For multiple Lee-Wick partners for
each standard model fermion the Lee-Wick degrees of
freedom exceeds the one of its standard model partner
yielding negative energy and negative pressure.

V. DISCUSSION AND CONCLUSION

Initially it was pointed out that Lee-Wick’s idea of
implementing the Pauli-Villars regularization scheme can
be implemented in two ways. This idea was presented by
Boulware and Gross [12] way back in 1984. In one way the
regulator fields live in a indefinite metric space but carry
positive energy and in the other way the regulator fields
live in a definite metric space but carry negative energy.
Lee and Wick took the first option and tried to redress the
issue of indefinite norm in such a way that unitarity is
preserved in the theory. The second option remained un-
cultivated. In this article we explored the second option
with limited means. No cures for the energy instability of
these kind of theories are known to the present authors. The
results presented in the article show the dubious nature of

the energy instability of the fields, but instead of making
the theory meaningless the same instabilities conspire to
produce a result which matches with the thermodynamics
of the Lee-Wick partners living in the indefinite metric
space.
In this article we have studied a system of bosonic and

fermionic fields, whose Lagrangians have the wrong sign
and, which are quantized with the wrong sign of the
commutators and the anticommutators. These fields are
Lee-Wick partners who live in a normal Hilbert space but
have negative energy excitations. The negative energy of
the field configuration is not due to any particular form
of the potential but solely an outcome of the negative sign
of the Lagrangian and the modified quantization process.
The vacuum of the theory is not the state with the lowest
energy, it is rather the state with the maximal energy
making the field configuration unstable. The bosonic and
fermionic degrees of freedom do still follow commutation
and anticommutation relations and specifically the fermi-
onic fields still follow the Pauli exclusion principle. In this
article the emphasize had been on the calculation of energy
density, pressure and entropy density of the unusual field
configurations.
To calculate the above mentioned thermodynamic quan-

tities one requires to have a statistical mechanics of the
field excitations. One encounters the difficulty of a diverg-
ing sum when calculating the single particle partition
function of the bosonic fields. Keeping to conventional
ways, where the temperature of the system is positive
definite, the partition function can only be summed when
one uses an ultraviolet cutoff. The distribution function
calculated from the partition function turns out to be
negative definite, which is a nontrivial result. The negative
nature of the distribution function implies that there must
be an average loss of particles in any energy level.
The energy density, pressure calculated from the distri-

bution functions of the unusual fields discussed in this
article match exactly with the results calculated by
Fornal, Grinstein and Wise in [9]. The derivation of the
new distribution functions and the connection between the
regulator field thermodynamics as presented in this article
and the thermodynamics of the Lee-Wick partners, as
presented in Ref. [9], is one of the main motivations for
this work. The main emphasize of the present article has
not been to recalculate the results obtained in Ref. [9] as
the theory presented in this article is not the same as that of
Ref. [9]. The two theories are quantized differently. The
similarity of the thermodynamic results of the two variants
of the Lee-Wick model implies that the different kind of
instabilities plaguing the theories are related in presence of
a thermal bath. From the main analysis of this article it can
be inferred that the conventional Lee-Wick prescription is
equivalent to its variant in the thermodynamic sector. The
analysis of the thermodynamics of the positive definite
metric Lee-Wick partners gives a clear idea about the
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origin of the negative energy density and pressure of these
field configurations. The theory presented in the article is
amenable to the standard techniques of finite-temperature
field theory. One can utilize the results of finite-
temperature quantum field theory to calculate various ther-
mal effects, like the thermal mass of the standard model
particles in presence of the thermalized Lee-Wick partners,
in the early universe. The thermal distribution functions of
the Lee-Wick partners calculated in the present article can
be used to write the propagators of the unusual fields in the
real-time formalism [18].

The fact that the thermodynamics of the indefinite met-
ric, positive energy Lee-Wick fields and the thermodynam-
ics of the definite metric but negative energy Lee-Wick
partners turns out to be the same remains an interesting
result which invites further work in these fields in the
future.
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