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We study properties of moduli stabilization in the four dimensional N° = 1 supergravity theory with
heavy moduli and would-be saxion-axion multiplets, including light string-theoretic axions. We give
general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain
light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum,
i.e. nontachyonic saxions, in the nonsupersymmetric Minkowski vacua. We also discuss the cases where
the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to
supersymmetry breaking. Futhermore, we study the models with axions originating from matterlike
fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets.
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L. INTRODUCTION

Moduli stabilization in superstring theories compacti-
fied on the internal space is necessary to determine physi-
cal parameters such as gauge couplings [1], Yukawa
couplings [2,3] and soft supersymmetry (SUSY) breaking
parameters [4] in the visible sector, and to evade the
moduli problem [5] and undesirable new forces [6]. As a
consequence, it also can give several interesting implica-
tions to particle physics [7-12], through the KKLT pro-
posal [13] or the racetrack model [14].

The complex moduli fields in four dimension typically
consist of scalars {¢} originating from geometry of com-
pactification space (e.g. its volume) and pseudoscalars {a}
coming from NSNS or RR tensor fields. Even though all the
scalars {¢b} are stabilized, some of their partners {a} can still
remain light due to the shift symmetries: a — a + const.
Therefore, the latter pseudoscalars are often called string-
theoretic axions [15—17] and can include the QCD axion
to solve the strong CP problem [18-20]." The number of
these axions are originally determined by the topological
property of compactified space, e.g. the Hodge numbers
of Calabi-Yau (CY) three-fold [21]. (See also for effective
field theories [22,23].) Because the numbers can be much
larger than of order unity, one can find many light string-
theoretic axions through the moduli stabilization, that is,
the string axiverse [24]. The axions can have large axion
decay constants beyond the axion window [25]* and can
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'If we are to identify one of the axions with the QCD axion,
the quality of the PQ symmetry needs to be checked for solving
the strong CP problem: 8m2 < 10~ (m3“°)2. Here axion mass
&m2 is a contribution from non-QCD effects, m3P ~ AéCD /fa
is the QCD axion mass just from the instanton, f, is the decay
constant of the QCD axion and Agcp = O(100) MeV is the
QCD scale.

In the LARGE volume scenario [9], one can find M gysing =
10" GeV <« Mp = 2.4 X 10'® GeV [16].
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give influences on the cosmological observations [24]. For
instance, their misalignment angles and Hubble scale
during inflationary epoch are constrained and future ob-
servations of tensor modes and isocurvature perturbations
could suggest the evidence of the (non)axiverse [26]. Of
course, the relic abundance of the axions should not
exceed the observed matter density [27]. This will give
an interesting constraint not only on the observations but
also on the string models in terms of moduli stabilization.
Therefore, our purpose is to study general framework of
moduli stabilization leading to light axions based on the
N = 1 supergravity (SUGRA).

Besides string-theoretic axions, one often obtains light
field-theoretic axions at low-energy, too. Thus, in general,
the number of axions is estimated as [28]

(the number of axions) = (the number of fields) + 1

— (the number of terms in the W).

Here, W is the superpotential. This is because the Peccei-
Quinn (PQ) shift symmetries of fields and the R-symmetry
produce candidates of the axions whereas independent
terms in the superpotential kill them, assuming the
Kihler potential K preserves these symmetries. Even if
the R-symmetry is broken explicitly, this estimate is con-
sistent when the constant in the superpotential is involved
in the term ‘‘the number of terms in the W”’. Although we
have neglected vector multiplets, which can become mas-
sive, they can also reduce the number of axion candidates
by absorbing them. When this counting becomes negative
or zero, we do not have any light axions. If there are very
small terms violating PQ symmetries in W or K, they give
very light masses to the axions.

In this paper, we study the moduli stabilization scenario
leading to light axions. We discuss conditions to give
heavy masses to all of real parts of moduli and leave
some of imaginary parts massless. One of important con-
ditions is SUSY-breaking, and the typical mass scale is the
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gravitino mass ms3,,. All of the real parts of moduli must
have masses, which are larger than the gravitino mass
and/or comparable to the gravitino mass. On the other
hand, light axions masses are smaller and could be of
(’)(mg;“zl /M) with r = O(1) or a few tens.

In Sec.II, we will study the properties of nonsupersym-
metric vacua with light string-theoretic axions. We
will also give comments on closed string moduli which
are directly coupled to the SUSY-breaking sector. In
Sec. III, we will study the string-theoretic R-axion and
the saxion-axion multiplet breaking SUSY. In Sec. IV, we
will discuss corrections to the light axion masses from
small breaking terms of PQ symmetries in the superpoten-
tial and the Kidhler potential. In Sec. V, we will give com-
ments on simple models of field-theoretic axions in terms
of effective field theories. In Sec. VI, we will conclude this
paper. Our analysis on moduli stabilization is applicable
even if there are not light axion multiplets. In Appendix,
several types of moduli stabilization models are briefly
reviewed. We will give a brief comment on the LARGE
volume scenario based on the recent work of the neutral
instanton effect including odd parity moduli under orienti-
fold parity.

II. LIGHT STRING-THEORETIC AXIONS

In the following sections, we will consider moduli sta-
bilization at low-energy with the assumption that irrelevant
moduli are heavy by closed string fluxes [29]. The remain-
ing moduli of our interest can be stabilized via gaugino
condensation [30] or (stringy) instanton effects [31]. Thus
we study the superpotential below:

W= W(d) =W, + DA exp(—za§k>q>i). 2.1)
k i

Here W, is a constant from the fluxes, {®'} are heavy closed
string moduli fields which are stabilized by this superpo-
tential and we use the unit Mp, = 2.4 X 10'® GeV = 1. We
study the possibility that we can have massless axions at
this stage. The scalar potential is written by the super-
potential W and the Kihler potential K,

V = Vp = ¢%[G,G;G" — 3]
= XK"Y (D,W)(D,W) — 3|W|?], (2.2)

where

Here, K = G/ denotes the inverse of the Kihler metric
K;; = 0;0;K. F-terms and the gravitino mass ms,, are

given as
Fl = —¢02G! = —e92GVG;,  my)y = €92 (24)

We will focus just on Vi for simplicity.
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A. Light string-theoretic axions and saxion masses
in the SUSY vacuum

In this subsection, we briefly review [16]. We study
saxion masses in the SUSY vacuum with light axions.

For instance, let us consider the superpotential with two
moduli (T, T5):

W =W, + Ae dTi*T2) = W, + Ae 9P, (2.5)

One can find u = T — T, is absent from the superpoten-
tial, that is, we have just one phase of ®: 9,W = 0.
Then the imaginary part Im(u) is a massless axion whereas
Re(u) may be stabilized via the Kihler potential K =
K(T; +T,).

One can generalize this argument to the case with many
axions. Chiral superfields are classified into two classes.
One class of fields, u*(= 7* + ib*), do not appear in the
superpotential, i.e.

oW
ou”

while the fields @' in the other class appear. Then, the
imaginary parts of u®, i.e. b® are string-theoretic axions,
which have flat directions in the scalar potential for the
form of Kéhler potential, K(u + i). We evaluate masses of
the real parts of u“, i.e. saxions 7%. In the SUSY vacuum
with stabilized moduli one finds

=0, (2.6)

D:W =0 forV i= () u®). (2.7)
For the fields u?, this leads to
oK _ 0 or W=0O. (2.8)
Ju”
In this case, we find
(07¢0,8Vp)susy = 4€K|W|2[2Kinf(aKﬂ)} = 3K,z]
= —4eK|W|2KaB =0. (2.9)

That is, every massless string-theoretic axion has undesir-
able massless saxion for W = 0 or tachyonic saxion in
the SUSY AdS vacuum for W # 0. This is because K, 3 is
the positive definite matrix. Note that the term
4eX|W|* - (=3K,3) comes from the vacuum energy. We
have used the property of perturbative moduli Ké&hler
potential,

9, K(® + Oyu+ i) =20,K(®+ O;u+ 1)
=20.K(®+ D;u+ 7). (2.10)

The tachyonic instability might not be problematic in the
AdS vacuum because of the Breitenlohner-Freedman
bound [32]. At any rate, one should consider the SUSY-
breaking Minkowski vacuum to realize the realistic vac-
uum, although one may need fine-tuning to uplift the
SUSY AdS vacuum to the Minkowski one. Hence, in the
following sections, we will consider the SUSY-breaking
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effects and then one can see that the saxions become stable
for vanishing vacuum energy.’

B. Light string-theoretic axions and the saxion mass in
the SUSY-breaking Minkowski vacuum

Here, we study saxion stabilizaton in the SUS Y-breaking
Minkowski vacuum with light axions. As a SUSY-breaking
source, we consider a single chiral field X. We assume that

moduli F-terms G'(i = i, @) are smaller than G¥ and the
cosmological constant is vanishing, (V) = 0, that is,

GXGy =3, G*Gy> GG, (2.11)
where G4 = GABGj.

Here, we study the model, where the SUSY-breaking
sector X and moduli are decoupled in the Kdhler potential
K and the superpotential W. That is, we consider the follow-
ing form of the Kihler potential and the superpotential

K=KX 3+ X®+F u+a),

. (2.12)
W=WX)+ W(D).

Hereafter we will set Kyz = 1 at the leading order of XX.
Note that 9,W = 0 and G,; = K = 0. When there is a
large mass splitting between moduli ® and X, Ky; # 0
would be possible, but Ky; << 1 would be necessary for
the stable vacuum; Ky; = 0 would be an appropriate ap-
proximation. A simple example of the SUSY-breaking
models has W = u2X [33-36].* At any rate, here we con-
sider generic form of the SUS Y-breaking superpotential W.
From the above assumption, one expects moduli ®' and

u® are stabilized near the SUSY solution,
KW+ W, ~0,  XK,~0 (2.13)
such that one obtains heavier moduli masses than the
gravitino mass ms;; = e%/2. In the SUSY-breaking vac-
uum with a vanishing cosmological constant, one finds the

stationary condition:

a]VF = G]VF + EG[GI + GKVIGK] = 0, (214)
which leads to
G.,GG*B + G, — GAGB9,G 5 = 0. (2.15)

Here I denotes X, i, « and V is a covariant derivative with
respect to the Kéhler metric. Since Gy; = 0, the above
equation becomes

3One can also consider a nonperturbative effect on the Kihler
potential or D-term moduli stabilization which means a gauge
multiplet eats an axion multiplet to lift saxion direction.

“There are also models including SUSY-breaking moduli [37],
but we will not consider such models since subtle fine-tuning
would be necessary.
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V3(Gyy + 1) + GGG — GXGXayGyg = 0

for I = X,
V3Gyi + G1iGiGIF + G — GIGRa;,G,; = 0 for 1 =1,
(2.16)
Here, we have used

Gy = Gz = /3, (2.17)
because Kygy =1 and Eq. (2.11). Using Gy, = 0, one

finds in the vacuum

Go= Ko =5GGla,Gp. (2.18)

NSE

This means F-term of u“ is suppressed unless there is
mixing between (X, ®') and u“. For X and ®’, one can
typically neglect subleading terms

GyiGiGl < 1,
- (2.19)
G — G/G'9,G; < V3Gy; + GGG,
and one obtains
ViGx=—1, G =—-3(G)iGy.  (2.20)

Here (G™')Y(i,j # @) is an inverse matrix of G;; =
Kz + W,;/W — W, W;/W?. Thus one can expect the
shifts from the SUSY solution of G' = 0 and K, = 0 are
given by
i~ A (G-WN(E YT
5P :KklfGA )T_(G ) GX'P, | 2a1)
oSu® ~ KQBGIG"(?BGU‘- — K“BJCBiBCI)’.

Here we have used typical results 3 i5peavy moduli
KKK ~ 8] and Z«yjligm moduli:Ka«y:KW ~ 8%. One
will see these shifts can be suppressed by the heavy moduli
masses squared as m3 P / m(zb,».

1. Masses for sGoldstino X and heavy moduli ®'

We evaluate masses of X and ®'. By differentiating
Eq. (2.14), we obtain in the vacuum

(Vi) = €°[G; + V,GxV;GK —
+(G;; — G;G))Vp,

(Vi) = €e°[2V,G, + GXV,V,Gk] + (V,G; = G,G)V,

(2.22)

Rk GXG]

where
Rijki = Kpjki — KIKAKABKJ'L'B- (2.23)

Since we assumed that heavy moduli ®' are stabilized near
the SUSY solution, one can neglect G’ term to calculate

045021-3



TETSUTARO HIGAKI AND TATSUO KOBAYASHI

heavy moduli masses mg, at the leading order of SUSY-
breaking effect.
For example, one expects

mei ~ a,-q)im3/2, (224)
for the KKLT-like stabilization [13] and
Mmei = (aiq)i)2m3/2, (225)

for the racetrack model [14], which is viable even for
Wy = 0. (See also Appendices A 2 and A 4 for the
KKLT-like stabilization and the racetrack model, respec-
tively.) Here a; denotes the most effective (or smallest)
one in {agk)} appearing in the Eq. (2.1) to the moduli mass
mgei. One could obtain heavier moduli masses than the
gravitino mass by fine-tuning the constant W, in the race-
track model [38].

In general, one expects mq > mj3,, and mass squared
matrix elements of the moduli & are written as

Vij = e9[GyG5GM] = Kym?,,
o @ (2.26)

Vij ~ 26 Glj = 2.7<ijfm3/2mq,,,

that is,

Vii >V

ij

for mgi 3> my,. Note that the mass /V;5/ K7 = mgy is

the supersymmetric mass of modulus ®'. In the above, we
have used the following approximation,

(2.27)

W, W, W
w w2 W
~ WU — K mq)x ’
w I’YI3/2
W, W N
Gxi = — W2 Lo —(VB- KoK ~ XK < Gij,
W W, W M .
Gijk ~ ijk _ ) 5 k -~ ak.7< e + j<kj<ij o
: 14 w T my ms
~a Ky e ,
msn
Wi'WX mq)r
Xij <~ vJVZ ~ = Tomas (2.28)

We took the diagonal mass matrix G;; for simplifying the
discussion here. Also one finds

Gi -~ (3 - \/gkx)j(i-;.'](jimyz
(Di

~ (D + D)3 — \/_KX) M2 (2.29)

For G* with K, # 0 for any i, their values are estimated
as G* =~ K*G; ~ G'. Here we have used no-scale like
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SLUCtUre Y ispeavy moduti K7 K7~ —(®F + &) up  to
would-be small perturbative corrections, though there is
the small u® dependencies K, ~ 0. Note that the contri-
bution of Eq. (2.28) to V;; can be comparable to super-
symmetric case, but one still has V;; > V;;. Thus, one can
obtain the (perturbatively) stable minimum for proper val-
ues of the moduli masses, mg:. That is, by making V;;
larger than V;;, one can realize positive definite mass
eigenvalues for all of moduli around the SUSY solution
G' = 0. Indeed, by using the above resul, it is found the
shift 5@ in (2.21) is suppressed by the factor, m3 ,/m3;.

Next, we evaluate the mass of sGoldstino X. The
sGoldstino acquires not the mass from W but only
SUSY-breaking mass from the Kéhler potential because
of massless Goldstino in the rigid limit. There is the
necessary condition (not sufficient) for the stable SUSY-
breaking vacuum, i.e. nontachyonic nonholomorphic
sGoldstino mass [37,39]:

Viaf'f! =B+ 9)& = 2yIm3;, > 0. (2.30)

where
Vi 52 1 7] ¢K ¢ e G!
Y= . O=z— R O = .
(2.31)

For v = 0 one expects

m? = 36m;3,,
A2 2
7= § ~ Rygxx = 3 + KXXXK KXXX Kygxg (2.32)

For instance, let us consider the Kihler potential with a
heavy scale A < Mp = 1 [34,35,40]

. _ (XX)?
K=XX— + e 2.33
4A2 ( )
Then one obtains
. 1 XX 2

Here (X) would be of O(A?) for the Polonyi model. For off-
diagonal component Vyy, so long as Gyxy and dyI'%, are
of order unity in the Planck unit, one can find Vyy =
o(m3 PIAS m?. Thus, there would be the stable minimum.
For string theories, A would correspond to the mass scale
of heavy field which is coupled to X, such as anomalous

U(1) gauge multiplet mass [41] which is comparable to the
string scale, when X has the U(1) charge.
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2. Masses for saxion ¢

Here, we evaluate masses of saxion 7¢. One finds posi-
tive mass squared.:

(0,00,8V) = 4€12G 5 — 9;G 3G’ — 3:G o 5G'
+ G;G;GaéﬁGU]

~ 8eGGaB > 0. (2.35)

Here, we have neglected the last three terms in the bracket,
since when one obtains m3/, = ¢%/2 <« mg one can find

G0, ~ 2G5 (2.36)
1 m(I)
Again, we have used a no-scale-like structure

K;ﬂ(ifﬂ(i = const. Then, the last three terms in
Eq. (2.35) are suppressed by mj3/,/mq and (m3/,/mg)?
respectively, compared to the first term.

Instead of X, with the sequestered explicit SUSY-
breaking term Vy = e€e*/3 where e = 3(eK/3|W|2),
one finds the similar results [17], (9,40,5Vp) = 4eG
and G'~ (G )IK; ~ (D' + D)myp/mg, ie. m, =
\/§m3 /2. Here, we have neglected the term which is pro-
portional to K,Kj in (9,«d,6Vp). Note also that mass
spectra of heavy moduli for such a case are similar to
ones discussed above.

3. Matrix elements

Here, we summarize the mass matrix. Including other
matrix elements, one can find typically

Vi~ eG[GikG§ + GixGix] ~ eGGikG- Kml,,
€®[2G;; + Gijx] ~ 2e°G;; = 2K ;smqimy s,
9[G;G) + Gixl ~ €9G,,G),
@(‘Dj + ‘i)j)fK ~ K;m?
M

ij =

N
=
l

~ Kimq)in’Z3/2,

v~ e9GIGy,: ~ m?
Vix ~e GGX:/ ms,, 3/2

G X12 ~ 3gm2
—e“Rygxx|G*|* = 36m;3),,

Vyx ~ €C[1 + VxVyGy + G (Gyx; + T'{xGx))] ~ mﬁ‘/z,

ViT"‘ ~ €GGkiGijmg<ajm -~ m2 M ((D] + (i)i)g(ijd
Mg

3/2
- Kidmg/z’
Viga ~ €9GixGIGM K o iy ~ (D + D )Kzam3/2 e
Mei
VT"‘TB = 8m§/2‘7<a[3’ (237)

where we have used
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WiWi _ WxWi _, WxiWx | Wy

Oxxi ~ 27553 W2 W2 W

~ K,
(2.38)

as well as 0%y W =< W. In general, Vyy and V3 could cause
the vacuum instability even if mgi > ms3/, and & > 0.
Based on these matrix elements, one expects the conditions

Vixg < \/ ViiVxx

VXXVT TB (239)

Vii <Vij Vxx < Vxz, Vix,

Viee <qViiVap Ve

should be satisfied for the (meta)stability. For this case, so
long as & > 1 one would obtain the stable minimum.
Then, the mass spectrum is summarized as

2 o 2 2~ 35m
m; = mg; 3> my. =36m

2y mio=dmd,. (240)

At this stage, the axions b are massless. Note that all of
saxions 7% corresponding to massless axions have almost
the same mass m,« = 2ms .

Here, after the Goldstino is absorbed into the gravitino,
the unnormalized axino masses are given by

(mz)ap = G/Z[V Gy + 3G Gﬁ] = ¢02G 5. (2.41)

We have neglected G,
O(my),/mgy) corrections.

and G; because they are of

4. F-term

In the above case, one can find

X = _\/_m3/2»
= B3 — Ky ™22
3(V3 Kx)mz/z

D+
~ KKyt 1 (2.42)
O+ O
Here, we used the result
G'~GiG;,  G*=GYG;  (ij#a), (243)

which leads to G ~ G'. Even if any u® are stabilized via
D-terms, K, ~ 0, we gain F-term of the u® through the
off-diagonal Kihler metric [42—44]. Note that if G% = 0,
one finds F* = 0 since G, = 0 for such a case [45]. For
string-theoretic axion(s) breaking SUSY, see Sec. IIIb.

C. Note on mixing between X and moduli and D-terms

For simplicity, we have discussed so far the case that the
SUSY-breaking field X does not couple to moduli P for a
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simplicity. However, in string theories, it is natural that
moduli are coupled to the SUSY-breaking sector via non-
perturbative effects, so that one obtains much smaller scale
than the string scale. Now, let us consider the mixing
between X and heavy moduli by replacing W(X) in
(2.12) as follows,

WX, ®) = f(X) exp[ —Zagf @;]. (2.44)

Here, f(X) depends only on X. For instance, one can
consider the case that f(X) ~ X [35,36] or f(X)~
[10]. Then, we consider the moduli stabilization with the
superpotential,

W= WX ®) + A 24, (2.45)
k

We assume

o ~a, (2.46)

l

in the above superpotential, where a; is the most effective
one to the moduli mass in aﬁ-k) for ®%. Then, one can find

Wy ~ —a;Wy = —a;(~/3 — Kx)W. (2.47)
Also, one obtains for @
Wy W,W
GXi: ‘/I}/{ - WZX _(\/5 KX)(a +:]<)<G1]r
Wyii Wi W ,
Gy~ —t ==X — ¥ X = K~ afaf = Gy,
W w J Jm3/2 J
WiWi  WxWi _ WxiWx | Wy
GXXi~2 W3 - W2 -2 W2 + W .fK +a ,
(2.48)

and also we estimate

~a(® + o2
mq,[ meg

(2.49)

(G 1)IJGX~j<lJ X

~ KG;~ G,

For metastability, one expects the conditions (2.39) should
be satisfied.

Here, with the assumption that Gyyy = O(1), one finds
for @

PHYSICAL REVIEW D 84, 045021 (2011)
Vis~ eG[Giij‘-. + G,-XG_]»X] ~ Kigmz, + af‘a;‘mg/z,
Vij -~ eG[ZGU + Gin + GkG[jk] -~

Mgyi
X, X .2 2 P
+aam2/2+a ajms, ——,

Mg,
Vig ~ G[G,]G + Gix] ~ afmgims ), + a¥m?
Vix ~ e%[Gyy; + (1 + TGy, + G/Gy;j]

j(ij"mq)im:;/z

3/2

~ aX Kk X aXm2 ms/ X m2
at K ajak 32 -+ afm; ),
Vxx ~ GiXG;g - e RXXXX|G &

~ A 2 ijoX, X2
—3(7Rm3/2+.7< a; a;yms ),

Vyx ~ €9[1 + VyVxGy + G (Gyx; + T'¥xGx))]

= m3/2
~ m§/2<1 + ﬂ(’/af‘a)i‘ —),

! mq)i
Vi ~ €%[Giz + GGIG" K ]

m(l)l
~ K/ fK,jaak m3/2

+ ,’Klamg/2
-~ K Kij&akm3/2 + :K,-@m
VXT"‘ ~ eGG,-XG"Gi’;’Kai,;,
.7 m
~ KilaX KimaX K, 2

il
jla 3/2 My

3/

Viyams ~ Kogm? /2<8 - agfqy‘@) ~ K gy (2.50)

Mmei

where G denotes only Rygyy contribution in &.

However, if the linear combination of aX®} were sta-
bilized via a KKLT-like model, i.e. DW/|gxkr ~ 0 and
m; ~ (a;®%)ms,, one would obtain

GXGX -~ GiGl‘,

in addition to Vi ~ Vg ~[ViiVxx for 6y < af®%,
Vi~V and Vi« ~[V;5V 6. This means the assump-
tion that G¥ is the main source of the SUSY-breaking is
violated; KKLT stabilization of a¥®} and realization of
the Minkowski vacuum can not be realized successfully
and the vacuum would be destabilized to the SUSY AdS
one [35,46,47]. Even if the assumption that a; ~ af is
violated, the uplifting to the Minkowski vacuum with
KKLT stabilization of a¥ ®} would fail since there would
be the runaway direction, e.g., for small X. Thus, the linear
combination of moduli aX®}, which are coupled to the
SUSY-breaking sector X, should be stabilized via racetrack
model [10,35,36],5 fluxes, or D-terms [42,48], so that they
gain much heavier masses than the KKLT-type mass, m; =

(a; ®y)*my ), > (a,Py)my ) > my). (See also [28] for

(2.51)

SFor racetrack stabilization of ® %, the condition that V3 <

;l/V 7Vxx would be subtle for 6 < a; X®! . However, one can
nd the stable vacuum in the concrete models.
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models in which there is the coupling between the SUSY-
breaking sector and the saxion-axion multiplet. In the
model, one finds also the saxion mass much larger than
the gravitino mass via the Kédhler stabilization.)

For D-term stabilization 94 K = 0, the moduli charged
under anomalous U(1) symmetries can become massive by
U(1) symmetry breaking and the massive vector multip-
let’s eating them, even though d4:W = 0 if matter vevs
become consequently irrelevant to the vector mass My :

m(sz = M‘z/ ~ gZTI(I)xn(Dx Kq’x‘i%(' (2.52)
Here, ®x is the variation of ®y under the anomalous
U(1), and My from ®y can be comparable to the string
scale. Thus, for such a case, one can find SUSY-breaking
Minkowski vacuum, i.e. via F-term [49] or D-term con-
ditions [42,48], the superpotential W ~ Ay(¥)e 4% +
e~ ®xX can be replaced by

W~ Ag((W))e P + e~ P X = Ae™ a4 + u2X (2.53)

in the low-energy limit. Here, {W} are open string modes.
In the paper [42], when one obtains the tiny Fayet-
Iliopoulos term

4
My _

2.54
3 &rr (2.54)

so that @y is absorbed into vector multiplet, one can find
Minkowski vacuum due to the Polonyi model in the
low-energy limit. Here, &p = n¢xa¢xﬂ< is the Fayet-
Tliopoulos term from moduli ®y. For such a case, F®x ~
n®xm;, 2 10~ 2m; /2 1s obtained with D-term stabiliza-
tion. (Note that one may find M, < &gy if a5, K ~ 9, K
and n®r < 1.)

III. APPROXIMATE R-SYMMETRY, R-AXION
AND SUSY-BREAKING MODULI

In this section, we study the model, which has an ap-
proximate R-symmetry and R-axion. We also study the
model, where SUSY is also breaking by moduli fields.
Indeed, we show that both models are investigated in the
same way.

A. R-axion and SUSY-breaking moduli

In general, a global U(1) R-symmetry is broken explic-
itly because string theory describes the quantum gravity.
Indeed, string models with the exact and global U(1) R
symmetry have not been found. For instance, the constant
W, in the superpotential is easily obtained via flux com-
pactifications, but the value depends on the choice of the
flux vacua [50]. Therefore, at a certain scale there may be
an approximate R-symmetry accidentally in the SUSY-
breaking sector and the moduli stabilization sector when
one obtains W, = 0 in the superpotential [51].

PHYSICAL REVIEW D 84, 045021 (2011)
For example, the following superpotential,

W = Ae “?, (3.1)

has the R-symmetry, where the field ® transforms as
(OB OE i% a under the R-transformation with a trans-
formation parameter «. Similarly, the racetrack model has
the R-symmetry [10,35,52,53] if one has more than two
fields in the superpotential without W,,. Thus, when Re(P)
is stabilized by the Kéhler potential,, for example, we
obtain the so-called light R-axion.

Here, we consider the R-symmetric superpotential.
Then one can rewrite the superpotential including SUSY-
breaking sector X,

W =e RW(X, ®),

where 9g W = 0. Since R can include not only X but also
moduli in the linear combination, we call it string-theoretic
R-axion. Only R transforms as R — R + i2a under
the R-symmetry, while the others do not transform. Note
that by the Kéhler transformation with holomorphic
function G,

K—-K+G+G

(3.2)

W — exp[—GW, G — G,

(3.3)
physics is invariant since the action is written by only the
total Kihler potential G = K + log|W|?. Thus, one can

consider the following Kéhler potential K and the super-

potential W,
K=KO9 — (R + R), w="W.

Here, K© is the original Kihler potential obtained from
the dimensional reduction. Then, one finds

(3.4)

Gr =Kgr = Ky — 1,

w
G, =K; +—=~~ forl#R.

w
Hence, unless Gg = 0, the R-axion is a source of the
SUSY-breaking. By Nelson and Seiberg’s argument
[53,54], the existence of the R-axion means the SUSY-
breaking, provided the model is generic and calculable.
Hence, we will also consider the SUSY-breaking moduli
with the vanishing cosmological constant: Gg # 0 and
<VF> =0.

Because the differences between string-theoretic
R-axion and string-theoretic axions u are just that the
Kihler potential and their first derivatives as we saw, the
following results are applicable not only to the string-
theoretic R-axion, but also to usual string-theoretic axions
u, which have nontrivial contributions to SUSY-breaking.

(3.5)

B. SUSY-breaking string-theoretic (R-)axions
Let us consider the Kéhler potential

K=RKX X)+ KR+ R)+ K(P+ D), (3.6)

045021-7
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with Gg # 0. For simplicity, we will study the case that
the Kihler potential is separable and focus only on the
SUSY-breaking string-theoretic (R-)axion neglecting dy-
namics of heavy moduli ®@. Note that the discussion in this
section is applicable to an usual string-theoretic axion u,
which have nontrivial contributions to SUSY-breaking.

One obtains the stationary condition with the vanishing
cosmological constant:

VXGX = — 1,
Gr 1 Kz
GR = =~2 =2 —BR _(VrGr = —Ggg)-
Krr TRe  0rKzz
3.7
For the second derivatives d;9;V, we obtain
Vyx = (2 - RXXXXllez)’
VXX ~ €G, VrX = 0. (38)

Here we have denoted R = r + is. When one sets K as
(2.33), one obtains

1
— Rygxx = p > 1. 3.9)

With respect to the SUSY-breaking (R-)axion, let us take
the Kéhler potential below

R=-nlog(R+R)+8(R+R)—(R+R), (3.10)
and we write

[1+A(R + R)]
(R + R)?

n

K zz (3.11)

Then, one can find
GR=~—(R + ’R)(l + %(R +R)- A’),
1 1 _

/ >, "
QA+ RABN) o g
(R+R)

V. = —4n

(3.12)

Here, we used Eq. (3.7) and A would come from the
construction effect of R from the original moduli or the
quantum effects of order g, and of order «’, and would
be expected as

A = 0(1). (3.13)

This result is applicable to many scenarios, including the
SUSY-breaking light (R-)axion multiplet [9,10,52,55]. For
the above case, fine-tuning of the vanishing cosmological
constant leads to

PHYSICAL REVIEW D 84, 045021 (2011)
|Gx|> + GRGR = |Gx]* +n+ O0(A) =3. (3.14)
Then, one should set

GX: 3—n+0(A),

where n > 0. Thus, we obtain

FX = =3 = n) + O(A)my),,

FR Fi
= = M3/,

R+R

(3.15)

(3.16)

For n = 3, the sGoldstino is almost the SUSY-breaking
(R-)saxion.
Here, nonholomorphic sGoldstino mass is given by

m? = 36m?

3/2
2
o=3- §(RXJ?X)2|GX|4 + Rrzrrz|GRI*)
2

1 _ o 2n
+ WG n) 9 + 0(A). (3.17)

3
Then, so long as V,,. > 0, we would obtain positive definite
mass matrix for n # 3

- m3,, _ 1V,
mys =, m2 = 3 Rnm ~ Amg/z. (3.18)
For n = 3, one finds
~m?, (1+ A 2 ~ Am? 3.19
My ~ m3, ) m; ms . 3.19)

Here, after the Goldstino is absorbed into the gravitino,
the unnormalized axino masses are given by

1
(mz)rr = eG/ZI:vRGR + gGRGR]
1
=~ eG/zl:—GRR + EGRQ-{GRGR]

~ eG/ZGRRI:—l + g + O(A)]. (3.20)
For n =3, SUSY-breaking (R-)axino becomes the
Goldstino, which is absorbed into the gravitino.

We give a comment on the small mixing Gg; =
Gg; # 0 here. In many cases, there is the off-diagonal
Kihler metric Gg; = Gg; # 0 and the main source of
the SUSY-breaking could be the overall (volume) modulus
(n = 3) and it affects F-term of heavy moduli ®' if any:
G' ~ (G )IGRV,Gr ~ (P + ®)ms3)y/mgi. Here, we
have used the explicit Kéhler potential for the LARGE
volume case in Appendix. However, as a consequence,
the qualitative features in this section include such scenar-
ios. Thus, the result in this section would be applicable to
such cases.
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IV. CORRECTIONS TO AXION MASSES

Axions b® are exactly massless at the previous stage.
Here, let us consider small corrections to the axion masses.
These can be computed also in the SUSY vacuum, if the
SUSY-breaking sector does not violate any continuous PQ
symmetry of u®. Recall that only heavy moduli should be
coupled to the SUSY braking sector except the R-axion.
For the small corrections, shifts of the saxion masses are
negligible.

A. Superpotential correction

Here, we consider the correction term §W(®!, u) to the
previous superpotential (2.1). That is, we study the follow-
ing superpotential:

W= W(D) + sW(D', u), (4.1)

where

W(D) =W, + ZAk exp(—ZaEk)(I)i),
X .

SW(P', u) = Y By exp<—zb§k>q>f).
k i

4.2)

Recall that @' denote all of the moduli including ® and
u®. Hence, the term W(®’) includes only heavy moduli
®, but not light axion multiplets u®, while SW(®', u)
includes u®. We assume B, =~ A, = O(1). We would like
to consider the situation that (' W) > (SW). If any terms
By exp(—szgk)d)f) in SW(®, u) do not satisfy the condi-
tion, ( W) > B, exp(—Z;bff)@)f)), we have to take into
account such terms from the previous stage of moduli
stabilization in Sec. II and III and include them in
‘W(®). Then, some of u become heavy reducing the
number of light axions. Therefore, heavy moduli should
be coupled to saxion-axion multiplets in 6W.
Then, one finds the axion mass m, as [16,26]

L= —K,30,b*9"bP — (m3),zb"bP, ws
SW, :
(m2)ap = 3eK|W|2Re(TB),
where W, 3/W > 8W,6W z/W? can be obtained in such
vacua.

Now, we parametrize SW/W, in particular,
bgk)(fl)’}ln(W}. For that purpose, we choose a typical
term, say, A; exp(—ziagj)cbi) in "W, which represents the
value of (W), i.e. A; exp(—ziagj)CD")) ~ W. Then, we
use the following parameters,

3 p(@h)

==i_ 4.4
>, al() @4

Tk
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TABLE 1.  Axion masses up to b2 /f2.
r 3 5 7 9
m, for 1074eV 107%evV 1073 eV 1070 eV
m3/2 =1 TeV
m, for 1072eV 107%evV 1070 eV 1075 eV
H’Z3/2 =10 TeV
m, for leV 1008% eV 1072%eV 1074 eV

WL3/2 =100 TeV

The parameters would satisfy 7, > 1, because { W) > (SW).
It is expected that r; is of O(1) or could be a few tens.

Using these parameters, we write By exp(—nggk)tbf) in
oW as

A rp—1
B, exp(—beﬁ@') ~ W(";;ﬁ) C 4.5)

i

Thus, the axion masses with the canonical normalization are
given by

K w 2 SW bz -
(m2) e = 3° Wl Re( ““) = 3—§m§/2(m—3/2)’ ’
K W fa 7T\ Mp

aa

(4.6)

if and only if the axion mass is positive definite. Here,
we have defined through the diagonalization

oW, = b26W, Koo = f2, 4.7

where fa = O(Mstn'ng/MPl) are
constants.

Once a small value of the gravitino mass ms; is realized
such as m3/, << Mp,, the hierarchical axion masses with
exponential suppression could appear. Some examples of
mass scales are shown in Table I for mj3, = 1, 10 and
100 TeV up to b2/ f2.

We show several illustrating examples to lead to light
axion masses in what follows.

diagonalized decay

(1) Example 0: R-axion mass. The small constant term

in the superpotential induces the R-axion mass,’
W= WeR+Ww,. (4.8)

For Wy < We R ~ Ae=“?®, one finds

m2 _ eK W() RC(ERW)< KfR
‘ Krzr Krzr

+ 0(1))

i BN on). o)

There will be also higer order terms from nonperturbative
effects breaking the R-symmetry, such like we 2% in the 6W
where (@) ~ <§'Vz) But the discussion is similar to the case that
Wy ~ (we 2R,
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This result also coincides with the result of field-
theoretic R-axion withe R = ¢ and K = ¢ ¢, even
for larger W, =~ We ®. On the other hand, for
Wy = We R, one finds the heavy R-axion like
KKLT, which is stabilized near the SUSY solution

K K
m2 ~ m> (—R)( R +0(1)>. (4.10)
YK/ \Krr

Here, one finds We R ~ Kz W, for the KKLT
stabilization.

(ii) Example 1: SU(N + M) X SU(M) gaugino conden-
sations or with an instanton (M = 1). Let us con-
sider the KKLT-type superpotential [16,56]:

2
W = WO + e*a(l) + e*b(uﬁ»(l))’ a = L,
N+M
8 2
bzﬁ, N> M, 4.11)

where @ is the heavy modulus and u is the light
saxion-axion multiplet. In this case, assuming
(u) < (D), one obtains r ~ N/M + 1 and the axion
mass is estimated as

(4.12)

A similar result can be obtained in the racetrack

model [26],
W=Wy+e @®— e a® 4 blr® (4]3)
872 872
al 2 T T A b = =,
’ N, +M M
N1 -~ Nz, N1,2 > M, (414)

when we do not fine-tune W, as a special value.
(iii)) Example 2: Many gaugino condensations or instan-
tons wrapping on multiple cycles (in intersecting
D-brane system). Consider the superpotential with
n + 3 moduli; one is heavy modulus ® and the
remaining n + 2 multiplets include light axions u;

n+2 n+2
W = WO + €7a¢ + Z expl:—b,(z M[) - b(I)],

i=1 1#i
(4.15)

a~b; forV i (4.16)

In this case, if (u;) ~{(®), for V i, one finds
r ~ n + 1 and the axion mass is estimated as

b2 m3 n
2 2 /2
ms; ~ 3 ]72 m3/2<—MP1 ) .

n>1.

4.17)

PHYSICAL REVIEW D 84, 045021 (2011)

However, if (u;) < (®), V i one cannot obtain
small axion masses; one needs a <K b as the pre-
vious example.

(iv) Example 3: Including gaugino condensation on the
magnetized brane. One may obtain the superpoten-
tial on the magnetized D7-branes or E3-branes
wrapping on the divisor D in type IIB orientifold:

W = WO + e*a@ + B\e*h(u+®),
B = Bexp[—bM(S)].

Here, the constant M denotes M = L, [, F*? €
Z up to curvature term [57], F is the world volume
flux, and (S) is the vev of the complex dilaton,
which is fixed by three form flux. In this case, if
b(S) ~ b{u) ~ a{P), one can find r ~ M + 1 and
the axion mass is estimated as

b? mz\M
mg ~ 3—2m§/2<—/ ) .
f Mp
A value of M is weakly constrained via the tadpole

condition of D3-branes in the F-theory limit of the
orientifold compactification [58]:

1 Y.

Nps + ENﬂux(M) = X(244)'
Here, Y, is an elliptically fibered Calabi-Yau four-
fold. On the other hand, it would be natural and
more plausible that u = /M. on the D7-brane, i.e.
M = O(1). However, with the T-dual description,
the present case would also be plausible since M
corresponds to a winding number.

(4.18)

(4.19)

(4.20)

Thus, many models could lead to the hierarchical axion
masses with suppression, r = O(1) or a few tens.

IV. Kéhler potential correction

Here, we comment on corrections to axion masses from

the Kéhler potential. Suppose that
K = XK(® + ®) + 6K (D, D), 4.21)

where 8K(®, ®) is a correction term and 49K # 0. Then,
one finds the axion masses [16]

(m2)ap = 3eK|W|2[—5KaB + Re(6K,p5)].

(4.22)

Here, we have neglected _0((5K)2) term in the vacuum.
It is plausible that S K(®, d) would also appear from non-
perturbative effects such as

SK(®, D) = 3B exp(—ijf")qﬁ) +He  (423)
k i

In this case, the hierarchical axion masses with exponential
suppression would be obtained similarly to the superpo-
tential corrections.
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V. COMMENT ON AXIONS FROM
MATTER-LIKE FIELDS

Here, we (briefly) study the superpotential including
matterlike fields below:

W="W+ W, (5.1)
where
W=w,+ ZAk(‘If) exp(—Zagk)q)i),
k i
SW = By (V) exp(—be“qﬂ). (5.2)
k i

Here, we omitted the SUSY-breaking sector and {¥'} means
matter fields (or open string moduli) originating from the
open string. We assume that the matter fields stabilized
near the SUSY solution KyW ~ Wy,. Let us focus on the
light matterlike fields whose axionic parts are massless
while saxions are stabilized, e.g. via F-term, D-term con-
ditions or quantum radiative corrections. At low-energy
they are written by

VP = [(WPYe ", A(W) = [IKEP)e"¥",
P

B (®) = [TIwP)lemiv". (5.3)
P

Here, some A; or Bj; can be constants. Consider
linear combinations of ¥ =3 ,c?, ", ie. PP =
Zp(c*])‘upl?/”,7 such that one can find
oW QAL (P
=0, ’i( )=0 forVk 3p  (54)
N1/24 /28
We use the Kéhler potential at the tree level as
K=YZp(®+ O)Wrwr, (5.5)
P
Then, one finds at low-energy [28]
K = Zp(® + D)W)2e W H0D
P
A ~ A A ~ N ~
= A7+ 97 + @+ NPT+ )
+0((F + ), (5.6)
where
Ap = _Z(Cil)PpK\I}PMz,
! (5.7)

Apg = Z(C_I)Pp(c_l)PqK‘I’P)P.
P

"One can consider a linear combination including closed string
moduli when matterlike fields are coupled to light moduli via a
nonperturbative effect. For simplicity we will not consider such a
case.
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For simplicity, we set A,,, A,, = const in the vacuum, i.e.
Zp = const and would depend on much heavier moduli
vevs. If Zp depends on the moduli or there are mixings
between ¢ and @ in 1?0 A, and A, also have the depen-
dence on the closed string moduli.

Then, for axion multiplets one finds®

G,=K,= A, (5.8)
Thus, even if G,, = Ap = 0 for axion multiplets lzr”,

because of A,y # 0 one finds

FP = eOPKPIG, = eS2 (A" )PIN, ~m3p,  (5.9)

which leads to F¥ /W ~ m; /2. This result is consistent with
the stationary condition 9,V =0: G, + G'V,G, =0,
which leads to G4 = O(1).

Then, the saxion masses can be found

<a<pll a¢QVF> = 460[2qu - aerqGr - a_;quG;

+ G,G;0,0,G"] ~ eGqu—,, (5.10)
where J” = @” + i9”. Whether (94rd4eVE) >0 or <0
depends on the model, but typical order of the saxion
masses are of O(ms/,) even though the masses can also
receive the contribution from D-terms of anomalous U(1)
symmetries [44]. When there is the vanishing saxion mass
at the tree level, quantum radiative correction induces
the mass smaller than mj ) [42,59,60]. Note that from
the assumption that Zp = const, one finds V,rxy = Vop; =
V(ppa = 0.

The axion masses induced by 6 W depend on the model,
i.e. vevs of closed string moduli, those of matterlike fields
or the power of polynomial of matterlike fields in the
superpotential. After the Goldstino is absorbed into the
gravitino, the unnormalized axino masses are given by

1

(m&)pq = eG/zl:vaq + 3

Gqu:I ~ 092G, (5.11)

VI. CONCLUSION AND DISCUSSION

We have studied properties of low-energy moduli stabi-
lization in the N =1 effective SUGRA, which have
heavy moduli and would-be saxion-axion multiplets. We
have given general formulation for the scenario, where
heavy moduli and saxions are stabilized and axions remain
light. SUSY-breaking effects are important. In the non-
supersymmetric Minkowski vacuum, the stable vacuum
can be obtained even though there are light string-theoretic
axions. In such a vacuum, heavy moduli and saxions can be

8For light nonaxion multiplets which have of O(im; /2) Mmasses,
they can be stabilized through the superpotential (3qW # 0)
and have the similar properties to those of axion multiplets [42].

. . W,
For instance, one can obtain G, = K, + 3 ~ A,. Here W, ~
K,W. Therefore, 12/" s can include such light nonaxion modes.
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stabilized supersymmetrically. In particular, saxions can be
stabilized at the point K, ~ 0, while axions in the same
multiplets remain lighter than the gravitino mass ms,.
This scenario predicts the same number of saxions with
the mass 2ms , as the number of light axions. Note that our
analysis on moduli stabilization is applicable even if there
are not light axions in the vacuum.

When there are some moduli mixing the SUSY-breaking
source in the superpotential, such moduli would also de-
stabilize the vacuum. In order to avoid such a situation, we
need quite heavy masses for moduli. The moduli masses,
which are generated in the KKLT-like model, are not
enough, but one needs heavier masses, which would be
generated through the racetrack model, D-term or closed
string fluxes.

Alternatively, some moduli may contribute to SUSY-
breaking, e.g. the R-axion multiplet. In this case, the saxion
mass can be lighter than the gravitino.

We have studied the effective SUGRA theory to lead to
the axiverse. Following our realization, it is important to
study further cosmological and particle phenomenological
implications. In addition, our scenario predicts the same
number of saxions with the mass 2mj3/, as the number of
light axions. These saxions would also have important
implications depending on their masses, 2ms/,. For ex-
ample, when mj, is around O(1) — O(100) TeV, the
late time entropy production by the vast number (~ 100)
of saxion decays into radiations much before the BBN
epoch can dilute harmful gravitino abundance [10] pro-
duced by decays of scalar fields such as heavy moduli [61].
(See [62—64] for discussions of the dilution by the SUSY-
breaking field X, which does not decay into gravitinos,
based on the KKLT stabilization and see also [65,66] for
the relevant discussions.) It is interesting to study other
aspects of axions and/or saxions following our realization
of the axiverse.

We have discussed general aspects of low-energy effec-
tive SUGRA theory without fixing explicit string models.
It is important to study explicit string model building
leading to our scenario with moduli stabilization and light
axions. We would study explicitly such string models
elsewhere.
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APPENDIX A: A MODULI
STABILIZATION MODELS

Here, we review several moduli stabilization models in
type IIB Calabi-Yau O3/07 orientifold models.

1. D-term stabilization

We show the relevant part of the model of the D-term
stabilization. This is the model with the anomalous U(1)
gauge symmetry and e.g. the blowing-up mode [67]

K—] M+ M+ V)?
2V, '

where V is the anomalous U(1) vector multiplet and "V, is
the compactification volume in the Einstein frame: 6V E=
f JAJ AJ, where J is the Kihler form in the Einstein
frame on the Calabi- Yau three-fold. One can ignore matter-
like fields, depending on the charge signature of matter.
Then, one finds the minimum via SUSY condition D, W =
D=K,, =M+ M)/ Vy=0 and obtains the massive
vector multiplet V = (M + M + V), where M is eaten by
the gauge multiplet. The mass of the vector multiplet is

auW =0 (Al

now given by gV;/ 2 where g is the gauge coupling.

2. KKLT
We show the so-called KKLT model [13,16] with

L1
h+

K=-2log(Vp, W=W,+YAe ", (A2

where W, < 1. Here, hﬂ;l (hl') denotes the Hodge
number of even (odd) parity moduli. To realize the
SUSY-breaking Minkowski vacuum, we add the uplifting
potential,

€ [Wol?
Vi = <373 =3 : (A3)

Vi Vi)

In this case, one finds
-1 1 M,
T, log(Wy) = log( ™),
i ai; ms /o

FT’ I’Vl3/2 (A4)

~ ~ msz/
T, +T; a7 log(Mp/msp)’

where 7; = Re(T;). The gravitino mass and moduli masses
are obtained as

ms ), = % m; = 2a;7;ms3. (A5)
For one bulk volume modulus, we have
K = =3log(T + T), W=W,+ e,
Viige = ;— €= |W70|2— "o
(T +T)? (T + 1)
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In this model, anomaly mediation is comparable to F T/
(T + T). See also for generalization of this scenario [68].

3. LARGE volume scenario

This is the model [9] with bulk moduli and blowing-up
modes, whose Kihler potential is written as

K = —1log(§+ §) — 2log(VE + g) (A7)
with
nht—1
V=)= > @21, (A8)

Here, for simplicity we have neglected moduli redefini-
tions at 1-loop level. The superpotential is written by

nh' =1

W=W,+ > Ae ol (A9)
i

where W, = O(1), and the uplifting potential is added as,

€ ‘o~ [Wo|?
8(log(V ) V33

(A10)

Note that 1/(27g;) = Re(S). We can consider vanishing

standard model (SM) cycle moduli or odd parity moduli

with D-term stabilization: K = 4~ (T + T)?. One can
E

consider the K3 fibration model: V= Tb,lfrlljy/zz —

hi'=2 . .
> Ti/iz together with loop corrections to fix bulk
moduli.

Let us consider the simplest case, h'! = hl! =2

In this case, we have

Veanl~enn, 1P
FTv FTs
e =My, a2 (Al
T, +T, T, + T, log(Mp/ms),)
Here, one finds
msjy = Wo my, ~m <m3/2>1/2
3/2 — N7 b 32\ 7, 5
2TV, 2\ My,
my ~log("Vp)ms),, (A12)

with V> 1. Note a,r, ~log(Vy) ~ log(Mp/ms,)
and 7}, is the SUSY-breaking saxion similar to the case
[55], whereas the axion is not couple to the visible sector.
T, is an almost no-scale model modulus, while 7 is a
KKLT-like modulus. In this model, anomaly mediation

PHYSICAL REVIEW D 84, 045021 (2011)

could be suppressed compared to F' /(T + T) by V.,
where r is a fractional number.

Modified original LARGE volume scenario

Note that one can consider the model such like the
original scenario with an additional odd parity moduli
instead of vanishing the SM cycle on the D7-branes, i.e.
hY' =2 and hL!' =1, and we will discuss the neutral
stringy instanton or gaugino condensation under the
anomalous U(1) symmetries on the brane with world vol-
ume flux [69]. This is the case in contrast to the paper [70]
and is similar to the heterotic case [71]. Then, the Kdhler
potential and the superpotential are written by

K = —log(§ + S) — 210g(VE + g), AL3)

W = WO + Ae—a(T++qG+hS)’

where

(A14)

V= (2Tb)3/2 — (27’ G+ 6)2)3/2

+F (S +8)

Here, G is the odd parity Kéhler moduli and note that in
general odd parity moduli {G} necessarily follow even
parity moduli {7} in the world volume of the brane. Then
we took only the leading term of summation of instanton
configuration for simplicity. In addition, the gauge kinetic
function of the SM sector is written by

fsm = T+ + qgsmG + hguS. (A15)

Again, we neglect moduli redefinitions at 1-loop level.
Here, we assume that nonperturbative superpotential
comes from the E3-brane instanton wrapping on the divisor
Dy with the flux. h, g, hgy;, and ggy; depend on the flux on
E3-brane and the visible sector D7-branes wrapping on
Dg\ holding not only the SM gauge group but also the
anomalous U(1) symmetry, respectively. Dy and Dgy; map
to Dp and Dgyy, respectively, under orientifold action;
Dy and Dgy, include both even and odd elements, e.g.
[Dgsm] = [Dgsul + [Dpsw] and [Dggy] = [Dgsml —
[Dg swrl), where [D] is the Poincare dual of D. Here, we
take triple intersection dyp, =d. . =d,__ =1 for
simplicity. Now the presence of G means there can be an
anomalous U(1) symmetry; both T, and G should be
charged under the anomalous U(1) symmetry:

N
6G =iQ, = i——,
Q6 1877'2

N (A16)
6T+ == lQT == _ig(FBSM + _’FBSM)
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Here, N is the number of the D7-branes and F =
Fp o+ F) , is the internal world volume flux
relevant to the anomalous U(1) on the visible sector
D7-branes, where F* =b" + F" and b =0 or 1/2
and w_ € H-'(CY), w, € HY'(CY) are (pullback on
the SM cycle of) the harmonic two-cycle basis on the
CYy space.9 Here, we took all the wrapping number of the
D7-brane and E3-brane against the even or odd cycle unity:
Ci = Cg = Cp,, = Cp, = 1 in the notation of the pa-
per [69]. Therefore, the following condition,

+ Fhow (A17)

q = Fp,,

should be satisfied for the neutral superpotential in this
simple case.'” The D-term potential is given by

1
2Re (f)DA’

Dy=Q7rdrK+ QK=

Vp=

N

up to matterlike fields. If all the gauge couplings, including
the U(1) symmetry, are gauge invariant as the above simple
case, the U(1) can become nonanomalous; one should
include matter. Otherwise, the U(1) is in general anoma-
lous; one would be able to neglect matter. For such a case,
this model would have string-theoretic axion, which
is absorbed into the U(1) vector multiplet. Define ® =
T, + qG and u = gT, — G. As a consequence ® and u
are stabilized near SUSY solution without matter field
vevs, DogW ~ 0 and D, = K, ~ 0; one obtains the scalar
potential after integrating out u and Im(d):

Vo WGP 2N Apake R W,  3WGE
3Vg Vi 2V3
(A19)

where A = Ae™%"S_ Here, we have deﬁned ¢ = Re(P) —
g*/8. Thus, one would find m;,, ~ - and

°p* = 1/2 would be necessary because of the Freed-Witten
anomaly [72] on the D7-branes wrapping on the Dg); and the E3-
brane.

"%Here, fqy could be also gauge invariant under the U(1) since
we could have ¢ = ggy; the U(1) could be nonanomalous.
However, for instance, when there is a relation that Cp,_~#
Cf, or are fluxes depending on the SM gauge group and the
U(1), fsum is not necessarily invariant under the U(1): ¢ # gsm
and the U(1) is generally anomalous.

PHYSICAL REVIEW D 84, 045021 (2011)

£2/3 2
Vey~ir) @9, (@)~ 4L 437
2 8 a
1 3 ms/ 1/2
(Re(u))~ g(Re(®) = 2(g>+q),  my~myp(72) ",
- ~loo(V o Mp
meg a¢m3/2 log( E)m3/2» m, =My ~Q ,
VVe
P E L E L M M
T,+T, % 2¢ 26 P me log(Vy)
D, ~0. (A20)

Thus we find FT =~ F® and F° =~ 0. Here, we have used

(a,a]D)F’FJ/MV [42,49,73,74] and assumed that

the anomalous U(1) gauge coupling and vev of the S are of

O(1). One finds in the vacuum G" = ¢G®, d7,05K, =

—an,a K, and d404K, = 2q6¢)§ K,. Note also that

aThaTbK and 9,,0,K,, are irrelevant'' since one can obtain

~ 0 in the vacuum; there is a cancellation in the D-term

at of O(V;?) at least. Detailed study of this model is

beyond the scope of this paper and we will leave it to
future work.

4. Racetrack model

This is the model [14] with bulk moduli and double
gaugino condensations. The Kéhler potential and the
superpotential are obtained

K=-2 1Og(VE):

I (A21)
W =W, + > Aje i — Bie T,

where W, < 1. Here, we add the uplifting potential,

€ (IW]?)
Viige = , >3~ (A22)
S (V3
Then, one finds via SUSY condition D;W ~ 9;W ~ 0

2
mspn  M3p
5 =
aib,-Tl- mTI_

(A23)

1 aiAi FTi
T; = log , = =~
a; — bi biBi Ti + Ti

mr, = a;bi(T; + Ti)ng/z

s

If one tunes W, to obtain (W) ~ 0, moduli masses become
much heavier than the gravitino mass [38].

"Suppose that Dy ~ K, = V"V « V!, Then, one can
/3 = V 7/3+l) <
see I{,aThK ~K,/V and 8u8uKu K,
V" and they are neghglble
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