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We study properties of moduli stabilization in the four dimensional N ¼ 1 supergravity theory with

heavy moduli and would-be saxion-axion multiplets, including light string-theoretic axions. We give

general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain

light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum,

i.e. nontachyonic saxions, in the nonsupersymmetric Minkowski vacua. We also discuss the cases where

the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to

supersymmetry breaking. Futhermore, we study the models with axions originating from matterlike

fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets.
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I. INTRODUCTION

Moduli stabilization in superstring theories compacti-
fied on the internal space is necessary to determine physi-
cal parameters such as gauge couplings [1], Yukawa
couplings [2,3] and soft supersymmetry (SUSY) breaking
parameters [4] in the visible sector, and to evade the
moduli problem [5] and undesirable new forces [6]. As a
consequence, it also can give several interesting implica-
tions to particle physics [7–12], through the KKLT pro-
posal [13] or the racetrack model [14].

The complex moduli fields in four dimension typically
consist of scalars f�g originating from geometry of com-
pactification space (e.g. its volume) and pseudoscalars fag
coming fromNSNS or RR tensor fields. Even though all the
scalars f�g are stabilized, some of their partners fag can still
remain light due to the shift symmetries: a ! aþ const.
Therefore, the latter pseudoscalars are often called string-
theoretic axions [15–17] and can include the QCD axion
to solve the strong CP problem [18–20].1 The number of
these axions are originally determined by the topological
property of compactified space, e.g. the Hodge numbers
of Calabi-Yau (CY) three-fold [21]. (See also for effective
field theories [22,23].) Because the numbers can be much
larger than of order unity, one can find many light string-
theoretic axions through the moduli stabilization, that is,
the string axiverse [24]. The axions can have large axion
decay constants beyond the axion window [25]2 and can

give influences on the cosmological observations [24]. For
instance, their misalignment angles and Hubble scale
during inflationary epoch are constrained and future ob-
servations of tensor modes and isocurvature perturbations
could suggest the evidence of the (non)axiverse [26]. Of
course, the relic abundance of the axions should not
exceed the observed matter density [27]. This will give
an interesting constraint not only on the observations but
also on the string models in terms of moduli stabilization.
Therefore, our purpose is to study general framework of
moduli stabilization leading to light axions based on the
N ¼ 1 supergravity (SUGRA).
Besides string-theoretic axions, one often obtains light

field-theoretic axions at low-energy, too. Thus, in general,
the number of axions is estimated as [28]

ðthe number of axionsÞ¼ ðthe number of fieldsÞþ1

�ðthe number of terms in theWÞ:

Here, W is the superpotential. This is because the Peccei-
Quinn (PQ) shift symmetries of fields and the R-symmetry
produce candidates of the axions whereas independent
terms in the superpotential kill them, assuming the
Kähler potential K preserves these symmetries. Even if
the R-symmetry is broken explicitly, this estimate is con-
sistent when the constant in the superpotential is involved
in the term ‘‘the number of terms in the W’’. Although we
have neglected vector multiplets, which can become mas-
sive, they can also reduce the number of axion candidates
by absorbing them. When this counting becomes negative
or zero, we do not have any light axions. If there are very
small terms violating PQ symmetries in W or K, they give
very light masses to the axions.
In this paper, we study the moduli stabilization scenario

leading to light axions. We discuss conditions to give
heavy masses to all of real parts of moduli and leave
some of imaginary parts massless. One of important con-
ditions is SUSY-breaking, and the typical mass scale is the
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1If we are to identify one of the axions with the QCD axion,

the quality of the PQ symmetry needs to be checked for solving
the strong CP problem: �m2

a & 10�11ðmQCD
a Þ2. Here axion mass

�m2
a is a contribution from non-QCD effects, mQCD

a � �2
QCD=fa

is the QCD axion mass just from the instanton, fa is the decay
constant of the QCD axion and �QCD ¼ Oð100Þ MeV is the
QCD scale.

2In the LARGE volume scenario [9], one can find Mstring ’
1011 GeV � MPl ¼ 2:4� 1018 GeV [16].
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gravitino mass m3=2. All of the real parts of moduli must

have masses, which are larger than the gravitino mass
and/or comparable to the gravitino mass. On the other
hand, light axions masses are smaller and could be of
Oðmrþ1

3=2 =M
r
pÞ with r ¼ Oð1Þ or a few tens.

In Sec.II, we will study the properties of nonsupersym-
metric vacua with light string-theoretic axions. We
will also give comments on closed string moduli which
are directly coupled to the SUSY-breaking sector. In
Sec. III, we will study the string-theoretic R-axion and
the saxion-axion multiplet breaking SUSY. In Sec. IV, we
will discuss corrections to the light axion masses from
small breaking terms of PQ symmetries in the superpoten-
tial and the Kähler potential. In Sec. V, we will give com-
ments on simple models of field-theoretic axions in terms
of effective field theories. In Sec. VI, we will conclude this
paper. Our analysis on moduli stabilization is applicable
even if there are not light axion multiplets. In Appendix,
several types of moduli stabilization models are briefly
reviewed. We will give a brief comment on the LARGE
volume scenario based on the recent work of the neutral
instanton effect including odd parity moduli under orienti-
fold parity.

II. LIGHT STRING-THEORETIC AXIONS

In the following sections, we will consider moduli sta-
bilization at low-energy with the assumption that irrelevant
moduli are heavy by closed string fluxes [29]. The remain-
ing moduli of our interest can be stabilized via gaugino
condensation [30] or (stringy) instanton effects [31]. Thus
we study the superpotential below:

W ¼ Wð�Þ ¼ W0 þ
X
k

Ak exp

�
�X

i

aðkÞi �i

�
: (2.1)

HereW0 is a constant from the fluxes, f�ig are heavy closed
string moduli fields which are stabilized by this superpo-
tential and we use the unitMPl ¼ 2:4� 1018 GeV � 1. We
study the possibility that we can have massless axions at
this stage. The scalar potential is written by the super-
potential W and the Kähler potential K,

V ¼ VF ¼ eG½GIG �JG
I �J � 3�

¼ eK½KI �JðDIWÞðDJWÞ � 3jWj2�; (2.2)

where

G ¼ K þ logjWj2; DIW ¼ ð@IKÞW þ @IW: (2.3)

Here, KI �J ¼ GI �J denotes the inverse of the Kähler metric
KI �J ¼ @I �@ �JK. F-terms and the gravitino mass m3=2 are

given as

FI ¼ �eG=2GI ¼ �eG=2GI �JG �J; m3=2 ¼ eG=2: (2.4)

We will focus just on VF for simplicity.

A. Light string-theoretic axions and saxion masses
in the SUSY vacuum

In this subsection, we briefly review [16]. We study
saxion masses in the SUSY vacuum with light axions.
For instance, let us consider the superpotential with two

moduli ðT1; T2Þ:
W ¼ W0 þ Ae�aðT1þT2Þ � W0 þ Ae�a�: (2.5)

One can find u � T1 � T2 is absent from the superpoten-
tial, that is, we have just one phase of �: @uW ¼ 0.
Then the imaginary part ImðuÞ is a massless axion whereas
ReðuÞ may be stabilized via the Kähler potential K ¼
KðTi þ �TiÞ.
One can generalize this argument to the case with many

axions. Chiral superfields are classified into two classes.
One class of fields, u�ð� �� þ ib�Þ, do not appear in the
superpotential, i.e.

@W

@u�
¼ 0; (2.6)

while the fields �i in the other class appear. Then, the
imaginary parts of u�, i.e. b� are string-theoretic axions,
which have flat directions in the scalar potential for the
form of Kähler potential, Kðuþ �uÞ. We evaluate masses of
the real parts of u�, i.e. saxions ��. In the SUSY vacuum
with stabilized moduli one finds

DîW ¼ 0 for8 î ¼ ð�i; u�Þ: (2.7)

For the fields u�, this leads to

@K

@u�
¼ 0 or W ¼ 0: (2.8)

In this case, we find

h@��@��VFiSUSY ¼ 4eKjWj2½2Kî �̂jKîð ��K�Þ�̂j � 3K� ���
¼ �4eKjWj2K� �� � 0: (2.9)

That is, every massless string-theoretic axion has undesir-
able massless saxion for W ¼ 0 or tachyonic saxion in
the SUSYAdS vacuum for W � 0. This is because K� �� is

the positive definite matrix. Note that the term
4eKjWj2 � ð�3K� ��Þ comes from the vacuum energy. We

have used the property of perturbative moduli Kähler
potential,

@��Kð�þ ��;uþ �uÞ ¼ 2@u�Kð�þ ��;uþ �uÞ
¼ 2@ �u�Kð�þ ��;uþ �uÞ: (2.10)

The tachyonic instability might not be problematic in the
AdS vacuum because of the Breitenlohner-Freedman
bound [32]. At any rate, one should consider the SUSY-
breaking Minkowski vacuum to realize the realistic vac-
uum, although one may need fine-tuning to uplift the
SUSY AdS vacuum to the Minkowski one. Hence, in the
following sections, we will consider the SUSY-breaking
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effects and then one can see that the saxions become stable
for vanishing vacuum energy.3

B. Light string-theoretic axions and the saxion mass in
the SUSY-breaking Minkowski vacuum

Here, we study saxion stabilizaton in the SUSY-breaking
Minkowski vacuum with light axions. As a SUSY-breaking
source, we consider a single chiral field X. We assume that

moduli F-terms Gîðî ¼ i; �Þ are smaller than GX and the
cosmological constant is vanishing, hVFi ¼ 0, that is,

GXGX ’ 3; GXGX 	 GîGî; (2.11)

where GA ¼ GA �BG �B.
Here, we study the model, where the SUSY-breaking

sector X and moduli are decoupled in the Kähler potential
K and the superpotentialW. That is, we consider the follow-
ing form of the Kähler potential and the superpotential

K ¼ K̂ðX; �xÞ þKð�þ �F; uþ �uÞ;
W ¼ ŴðXÞ þW ð�Þ:

(2.12)

Hereafter we will set KX �X ¼ 1 at the leading order of �XX.
Note that @�W ¼ 0 and G

X�̂i
¼ K

X�̂i
¼ 0. When there is a

large mass splitting between moduli � and X, KX �i � 0
would be possible, but KX �i � 1 would be necessary for
the stable vacuum; KX �i ¼ 0 would be an appropriate ap-
proximation. A simple example of the SUSY-breaking

models has Ŵ ¼ �2X [33–36].4 At any rate, here we con-

sider generic form of the SUSY-breaking superpotential Ŵ.
From the above assumption, one expects moduli �i and

u� are stabilized near the SUSY solution,

K iW þW i 
 0; K� 
 0; (2.13)

such that one obtains heavier moduli masses than the

gravitino mass m3=2 ¼ eG=2. In the SUSY-breaking vac-

uum with a vanishing cosmological constant, one finds the
stationary condition:

@IVF ¼ GIVF þ eG½GI þGKrIGK� ¼ 0; (2.14)

which leads to

GAIG �BG
A �B þGI �GAG

�B@IGA �B ¼ 0: (2.15)

Here I denotes X, i, � and r is a covariant derivative with
respect to the Kähler metric. Since GX �i ¼ 0, the above
equation becomes

ffiffiffi
3

p ðGXX þ 1Þ þGXîG �jG
î �̂j �GXG

�X@XGX �X ¼ 0

for I ¼ X;
ffiffiffi
3

p
GXî þGî ĵG �̂k

Gĵ �k þGî �GĵG
�̂k@îGĵ �̂k

¼ 0 for I ¼ î:

(2.16)

Here, we have used

GX ¼ G �X ¼ ffiffiffi
3

p
; (2.17)

because KX �X ¼ 1 and Eq. (2.11). Using GX� ¼ 0, one
finds in the vacuum

G� ¼ K� ¼ 1

2
GîG

�̂j@�Gî �̂j
: (2.18)

This means F-term of u� is suppressed unless there is
mixing between ðX;�iÞ and u�. For X and �i, one can
typically neglect subleading terms

GXîG�̂j
Gî �̂j � 1;

Gi �GĵG
�̂k@iGĵ �̂k

� ffiffiffi
3

p
GXi þGiĵG �̂k

Gĵ �̂k;
(2.19)

and one obtains

rXGX ’ �1; Gi ’ � ffiffiffi
3

p ðG�1ÞijGXj: (2.20)

Here ðG�1Þijði; j � �Þ is an inverse matrix of Gij ¼
Ki �j þW ij=W �W iW j=W

2. Thus one can expect the

shifts from the SUSY solution of Gi ¼ 0 and K� ¼ 0 are
given by

��i 
K �klðG�1Þilð �G�1Þ �k �jG �X �j;

�u� 
K� ��GiG
�j �@ ��Gi �j �K� ��K ��i��

i:
(2.21)

Here we have used typical results
P

�k�heavy moduli

Ki �kK
�kj 
 �j

i and
P

���light moduliK� ��K ��� 
 ��
�. One

will see these shifts can be suppressed by the heavy moduli
masses squared as m2

3=2=m
2
�i .

1. Masses for sGoldstino X and heavy moduli �i

We evaluate masses of X and �i. By differentiating
Eq. (2.14), we obtain in the vacuum

hVI �Ji ¼ eG½GI �J þrIGK
�r �JG

K � RI �JK �LG
KG

�L�
þ ðGI �J �GIG �JÞVF;

hVIJi ¼ eG½2rJGI þGKrJrIGK� þ ðrJGI �GIGJÞVF;

(2.22)

where

RI �JK �L � KI �JK �L � KIK �AK
�ABK �J �LB: (2.23)

Since we assumed that heavy moduli�i are stabilized near
the SUSY solution, one can neglect GI term to calculate

3One can also consider a nonperturbative effect on the Kähler
potential or D-term moduli stabilization which means a gauge
multiplet eats an axion multiplet to lift saxion direction.

4There are also models including SUSY-breaking moduli [37],
but we will not consider such models since subtle fine-tuning
would be necessary.
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heavy moduli masses m�i at the leading order of SUSY-
breaking effect.

For example, one expects

m�i 
 ai�
im3=2; (2.24)

for the KKLT-like stabilization [13] and

m�i * ðai�iÞ2m3=2; (2.25)

for the racetrack model [14], which is viable even for
W0 ¼ 0. (See also Appendices A 2 and A 4 for the
KKLT-like stabilization and the racetrack model, respec-
tively.) Here ai denotes the most effective (or smallest)

one in faðkÞi g appearing in the Eq. (2.1) to the moduli mass
m�i . One could obtain heavier moduli masses than the
gravitino mass by fine-tuning the constant W0 in the race-
track model [38].

In general, one expects m�i 	 m3=2 and mass squared

matrix elements of the moduli � are written as

Vi �j ’ eG½GikG �j �lG
k�l� � Ki �jm

2
�i ;

Vij 
 2eGGij � 2Ki �jm3=2m�i ;
(2.26)

that is,

Vi �j 	 Vij; (2.27)

for m�i 	 m3=2. Note that the mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi �j=Ki �j

q
’ m�i is

the supersymmetric mass of modulus �i. In the above, we
have used the following approximation,

Gij ¼ Ki �j þ
W ij

W
�W iW j

W2
’ Ki �j �KiKj þ

W ij

W

’ W ij

W
� Ki �j

m�i

m3=2

;

GXi ¼ �W iŴX

W2
’ �ð ffiffiffi

3
p � K̂XÞKi 
Ki � Gij;

Gijk 

W ijk

W
�W ijW k

W2

 akKi �j

m�i

m3=2

þKkKi �j

m�i

m3=2


 akKi �j

m�i

m3=2

;

GXij 
�WijŴX

W2

�Ki �j

m�i

m3=2

: (2.28)

We took the diagonal mass matrix Gij for simplifying the

discussion here. Also one finds

Gi
ð3� ffiffiffi
3

p
K̂XÞKi �jK �j

m3=2

m�i


�ð�iþ ��iÞð3� ffiffiffi
3

p
K̂XÞ

m3=2

m�i

: (2.29)

For G� with Ki� � 0 for any i, their values are estimated

as G� ’ K��i �G�i 
Gi. Here we have used no-scale like

structure
P

�j�heavy moduliK
i �jK �j 
�ð�i þ ��iÞ up to

would-be small perturbative corrections, though there is
the small u� dependencies K� 
 0. Note that the contri-
bution of Eq. (2.28) to Vij can be comparable to super-

symmetric case, but one still has Vi �j 	 Vij. Thus, one can

obtain the (perturbatively) stable minimum for proper val-
ues of the moduli masses, m�i . That is, by making Vi �j

larger than Vij, one can realize positive definite mass

eigenvalues for all of moduli around the SUSY solution
Gi ¼ 0. Indeed, by using the above result, it is found the
shift ��i in (2.21) is suppressed by the factor, m2

3=2=m
2
�i .

Next, we evaluate the mass of sGoldstino X. The
sGoldstino acquires not the mass from W but only
SUSY-breaking mass from the Kähler potential because
of massless Goldstino in the rigid limit. There is the
necessary condition (not sufficient) for the stable SUSY-
breaking vacuum, i.e. nontachyonic nonholomorphic
sGoldstino mass [37,39]:

m2 ¼ VI �Jf
If

�J ¼ ½3ð1þ �Þ�̂� 2��m2
3=2 > 0; (2.30)

where

�� VF

3m2
3=2

; �̂� 2

3
�RI �JK �Lf

If
�JfKf

�L; fI � GI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GKG

K
p :

(2.31)

For � ¼ 0 one expects

m2 ¼ 3�̂m2
3=2;

�̂ ’ 2

3
� RX �XX �X ¼ 2

3
þ KXX �XK

X �XK �X �XX � KX �XX �X: (2.32)

For instance, let us consider the Kähler potential with a
heavy scale � � MPl � 1 [34,35,40]

K̂ ¼ �XX � ð �XXÞ2
4�2

þ � � � : (2.33)

Then one obtains

�̂ ¼ 1

�2
þ �XX

�4
þ 2

3
> 0: (2.34)

Here hXiwould be ofOð�2Þ for the Polonyi model. For off-
diagonal component VXX, so long as GXXX and @X�

X
XX are

of order unity in the Planck unit, one can find VXX ¼
Oðm2

3=2Þ � m2. Thus, there would be the stable minimum.

For string theories, � would correspond to the mass scale
of heavy field which is coupled to X, such as anomalous
Uð1Þ gauge multiplet mass [41] which is comparable to the
string scale, when X has the Uð1Þ charge.
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2. Masses for saxion ��

Here, we evaluate masses of saxion ��. One finds posi-
tive mass squared:

h@��@��VFi ¼ 4eG½2G� �� � @îG� ��G
î � �@�̂iG� ��G

�̂i

þGîG�̂j
@� �@ ��G

î �̂j�
’ 8eGG� �� > 0: (2.35)

Here, we have neglected the last three terms in the bracket,

since when one obtains m3=2 ¼ eG=2 � m�i one can find

Gî@îG� �� 
m3=2

m�

G� ��: (2.36)

Again, we have used a no-scale-like structure

K �jK
i �jKi ¼ const. Then, the last three terms in

Eq. (2.35) are suppressed by m3=2=m� and ðm3=2=m�Þ2
respectively, compared to the first term.

Instead of X, with the sequestered explicit SUSY-

breaking term Vlift ¼ 	e2K=3 where 	 ¼ 3heK=3jWj2i,
one finds the similar results [17], h@��@��VFi ’ 4eGG� ��

and Gi 
 ðG�1ÞijKj 
 ð�i þ ��iÞm3=2=m�i , i.e. m� ’ffiffiffi
2

p
m3=2. Here, we have neglected the term which is pro-

portional to K�K� in h@��@��VFi. Note also that mass

spectra of heavy moduli for such a case are similar to
ones discussed above.

3. Matrix elements

Here, we summarize the mass matrix. Including other
matrix elements, one can find typically

Vi �j 
 eG½GikG
k
�j
þGiX

�G �j �X� 
 eGGikG
k
�j
’ Ki �jm

2
�i ;

Vij 
 eG½2Gij þGijX� 
 2eGGij ’ 2Ki �jm�im3=2;

Vi �X 
 eG½GijG
j
�X
þGiX� 
 eGGijG

j
�X

Kim�im3=2;

ViX 
 eGGjGXij 
m2
3=2

m�i

m�j

ð�j þ ��jÞKi �j 
Kim
2
3=2;

VX �X 
�eGRX �XX �XjGXj2 ’ 3�̂m2
3=2;

VXX 
 eG½1þrXrXGX þGiðGXXi þ �X
XXGXiÞ� 
m2

3=2;

Vi�� 
 eGGkiG
jGk �mK�j �m 
m2

3=2

m�i

m�j

ð�j þ ��iÞKij ��


Ki ��m
2
3=2;

VX�� 
 eGGiXG
jGi �mK�j �m 
 ð�i þ ��iÞKi ��m

2
3=2

m3=2

m�i

;

V���� ’ 8m2
3=2K� ��; (2.37)

where we have used

GXXi 
 2
W2

XWi

W3
�WXXWi

W2
� 2

WXiWX

W2
þWXXi

W

Ki;

(2.38)

as well as @nXW & W. In general, VXX and Vi �X could cause
the vacuum instability even if m�i 	 m3=2 and �̂ > 0.
Based on these matrix elements, one expects the conditions

Vij < Vi �j; VXX < VX �X; ViX; Vi �X <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi �jVX �X

q
;

Vi�� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi �jV� ��

q
; VX�� <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VX �XV����

p
(2.39)

should be satisfied for the (meta)stability. For this case, so
long as �̂ 	 1 one would obtain the stable minimum.
Then, the mass spectrum is summarized as

m2
i ’ m2

�i 	 m2
X� ’ 3�̂m2

3=2; m2
�� ’ 4m2

3=2: (2.40)

At this stage, the axions b� are massless. Note that all of
saxions �� corresponding to massless axions have almost
the same mass m�� ¼ 2m3=2.

Here, after the Goldstino is absorbed into the gravitino,
the unnormalized axino masses are given by

ðm~aÞ�� ¼ eG=2

�
r�G� þ 1

3
G�G�

�
’ eG=2G� ��: (2.41)

We have neglected G� and Gi because they are of
Oðm3=2=m�iÞ corrections.

4. F-term

In the above case, one can find

FX ’ � ffiffiffi
3

p
m3=2;

Fi

�i þ ��i
’ ffiffiffi

3
p ð ffiffiffi

3
p � KXÞm3=2

m3=2

m�i


Ki �jðK� �jÞ�1 F�

�i þ ��i
: (2.42)

Here, we used the result

Gi ’ Gi �jG �j; G� ’ G� �jG �j; ði; �j � �Þ; (2.43)

which leads to G� 
Gi. Even if any u� are stabilized via
D-terms, K� 
 0, we gain F-term of the u� through the

off-diagonal Kähler metric [42–44]. Note that if G� �j ¼ 0,
one finds F� ¼ 0 since G� ¼ 0 for such a case [45]. For
string-theoretic axion(s) breaking SUSY, see Sec. IIIb.

C. Note on mixing between X and moduli and D-terms

For simplicity, we have discussed so far the case that the
SUSY-breaking field X does not couple to moduli � for a
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simplicity. However, in string theories, it is natural that
moduli are coupled to the SUSY-breaking sector via non-
perturbative effects, so that one obtains much smaller scale
than the string scale. Now, let us consider the mixing

between X and heavy moduli by replacing ŴðXÞ in
(2.12) as follows,

ŴðX;�Þ ¼ fðXÞ exp
�
�X

i

aXi �
i
X

�
: (2.44)

Here, fðXÞ depends only on X. For instance, one can
consider the case that fðXÞ 
 X [35,36] or fðXÞ 
 X�1

[10]. Then, we consider the moduli stabilization with the
superpotential,

W ¼ ŴðX;�Þ þX
k

Ake
�P

i
aðkÞi �i

X : (2.45)

We assume

aXi 
 ai; (2.46)

in the above superpotential, where ai is the most effective

one to the moduli mass in aðkÞi for �i
X. Then, one can find

WXi 
�aiWX ’ �aið
ffiffiffi
3

p � KXÞW: (2.47)

Also, one obtains for �i
X

GXi¼WXi

W
�WiWX

W2
’�ð ffiffiffi

3
p �KXÞðaXi þKiÞ&Gij;

GXij

WXij

W
�WijWX

W

aXi a

X
j �Ki �j

m�i

m3=2


aXi a
X
j *Gij;

GXXi
2
W2

XWi

W3
�WXXWi

W2
�2

WXiWX

W2
þWXXi

W

KiþaXi ;

(2.48)

and also we estimate

Gi 
 ðG�1ÞijGjX 
Ki �jaXj
m3=2

m�i


 að�þ ��Þ2 m3=2

m�

;

G� 
K��i �G�i 
Gi: (2.49)

For metastability, one expects the conditions (2.39) should
be satisfied.

Here, with the assumption that GXXX ¼ Oð1Þ, one finds
for �i

X

Vi �j 
 eG½GikG
k
�j
þGiX

�G �j �X� 
Ki �jm
2
�i þ aXi a

X
j m

2
3=2;

Vij 
 eG½2Gij þGijX þGkGijk� 
Ki �jm�im3=2

þ aXi a
X
j m

2
3=2 þ aXi ajm

2
3=2

m�i

m�j

;

Vi �X 
 eG½GijG
j
�X
þGiX� 
 aXi m�im3=2 þ aXi m

2
3=2;

ViX 
 eG½GXXi þ ð1þ �X
XXÞGXi þGjGXij�


 aXi K
j �kaXj a

X
k m

2
3=2

m3=2

m�j

þ aXi m
2
3=2;

VX �X 
GiXG
i
�X
� eGRX �XX �XjGXj2

’ 3�̂Rm
2
3=2 þKi �jaXi a

X
j m

2
3=2;

VXX 
 eG½1þrXrXGX þGiðGXXi þ �X
XXGXiÞ�


m2
3=2

�
1þKi �jaXi a

X
j

m3=2

m�i

�
;

Vi�� 
 eG½Gi �� þGkiG
jGk �mK�j �m�


Kj �kKij ��a
X
k m

2
3=2

m�i

m�j

þKi ��m
2
3=2


Kj �kKij ��a
X
k m

2
3=2 þKi ��m

2
3=2;

VX�� 
 eGGiXG
jGi �mK�j �m


Ki�laXi K
j �maXmKj�l�m

2
3=2

m3=2

m�j

;

V���� 
K� ��m
2
3=2

�
8þ aXi �

i
m3=2

m�i

�

K� ��m

2
3=2; (2.50)

where �̂R denotes only RX �XX �X contribution in �̂.
However, if the linear combination of aXi �

i
X were sta-

bilized via a KKLT-like model, i.e. DWjKKLT 
 0 and
mi 
 ðai�i

XÞm3=2, one would obtain

GXGX 
GiGi; (2.51)

in addition to ViX 
 Vi �X 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi �jVX �X

p
for �̂R & aXi �

i
X,

Vi �j 
 Vij and Vi�� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi �jV����

p
. This means the assump-

tion that GX is the main source of the SUSY-breaking is
violated; KKLT stabilization of aXi �

i
X and realization of

the Minkowski vacuum can not be realized successfully
and the vacuum would be destabilized to the SUSY AdS
one [35,46,47]. Even if the assumption that ai 
 aXi is
violated, the uplifting to the Minkowski vacuum with
KKLT stabilization of aXi �

i
X would fail since there would

be the runaway direction, e.g., for small X. Thus, the linear
combination of moduli aXi �

i
X, which are coupled to the

SUSY-breaking sector X, should be stabilized via racetrack
model [10,35,36],5 fluxes, or D-terms [42,48], so that they
gain much heavier masses than the KKLT-type mass,mi *
ðai�i

XÞ2m3=2 	 ðai�i
XÞm3=2 	 m3=2. (See also [28] for

5For racetrack stabilization of �i
X, the condition that Vi �X <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vi �jVX �X

p
would be subtle for �̂R & aXi �

i
X. However, one can

find the stable vacuum in the concrete models.
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models in which there is the coupling between the SUSY-
breaking sector and the saxion-axion multiplet. In the
model, one finds also the saxion mass much larger than
the gravitino mass via the Kähler stabilization.)

ForD-term stabilization @�iK ¼ 0, the moduli charged
under anomalousUð1Þ symmetries can become massive by
Uð1Þ symmetry breaking and the massive vector multip-
let’s eating them, even though @�iW ¼ 0 if matter vevs
become consequently irrelevant to the vector mass MV :

m2
�X

� M2
V ’ g2
�X
�XK�X

��X
: (2.52)

Here, 
�X is the variation of �X under the anomalous
Uð1Þ, and MV from �X can be comparable to the string
scale. Thus, for such a case, one can find SUSY-breaking
Minkowski vacuum, i.e. via F-term [49] or D-term con-

ditions [42,48], the superpotential W 
 A0ð�Þe�ai�
i þ

e�aXi �
i
XX can be replaced by

W
A0ðh�iÞe�ai�
i þe�aXi h�i

XiX�Ae�ai�
i þ�2X (2.53)

in the low-energy limit. Here, f�g are open string modes.
In the paper [42], when one obtains the tiny Fayet-
Iliopoulos term

M4
V

3
’ �FI (2.54)

so that �X is absorbed into vector multiplet, one can find
Minkowski vacuum due to the Polonyi model in the
low-energy limit. Here, �FI ¼ 
�X@�X

K is the Fayet-

Iliopoulos term from moduli �X. For such a case, F�X 


�Xm3=2 
 10�2m3=2 is obtained with D-term stabiliza-

tion. (Note that one may findM2
V � �FI if @

2
�X

K
 @�X
K

and 
�X � 1.)

III. APPROXIMATE R-SYMMETRY, R-AXION
AND SUSY-BREAKING MODULI

In this section, we study the model, which has an ap-
proximate R-symmetry and R-axion. We also study the
model, where SUSY is also breaking by moduli fields.
Indeed, we show that both models are investigated in the
same way.

A. R-axion and SUSY-breaking moduli

In general, a global Uð1Þ R-symmetry is broken explic-
itly because string theory describes the quantum gravity.
Indeed, string models with the exact and global Uð1Þ R
symmetry have not been found. For instance, the constant
W0 in the superpotential is easily obtained via flux com-
pactifications, but the value depends on the choice of the
flux vacua [50]. Therefore, at a certain scale there may be
an approximate R-symmetry accidentally in the SUSY-
breaking sector and the moduli stabilization sector when
one obtains W0 ¼ 0 in the superpotential [51].

For example, the following superpotential,

W ¼ Ae�a�; (3.1)

has the R-symmetry, where the field � transforms as
� ! �� i 2a � under the R-transformation with a trans-

formation parameter �. Similarly, the racetrack model has
the R-symmetry [10,35,52,53] if one has more than two
fields in the superpotential withoutW0. Thus, when Reð�Þ
is stabilized by the Kähler potential,, for example, we
obtain the so-called light R-axion.
Here, we consider the R-symmetric superpotential.

Then one can rewrite the superpotential including SUSY-
breaking sector X,

W ¼ e�RW ðX;�Þ; (3.2)

where @RW ¼ 0. SinceR can include not only X but also
moduli in the linear combination, we call it string-theoretic
R-axion. Only R transforms as R ! Rþ i2� under
the R-symmetry, while the others do not transform. Note
that by the Kähler transformation with holomorphic
function G,

K ! K þG þ �G; W ! exp½�G�W; G ! G;

(3.3)

physics is invariant since the action is written by only the
total Kähler potential G ¼ K þ logjWj2. Thus, one can
consider the following Kähler potential K and the super-
potential W,

K ¼ Kð0Þ � ðRþ �RÞ; W ¼ W : (3.4)

Here, Kð0Þ is the original Kähler potential obtained from
the dimensional reduction. Then, one finds

GR ¼ KR ¼ Kð0Þ
R � 1;

GI ¼ KI þW I

W
for I � R: (3.5)

Hence, unless GR ¼ 0, the R-axion is a source of the
SUSY-breaking. By Nelson and Seiberg’s argument
[53,54], the existence of the R-axion means the SUSY-
breaking, provided the model is generic and calculable.
Hence, we will also consider the SUSY-breaking moduli
with the vanishing cosmological constant: GR � 0 and
hVFi ¼ 0.
Because the differences between string-theoretic

R-axion and string-theoretic axions u are just that the
Kähler potential and their first derivatives as we saw, the
following results are applicable not only to the string-
theoretic R-axion, but also to usual string-theoretic axions
u, which have nontrivial contributions to SUSY-breaking.

B. SUSY-breaking string-theoretic (R-)axions

Let us consider the Kähler potential

K ¼ K̂ðX; �XÞ þ ~KðRþ �RÞ þKð�þ ��Þ; (3.6)
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with GR � 0. For simplicity, we will study the case that
the Kähler potential is separable and focus only on the
SUSY-breaking string-theoretic (R-)axion neglecting dy-
namics of heavy moduli�. Note that the discussion in this
section is applicable to an usual string-theoretic axion u,
which have nontrivial contributions to SUSY-breaking.

One obtains the stationary condition with the vanishing
cosmological constant:

rXGX ’ �1;

GR ¼ GR

~KR �R

’ 2
1

�R
RR

’ 2
~KR �R

@R ~KR �R

ðrRGR ¼ �GR �RÞ:

(3.7)

For the second derivatives @I@JVF, we obtain

VX �X ¼ eGð2� RX �XX �XjGXj2Þ;
Vrr ¼ 4eGð2 ~KR �R � RR �RR �RjGRj2Þ;
VXX 
 eG; VrX ¼ 0: (3.8)

Here we have denoted R ¼ rþ is. When one sets K̂ as
(2.33), one obtains

� RX �XX �X ’ 1

�2
	 1: (3.9)

With respect to the SUSY-breaking (R-)axion, let us take
the Kähler potential below

~K��nlogðRþ �RÞþ�ðRþ �RÞ�ðRþ �RÞ; (3.10)

and we write

~KR �R � n
½1þ �ðRþ �RÞ�

ðRþ �RÞ2 : (3.11)

Then, one can find

GR ’ �ðRþ �RÞ
�
1þ 1

2
ðRþ �RÞ � �0

�
;

�RR �RR �R ’ �2n
1

ðRþ �RÞ4
�
1þ �þ 1

2
ðRþ �RÞ2�00

�
;

Vrr ’ �4n
ð2�0 þ ðRþ �RÞ�00Þ

ðRþ �RÞ eG 
 � ~KR �ReG:

(3.12)

Here, we used Eq. (3.7) and � would come from the
construction effect of R from the original moduli or the
quantum effects of order gs and of order �0, and would
be expected as

� & Oð1Þ: (3.13)

This result is applicable to many scenarios, including the
SUSY-breaking light (R-)axion multiplet [9,10,52,55]. For
the above case, fine-tuning of the vanishing cosmological
constant leads to

jGXj2 þGRGR ’ jGXj2 þ nþOð�Þ ¼ 3: (3.14)

Then, one should set

GX ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� nþOð�Þ

p
; (3.15)

where n > 0. Thus, we obtain

FX ’ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3� nÞ þOð�Þp
m3=2;

FR

Rþ �R
’ m3=2;

Fi

�i þ ��i
’ m3=2

m3=2

m�i

: (3.16)

For n ¼ 3, the sGoldstino is almost the SUSY-breaking
(R-)saxion.
Here, nonholomorphic sGoldstino mass is given by

m2 ¼ 3�̂m2
3=2;

�̂ ¼ 2

3
� 1

9
ðRX �XX �XjGXj4 þ RR �RR �RjGRj4Þ


 2

3
þ 1

9�2
ð3� nÞ2 � 2n

9
þOð�Þ: (3.17)

Then, so long as Vrr > 0, we would obtain positive definite
mass matrix for n � 3

mX� ’ m2
3=2

�2
; m2

r ¼ 1

2

Vrr

~KR �R


�m2
3=2: (3.18)

For n ¼ 3, one finds

mX� 
m2
3=2

�
1þ �

�2

�
; m2

r 
�m2
3=2: (3.19)

Here, after the Goldstino is absorbed into the gravitino,
the unnormalized axino masses are given by

ðm~aÞRR ¼ eG=2

�
rRGR þ 1

3
GRGR

�

’ eG=2

�
�GR �R þ 1

3
GR �RGRGR

�

’ eG=2GR �R

�
�1þ n

3
þOð�Þ

�
: (3.20)

For n ¼ 3, SUSY-breaking (R-)axino becomes the
Goldstino, which is absorbed into the gravitino.
We give a comment on the small mixing GRi ¼

GR�i � 0 here. In many cases, there is the off-diagonal
Kähler metric GRi ¼ GR�i � 0 and the main source of
the SUSY-breaking could be the overall (volume) modulus
(n ¼ 3) and it affects F-term of heavy moduli �i if any:

Gi 
 ðG�1ÞijGRrjGR 
 ð�i þ ��iÞm3=2=m�i . Here, we

have used the explicit Kähler potential for the LARGE
volume case in Appendix. However, as a consequence,
the qualitative features in this section include such scenar-
ios. Thus, the result in this section would be applicable to
such cases.
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IV. CORRECTIONS TO AXION MASSES

Axions b� are exactly massless at the previous stage.
Here, let us consider small corrections to the axion masses.
These can be computed also in the SUSY vacuum, if the
SUSY-breaking sector does not violate any continuous PQ
symmetry of u�. Recall that only heavy moduli should be
coupled to the SUSY braking sector except the R-axion.
For the small corrections, shifts of the saxion masses are
negligible.

A. Superpotential correction

Here, we consider the correction term �Wð�i; uÞ to the
previous superpotential (2.1). That is, we study the follow-
ing superpotential:

W ¼ W ð�iÞ þ �Wð�i; uÞ; (4.1)

where

W ð�iÞ ¼ W0 þ
X
k

Ak exp

�
�X

i

aðkÞi �i

�
;

�Wð�i; uÞ ¼ X
k

Bk exp

�
�X

î

bðkÞ
î
�î

�
:

(4.2)

Recall that �î denote all of the moduli including �i and
u�. Hence, the term W ð�iÞ includes only heavy moduli
�i, but not light axion multiplets u�, while �Wð�i; uÞ
includes u�. We assume Bk ’ Ak ¼ Oð1Þ. We would like
to consider the situation that hW i 	 h�Wi. If any terms

Bk expð�
P

îb
ðkÞ
î
�îÞ in �Wð�; uÞ do not satisfy the condi-

tion, hW i 	 Bk expð�
P

îb
ðkÞ
î
h�îiÞ, we have to take into

account such terms from the previous stage of moduli
stabilization in Sec. II and III and include them in
W ð�Þ. Then, some of u become heavy reducing the
number of light axions. Therefore, heavy moduli should
be coupled to saxion-axion multiplets in �W.

Then, one finds the axion mass ma as [16,26]

L ¼ �K� ��@�b
�@�b� � ðm2

aÞ��b�b�;

ðm2
aÞ�� ¼ 3eKjWj2Re

�
�W��

W

�
;

(4.3)

where �W��=W 	 �W��W�=W
2 can be obtained in such

vacua.
Now, we parametrize �W=W, in particular,

bðkÞ
î
h�îi lnhW i. For that purpose, we choose a typical

term, say, Aj expð�P
ia

ðjÞ
i �iÞ in W , which represents the

value of hW i, i.e. Aj expð�
P

ia
ðjÞ
i h�iiÞ 
W . Then, we

use the following parameters,

rk ¼
P

î b
ðkÞ
î
h�îiP

i a
ðjÞ
i h�ii

: (4.4)

The parameterswould satisfy rk > 1, because hW i	h�Wi.
It is expected that rk is of Oð1Þ or could be a few tens.

Using these parameters, we write Bk expð�
P

îb
ðkÞ
î
�îÞ in

�W as

Bk exp

�
�X

î

bðkÞ
î
�î

�
’ W

�
m3=2

MPl

�
rk�1

: (4.5)

Thus, the axion masses with the canonical normalization are
given by

ðm2
aÞ�� ’ 3

eKjWj2
K� ��

Re

�
�W��

W

�
’ 3

b2�
f2�

m2
3=2

�
m3=2

MPl

�
r��1

;

(4.6)

if and only if the axion mass is positive definite. Here,
we have defined through the diagonalization

�W�� � b2��W; K� �� � f2�; (4.7)

where f� ¼ OðMstring=MPlÞ are diagonalized decay

constants.
Once a small value of the gravitino massm3=2 is realized

such as m3=2 � MPl, the hierarchical axion masses with

exponential suppression could appear. Some examples of
mass scales are shown in Table I for m3=2 ¼ 1, 10 and

100 TeV up to b2�=f
2
�.

We show several illustrating examples to lead to light
axion masses in what follows.

(i) Example 0: R-axion mass. The small constant term
in the superpotential induces the R-axion mass,6

W ¼ W e�R þW0: (4.8)

For W0 � W e�R 
 Ae�a�, one finds

m2
a 
 eK

W0 Reðe�RW Þ
KR �R

�
KR

KR �R
þOð1Þ

�


 m2
3=2

KR �R
Re

�
W0

e�RW

��
KR

KR �R
þOð1Þ

�
: (4.9)

TABLE I. Axion masses up to b2�=f
2
�.

r� 3 5 7 9

ma for

m3=2 ¼ 1 TeV
10�4 eV 10�19 eV 10�34 eV 10�50 eV

ma for

m3=2 ¼ 10 TeV
10�2 eV 10�16 eV 10�30 eV 10�45 eV

ma for

m3=2 ¼ 100 TeV
1 eV 10�13 eV 10�26 eV 10�40 eV

6There will be also higer order terms from nonperturbative
effects breaking the R-symmetry, such like !e�2R in the �W
where h!i 
 hW 2i. But the discussion is similar to the case that
W0 
 h!e�2Ri.
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This result also coincides with the result of field-

theoretic R-axion with e�R � � andK ¼ ���, even

for larger W0 ’ W e�R. On the other hand, for

W0 * W e�R, one finds the heavy R-axion like
KKLT, which is stabilized near the SUSY solution

m2
a 
m2

3=2

�
KR

KR �R

��
KR

KR �R
þOð1Þ

�
: (4.10)

Here, one finds W e�R 
KRW0 for the KKLT
stabilization.

(ii) Example 1: SUðN þMÞ � SUðMÞ gaugino conden-
sations or with an instanton (M ¼ 1). Let us con-
sider the KKLT-type superpotential [16,56]:

W ¼ W0 þ e�a� þ e�bðuþ�Þ; a ¼ 8�2

N þM
;

b ¼ 8�2

M
; N 	 M; (4.11)

where � is the heavy modulus and u is the light
saxion-axion multiplet. In this case, assuming
hui & h�i, one obtains r
 N=Mþ 1 and the axion
mass is estimated as

m2
a 
 3

b2

f2
m2

3=2

�
m3=2

MPl

�
N=M

: (4.12)

A similar result can be obtained in the racetrack
model [26],

W ¼ W0 þ e�a1� � e�a2� þ e�bðuþ�Þ; (4.13)

a1;2 ¼ 8�2

N1;2 þM
; b ¼ 8�2

M
;

N1 
 N2; N1;2 	 M; (4.14)

when we do not fine-tune W0 as a special value.
(iii) Example 2: Many gaugino condensations or instan-

tons wrapping on multiple cycles (in intersecting
D-brane system). Consider the superpotential with
nþ 3 moduli; one is heavy modulus � and the
remaining nþ 2 multiplets include light axions uI

W ¼ W0 þ e�a� þ Xnþ2

i¼1

exp

�
�bi

�Xnþ2

I�i

uI

�
� b�

�
;

(4.15)

a
 bi for8 i; n 	 1: (4.16)

In this case, if huii 
 h�i, for 8 i, one finds
r
 nþ 1 and the axion mass is estimated as

m2
a 
 3

b2

f2
m2

3=2

�
m3=2

MPl

�
n
: (4.17)

However, if huii � h�i, 8 i one cannot obtain
small axion masses; one needs a � b as the pre-
vious example.

(iv) Example 3: Including gaugino condensation on the
magnetized brane. One may obtain the superpoten-
tial on the magnetized D7-branes or E3-branes
wrapping on the divisor D in type IIB orientifold:

W ¼ W0 þ e�a� þ B̂e�bðuþ�Þ;

B̂ ¼ B exp½�bMhSi�:
(4.18)

Here, the constant M denotes M ¼ 1
8�2

R
D F 2 2

Z up to curvature term [57], F is the world volume
flux, and hSi is the vev of the complex dilaton,
which is fixed by three form flux. In this case, if
bhSi 
 bhui 
 ah�i, one can find r
Mþ 1 and
the axion mass is estimated as

m2
a 
 3

b2

f2
m2

3=2

�
m3=2

MPl

�
M
: (4.19)

Avalue ofM is weakly constrained via the tadpole
condition of D3-branes in the F-theory limit of the
orientifold compactification [58]:

ND3 þ 1

2
NfluxðMÞ ¼ ðY4Þ

24
: (4.20)

Here, Y4 is an elliptically fibered Calabi-Yau four-
fold. On the other hand, it would be natural and
more plausible that u * MS on the D7-brane, i.e.
M ¼ Oð1Þ. However, with the T-dual description,
the present case would also be plausible since M
corresponds to a winding number.

Thus, many models could lead to the hierarchical axion
masses with suppression, r ¼ Oð1Þ or a few tens.

IV. Kähler potential correction

Here, we comment on corrections to axion masses from
the Kähler potential. Suppose that

K ¼ Kð�þ ��Þ þ �Kð�; ��Þ; (4.21)

where �Kð�; ��Þ is a correction term and @�K
@b� � 0. Then,

one finds the axion masses [16]

ðm2
aÞ�� ¼ 3eKjWj2½��K� �� þ Reð�K��Þ�: (4.22)

Here, we have neglected Oðð�KÞ2Þ term in the vacuum.

It is plausible that �Kð�; ��Þ would also appear from non-
perturbative effects such as

�Kð�; ��Þ ¼ X
k

B0
k exp

�
�X

î

b0ðkÞ
î

�î

�
þ H:c: (4.23)

In this case, the hierarchical axion masses with exponential
suppression would be obtained similarly to the superpo-
tential corrections.
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V. COMMENT ON AXIONS FROM
MATTER-LIKE FIELDS

Here, we (briefly) study the superpotential including
matterlike fields below:

W ¼ W þ �W; (5.1)

where

W � W0 þ
X
k

Akð�Þ exp
�
�X

i

aðkÞi �i

�
;

�W � X
k

Bkð�Þ exp
�
�X

i

bðkÞi �i

�
: (5.2)

Here, we omitted the SUSY-breaking sector and f�gmeans
matter fields (or open string moduli) originating from the
open string. We assume that the matter fields stabilized
near the SUSY solution K�W 
W�. Let us focus on the
light matterlike fields whose axionic parts are massless
while saxions are stabilized, e.g. via F-term, D-term con-
ditions or quantum radiative corrections. At low-energy
they are written by

�P � jh�Pije�c P
; Akð�Þ ¼ Q

P
jh�Pije�nkPc

P
;

Bkð�Þ ¼ Y
P

jh�Pije�mk
Pc

P
: (5.3)

Here, some Ak or Bk can be constants. Consider

linear combinations of ĉ p ¼ P
Pc

p
Pc

P, i.e. c P ¼P
pðc�1ÞPp ĉ p,7 such that one can find

@W

@ĉ p
¼ 0;

@Akð�Þ
@ĉ p

¼ 0 for8 k; 9 p: (5.4)

We use the Kähler potential at the tree level as

K ¼ X
P

ZPð�þ ��Þ ��P�P: (5.5)

Then, one finds at low-energy [28]

K ¼ X
P

ZPð�þ ��Þjh�Pij2e�ðc Pþ �c PÞ

� �pðĉ p þ �̂c
pÞ þ �pq

2
ðĉ p þ �̂c

pÞðĉ q þ �̂c
qÞ

þOððĉ þ �̂c Þ3Þ; (5.6)

where

�p ¼ �X
P

ðc�1ÞPpjh�Pij2;

�pq ¼
X
P

ðc�1ÞPpðc�1ÞPqjh�Pij2:
(5.7)

For simplicity, we set �p, �pq ¼ const in the vacuum, i.e.

ZP ¼ const and would depend on much heavier moduli
vevs. If ZP depends on the moduli or there are mixings

between c and � in ĉ , �p and �pq also have the depen-

dence on the closed string moduli.
Then, for axion multiplets one finds8

Gp ¼ Kp ¼ �p: (5.8)

Thus, even if Gp ¼ �p ¼ 0 for axion multiplets ĉ p,

because of �pq � 0 one finds

Fp ¼ eG=2Kp �qG �q ¼ eG=2ð��1Þpq�q 
m3=2; (5.9)

which leads to F�=�
m3=2. This result is consistent with

the stationary condition @pV ¼ 0: Gp þGqrpGq ¼ 0,

which leads to Gq ¼ Oð1Þ.
Then, the saxion masses can be found

h@’p@’qVFi ¼ 4eG½2Gp �q � @rGp �qG
r � �@�rGp �qG

�r

þGrG�s@p �@ �qG
r�s� 
 eGGp �q; (5.10)

where ĉ p ¼ ’p þ i#p. Whether h@’p@’qVFi> 0 or <0

depends on the model, but typical order of the saxion
masses are of Oðm3=2Þ even though the masses can also

receive the contribution from D-terms of anomalous Uð1Þ
symmetries [44]. When there is the vanishing saxion mass
at the tree level, quantum radiative correction induces
the mass smaller than m3=2 [42,59,60]. Note that from

the assumption that ZP ¼ const, one finds V’pX ¼ V’pi ¼
V’p� ¼ 0.

The axion masses induced by �W depend on the model,
i.e. vevs of closed string moduli, those of matterlike fields
or the power of polynomial of matterlike fields in the
superpotential. After the Goldstino is absorbed into the
gravitino, the unnormalized axino masses are given by

ðm~aÞpq ¼ eG=2

�
rpGq þ 1

3
GpGq

�

 eG=2Gp �q: (5.11)

VI. CONCLUSION AND DISCUSSION

We have studied properties of low-energy moduli stabi-
lization in the N ¼ 1 effective SUGRA, which have
heavy moduli and would-be saxion-axion multiplets. We
have given general formulation for the scenario, where
heavy moduli and saxions are stabilized and axions remain
light. SUSY-breaking effects are important. In the non-
supersymmetric Minkowski vacuum, the stable vacuum
can be obtained even though there are light string-theoretic
axions. In such a vacuum, heavy moduli and saxions can be

7One can consider a linear combination including closed string
moduli when matterlike fields are coupled to light moduli via a
nonperturbative effect. For simplicity we will not consider such a
case.

8For light nonaxion multiplets which have of Oðm3=2Þ masses,
they can be stabilized through the superpotential (@qW � 0)
and have the similar properties to those of axion multiplets [42].

For instance, one can obtain Gq ¼ Kq þ Wq

W 
 �q. Here Wq 

KqW. Therefore, ĉ ps can include such light nonaxion modes.
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stabilized supersymmetrically. In particular, saxions can be
stabilized at the point K� 
 0, while axions in the same
multiplets remain lighter than the gravitino mass m3=2.

This scenario predicts the same number of saxions with
the mass 2m3=2 as the number of light axions. Note that our

analysis on moduli stabilization is applicable even if there
are not light axions in the vacuum.

When there are some moduli mixing the SUSY-breaking
source in the superpotential, such moduli would also de-
stabilize the vacuum. In order to avoid such a situation, we
need quite heavy masses for moduli. The moduli masses,
which are generated in the KKLT-like model, are not
enough, but one needs heavier masses, which would be
generated through the racetrack model, D-term or closed
string fluxes.

Alternatively, some moduli may contribute to SUSY-
breaking, e.g. the R-axion multiplet. In this case, the saxion
mass can be lighter than the gravitino.

We have studied the effective SUGRA theory to lead to
the axiverse. Following our realization, it is important to
study further cosmological and particle phenomenological
implications. In addition, our scenario predicts the same
number of saxions with the mass 2m3=2 as the number of

light axions. These saxions would also have important
implications depending on their masses, 2m3=2. For ex-

ample, when m3=2 is around Oð1Þ �Oð100Þ TeV, the

late time entropy production by the vast number (
 100)
of saxion decays into radiations much before the BBN
epoch can dilute harmful gravitino abundance [10] pro-
duced by decays of scalar fields such as heavy moduli [61].
(See [62–64] for discussions of the dilution by the SUSY-
breaking field X, which does not decay into gravitinos,
based on the KKLT stabilization and see also [65,66] for
the relevant discussions.) It is interesting to study other
aspects of axions and/or saxions following our realization
of the axiverse.

We have discussed general aspects of low-energy effec-
tive SUGRA theory without fixing explicit string models.
It is important to study explicit string model building
leading to our scenario with moduli stabilization and light
axions. We would study explicitly such string models
elsewhere.
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APPENDIX A: A MODULI
STABILIZATION MODELS

Here, we review several moduli stabilization models in
type IIB Calabi-Yau O3/O7 orientifold models.

1. D-term stabilization

We show the relevant part of the model of the D-term
stabilization. This is the model with the anomalous Uð1Þ
gauge symmetry and e.g. the blowing-up mode [67]

K ¼ 1

2V E

ðMþ �Mþ VÞ2; @MW ¼ 0; (A1)

where V is the anomalous Uð1Þ vector multiplet andV E is
the compactification volume in the Einstein frame: 6V E ¼R
J ^ J ^ J, where J is the Kähler form in the Einstein

frame on the Calabi-Yau three-fold. One can ignore matter-
like fields, depending on the charge signature of matter.
Then, one finds the minimum via SUSY conditionDMW ¼
D ¼ KM ¼ ðMþ �MÞ=V E ¼ 0 and obtains the massive
vector multiplet ~V ¼ ðMþ �Mþ VÞ, where M is eaten by
the gauge multiplet. The mass of the vector multiplet is

now given by gV�1=2
E , where g is the gauge coupling.

2. KKLT

We show the so-called KKLT model [13,16] with

K ¼ �2 logðV EÞ; W ¼ W0 þ
Xh1;1þ
i

Aie
�aiT

i
; (A2)

where W0 � 1. Here, h1;1þ (h1;1� ) denotes the Hodge
number of even (odd) parity moduli. To realize the
SUSY-breaking Minkowski vacuum, we add the uplifting
potential,

Vlift ¼ 	

V 4=3
E

; 	 ’ 3
jW0j2
hV 2=3

E i : (A3)

In this case, one finds

Ti ’ �1

ai
logðW0Þ ’ 1

ai
log

�
MPl

m3=2

�
;

FTi

Ti þ �Ti

’ m3=2

ai�i
’ m3=2

logðMPl=m3=2Þ ;
(A4)

where �i ¼ ReðTiÞ. The gravitino mass and moduli masses
are obtained as

m3=2 ’ W0

V E

; mi ’ 2ai�im3=2: (A5)

For one bulk volume modulus, we have

K ¼ �3 logðT þ �TÞ; W ¼ W0 þ e�aT;

Vlift ¼ 	

ðT þ �TÞ2 ; 	 ’ 3
jW0j2

hðT þ �TÞi :
(A6)
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In this model, anomaly mediation is comparable to FT=
ðT þ �TÞ. See also for generalization of this scenario [68].

3. LARGE volume scenario

This is the model [9] with bulk moduli and blowing-up
modes, whose Kähler potential is written as

K ¼ � logðSþ �SÞ � 2 log

�
V E þ �̂

2

�
; (A7)

with

V E ¼ ð2�bÞ3=2 �
Xh1;1þ �1

i

ð2�s;iÞ3=2: (A8)

Here, for simplicity we have neglected moduli redefini-
tions at 1-loop level. The superpotential is written by

W ¼ W0 þ
Xh1;1þ �1

i

Aie
�aiT

i
s ; (A9)

where W0 ¼ Oð1Þ, and the uplifting potential is added as,

Vlift ¼ 	

V 4=3
E

; 	 ’ jW0j2
8hlogðV EÞV 5=3

E i : (A10)

Note that 1=ð2�gsÞ ¼ ReðSÞ. We can consider vanishing
standard model (SM) cycle moduli or odd parity moduli
with D-term stabilization: K ¼ 1

2V E
ðT þ �TÞ2. One can

consider the K3 fibration model: V E ¼ �b;1�
1=2
b;2 �Ph1;1þ �2

i �3=2s;i together with loop corrections to fix bulk

moduli.

Let us consider the simplest case, h1;1 ¼ h1;1þ ¼ 2.
In this case, we have

V E ’ �3=2b 
 eas�s ; �3=2s ’ �̂;

FTb

Tb þ �Tb

’ m3=2;
FTs

Ts þ �Ts

’ m3=2

logðMPl=m3=2Þ : (A11)

Here, one finds

m3=2 ’ W0

V E

; mb 
m3=2

�
m3=2

MPl

�
1=2

;

ms 
 logðV EÞm3=2; (A12)

with V E 	 1. Note as�s 
 logðV EÞ 
 logðMPl=m3=2Þ
and Tb is the SUSY-breaking saxion similar to the case
[55], whereas the axion is not couple to the visible sector.
Tb is an almost no-scale model modulus, while Ts is a
KKLT-like modulus. In this model, anomaly mediation

could be suppressed compared to FT=ðT þ �TÞ by V�r
E ,

where r is a fractional number.

Modified original LARGE volume scenario

Note that one can consider the model such like the
original scenario with an additional odd parity moduli
instead of vanishing the SM cycle on the D7-branes, i.e.

h1;1þ ¼ 2 and h1;1� ¼ 1, and we will discuss the neutral
stringy instanton or gaugino condensation under the
anomalous Uð1Þ symmetries on the brane with world vol-
ume flux [69]. This is the case in contrast to the paper [70]
and is similar to the heterotic case [71]. Then, the Kähler
potential and the superpotential are written by

K ¼ � logðSþ �SÞ � 2 log

�
V E þ �̂

2

�
;

W ¼ W0 þ Ae�aðTþþqGþhSÞ;
(A13)

where

V E ¼ ð2�bÞ3=2 �
�
2�þ þ ðGþ �GÞ2

ðSþ �SÞ
�
3=2

: (A14)

Here, G is the odd parity Kähler moduli and note that in
general odd parity moduli fGg necessarily follow even
parity moduli fTg in the world volume of the brane. Then
we took only the leading term of summation of instanton
configuration for simplicity. In addition, the gauge kinetic
function of the SM sector is written by

fSM ¼ Tþ þ qSMGþ hSMS: (A15)

Again, we neglect moduli redefinitions at 1-loop level.
Here, we assume that nonperturbative superpotential
comes from the E3-brane instanton wrapping on the divisor
DE with the flux. h, q, hSM, and qSM depend on the flux on
E3-brane and the visible sector D7-branes wrapping on
DSM holding not only the SM gauge group but also the
anomalous Uð1Þ symmetry, respectively. DE and DSM map
to DE0 and DSM0 , respectively, under orientifold action;
DE and DSM include both even and odd elements, e.g.
½Dþ

E;SM� ¼ ½DE;SM� þ ½DE0;SM0 � and ½D�
E;SM� ¼ ½DE;SM� �

½DE0;SM0 �, where ½D� is the Poincare dual of D. Here, we

take triple intersection dbbb ¼ dþþþ ¼ dþ�� ¼ 1 for
simplicity. Now the presence of G means there can be an
anomalous Uð1Þ symmetry; both Tþ and G should be
charged under the anomalous Uð1Þ symmetry:

�G ¼ iQG ¼ i
N

8�2
;

�Tþ ¼ iQT ¼ �i
N

8�2
ðF�

DSM
þFþ

DSM
Þ:

(A16)
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Here, N is the number of the D7-branes and F ¼
F�
DSM

!� þ Fþ
DSM

!þ is the internal world volume flux

relevant to the anomalous Uð1Þ on the visible sector
D7-branes, where Fþ ¼ bþ þ Fþ and bþ ¼ 0 or 1=2

and !� 2 H1;1� ðCYÞ, !þ 2 H1;1
þ ðCYÞ are (pullback on

the SM cycle of) the harmonic two-cycle basis on the
CY space.9 Here, we took all the wrapping number of the
D7-brane and E3-brane against the even or odd cycle unity:
Cþ
E ¼ C�

E ¼ Cþ
DSM

¼ C�
DSM

¼ 1 in the notation of the pa-

per [69]. Therefore, the following condition,

q ¼ F�
DSM

þFþ
DSM

; (A17)

should be satisfied for the neutral superpotential in this
simple case.10 The D-term potential is given by

VD¼ 1

2ReðfÞD
2
A;

DA¼QT@TKþQG@GK¼ N

8�2
ð�q@TKþ@GKÞ; (A18)

up to matterlike fields. If all the gauge couplings, including
theUð1Þ symmetry, are gauge invariant as the above simple
case, the Uð1Þ can become nonanomalous; one should
include matter. Otherwise, the Uð1Þ is in general anoma-
lous; one would be able to neglect matter. For such a case,
this model would have string-theoretic axion, which
is absorbed into the Uð1Þ vector multiplet. Define � �
Tþ þ qG and u � qTþ �G. As a consequence � and u
are stabilized near SUSY solution without matter field
vevs, D�W 
 0 and DA / Ku 
 0; one obtains the scalar
potential after integrating out u and Imð�Þ:

V ’ 2
ffiffiffi
2

p ffiffiffiffi
�

p
a2Â2e�2aReð�Þ

3V E

� 4�aÂe�aReð�ÞW0

V 2
E

þ 3W2
0 �̂

2V 3
E

;

(A19)

where Â � Ae�ahS. Here, we have defined � � Reð�Þ �
q2=8. Thus, one would find m3=2 
 W0

V E
and

hV Ei
h�3=2b i
eað�þhSÞ; h�i
 �̂2=3

2
þq2

8
þ i

�

a
;

hReðuÞi
qhReð�Þi�1

4
ðq3þqÞ; mb
m3=2

�
m3=2

MPl

�
1=2

;

m�
a�m3=2
 logðV EÞm3=2; mu¼MV
Q
MPlffiffiffiffiffiffiffiffiffi
V E

q ;

Fb

Tbþ �Tb


m3=2;
F�

2�

q�1 F

u

2�

m3=2

m3=2

m�


 m3=2

logðV EÞ
;

DA
0: (A20)

Thus, we find FT ’ F� and FG ’ 0. Here, we have used

DA 
 ð@I �@ �JDÞFI �F
�J=M2

V [42,49,73,74] and assumed that
the anomalous Uð1Þ gauge coupling and vev of the S are of
Oð1Þ. One finds in the vacuum Gu ’ qG�, @Tb

�@ ��Ku ’
�q@Tb

�@ �uKu and @� �@ ��Ku ’ �2q@� �@ �uKu. Note also that

@Tb
�@ �Tb

Ku and @u �@ �uKu are irrelevant
11 since one can obtain

Ku 
 0 in the vacuum; there is a cancellation in theD-term
at of OðV�2

E Þ at least. Detailed study of this model is
beyond the scope of this paper and we will leave it to
future work.

4. Racetrack model

This is the model [14] with bulk moduli and double
gaugino condensations. The Kähler potential and the
superpotential are obtained

K ¼ �2 logðV EÞ;

W ¼ W0 þ
Xh1;1þ
i

Aie
�aiTi � Bie

�biTi ;
(A21)

where W0 < 1. Here, we add the uplifting potential,

Vlift ¼ 	

V 4=3
E

; 	 ’ 3
hjWj2i
hV 2=3

E i : (A22)

Then, one finds via SUSY condition DiW 
 @iW 
 0

Ti ’ 1

ai � bi
log

�
aiAi

biBi

�
;

FTi

Ti þ �Ti

’ m3=2

aibiT
2
i

’ m2
3=2

mTi

;

mTi
’ aibiðTi þ �TiÞ2m2

3=2: (A23)

If one tunes W0 to obtain hWi 
 0, moduli masses become
much heavier than the gravitino mass [38].

9bþ ¼ 1=2 would be necessary because of the Freed-Witten
anomaly [72] on the D7-branes wrapping on theDSM and the E3-
brane.
10Here, fSM could be also gauge invariant under the Uð1Þ since
we could have q ¼ qSM; the Uð1Þ could be nonanomalous.
However, for instance, when there is a relation that C�

DSM
�

Cþ
E , or are fluxes depending on the SM gauge group and the

Uð1Þ, fSM is not necessarily invariant under the Uð1Þ: q � qSM
and the Uð1Þ is generally anomalous.

11Suppose that DA 
 Ku & V�ð1þ1Þ
E � V�1

E . Then, one can
see @Tb

�@ �Tb
Ku ’ Ku=V

4=3
E & V�ð7=3þ1Þ

E and @u �@ �uKu 
 Ku &
V�ð1þ1Þ

E and they are negligible.
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