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We study the creation of a black hole (BH) pair separated by a domain wall, in the presence of a

cosmological constant. We construct the solution representing a BH pair with a domain wall and compute

the Euclidean action to evaluate the probability of the pair creation in the background with a preexisting

domain wall. The BHs can be either neutral or magnetically charged ones. We compare the results of the

charged case with those of the neutral case with the same cosmological constant. We find that the

production rate of a charged BH pair is always suppressed in comparison with that of the neutral one in

both four and five dimensions, irrespective of the sign of the cosmological constant. The Euclidean action

is equal to the minus of the entropy. Since the horizon area of a BH is decreased as the magnitude of its

charge is increased in general, the decreasing creation rate can be understood in terms of the increasing

charge. We obtain the explicit confirmation on the relation between the pair creation rate of the charged

BHs and the area of horizons in both the four- and five-dimensional cases in the presence of a

cosmological constant. The singularity of the domain wall universe with charged BHs, as distinct from

that with neutral BHs, can be avoided.
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I. INTRODUCTION

Black holes (BHs) are the fundamental objects in study-
ing gravity, astrophysics and even high energy physics. The
astrophysical BHs are the most promising sources of the
gravitational waves and important for testing the general
relativity in strong gravity regime. In cosmology, the pri-
mordial BHs will be probes for cosmic history and struc-
ture formations [1]. Furthermore, recent developments in
higher-dimensional theories have brought our interests in
finding new higher-dimensional BH solutions as well as
other kinds of black objects, and investigating the possi-
bility of their productions in the high energy colliders as
LHC [2–4].

The vacuum in the presence of a strong field can
decay through the so-called Schwinger mechanism [5],
creating a pair of particles in an external electric field.
Such particle production is one of the decaying pro-
cesses of the background field in the given vacuum state
(for recent works, see e.g., [6,7]). As the gravitational
analogy of the mechanism, it was proposed that the pair
creation of BHs, which represents a nonperturbative
topological fluctuation of the gravitational field, could
be possible in the background magnetic field [8]. The
energy needed for the creation is provided by the
background field. This was confirmed in [9] by con-
structing an appropriate Ernst instanton solution which
describes a pair creation of BHs. The BH pair creation

involving a cosmic string has been studied [10–13]. In
this case, the energy to create the BH pair comes from
the string tension. The pair creation has been also
extensively investigated in the early universe [14–17],
where the energy comes from the cosmological con-
stant, and in other frameworks [18–22]. In the case with
a domain wall, the wall’s gravitational repulsive energy
[23] can give rise to a pair creation of BHs. Such a
process was first studied in [24] using a cut-and-paste
method. The topological BHs in the presence of the
domain wall [25], and the creation of an inflationary
braneworld with a pair of black cigars [26] have been
studied.
There are two kinds of approach to the creation of a BH

pair. One is the bounce approach. In this approach, one
needs to find an instanton solution of the Euclidean field
equations, which interpolates the initial state without BHs
and the final state with BHs. The other is the quantum
cosmological approach. In this approach, one can employ
the no-boundary proposal [27] which represents the proba-
bility of the final state from nothing and that of the initial
state from nothing. The creation rate from the initial to the
final state can be obtained from these two probabilities.
This method does not need the interpolating instanton
solution. In the semiclassical approximation, the formula
of the production rate without a prefactor in the bounce
approach is equivalent to the formula in the quantum
cosmological approach [28].
In this paper, we revisit the issue of the creation of a BH

pair separated by a domain wall with an arbitrary cosmo-
logical constant. One of our motivations is the expectation
that the creation of the domain wall with a charged BH pair
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in the five-dimensional spacetime may provide a model
of the braneworld universe. In terms of string theory or
supergravity, the theory generically contains higher-rank
antisymmetric tensor fields and BHs may be charged. Thus
it is naturally expected that in any string-inspired model the
domain wall universe is created together with the charged
BHs. In addition, from the cosmological points of view, the
possibility of the domain wall universe with charged BHs
is worth being considered since the initially contracting
universe can experience a bounce and the singularity can
be avoided. From these points of view, it is very significant
to evaluate the nucleation rate of the charged BHs. Thus,
we could get insights on the quantum cosmological origin
of braneworlds. We will construct the solution representing
the charged and the neutral BH pair with a preexisting
domain wall in the four and five-dimensional spacetime.
We will compute their production rates, and then compare
the actions of the charged case with those of the neutral
case with a same cosmological constant rather than obtain-
ing the interpolating instanton solutions.

The spacetime of the preexisting wall can be provided
either by a cut-and-paste method or by the instanton
solution mediating tunneling between the degenerate
vacua in curved space [29–32]. The braneworld-like
object can be obtained as the interpolating instanton
solution by applying the mechanism in [31,32]. From
this point of view, our present work can be the basic
framework to make the spacetime, where we can de-
scribe the dynamics of a domain wall universe in the
charged BH spacetime not only in the Einstein-Maxwell
theory in Refs. [33,34] but also in the more general Uð1Þ
gauge theories in Refs. [35–37].

The organization of this paper is as follows: In Sec. II,
we review the magnetically charged BHs for general
spacetime dimensions in the presence of a cosmological
constant. In Sec. III, we construct the solution for a charged
BH pair separated with Z2 symmetry by a domain wall in
the four- and five-dimensional spacetimes. The case of a
neutral BH pair including non-Z2 symmetry was studied in
[30] using the Bousso-Hawking normalization [15,16] in
the bulk, where ambiguity of the time periodicity on the
wall remains. In Sec. IV, we evaluate the Euclidean action
and the resultant pair creation rate for the above system
using the time periodicity by the Hawking temperature of
BHs [38] in four- and five- dimensional spacetime. We will
show that the creation rate of a BH pair with the domain
walls is proportional to the area of the horizons of created
BHs in four- and five-dimensional spacetimes. We will
obtain the first explicit confirmation on the relations be-
tween the pair creation rate and the area of horizons. And
the application to the braneworld cosmology is discussed.
In Sec. V, we summarize our results and discuss the pos-
sible generalizations of our studies. It is natural to expect
that the same properties are hold also in more than
six-dimensional spacetime which will be discussed.

II. MAGNETIC BHS

We consider a system composed of Einstein gravity with
either positive or negative cosmological constant �,
coupled to the antisymmetric tensor field strength of rank
(n� 1) Fðn�1Þ

S ¼
Z
M
dnþ1x

ffiffiffiffiffiffiffi�g
p �

1

2�2
ðR� 2�Þ

� 1

2ðn� 1Þ!F�1����n�1
F�1����n�1

�

þ
I
@M

dnx
ffiffiffiffiffiffiffi�q

p �
K � Ko

�2

þ 1

ðn� 2Þ!F
�1����n�1n½�1

A�2����n�1�
�
; (1)

where g � detg��, q � detqab, K and Ko are traces of the

extrinsic curvatures of @M in the metric g�� and ���,

respectively, F�1����n�1
¼ ðn� 1Þr½�1

A�2����n�1�, and n�1

is a unit normal vector which points outward to the bound-
ary. The Greek indices run the (nþ 1)-dimensional space-
time, while the Roman indices run the n-dimensional
spacetime. The third term on the right-hand side corre-
sponds to the boundary term for Einstein gravity [39]. The
fourth term corresponds to the boundary term for the bulk
form field. The term is not needed in the case of a magnetic
field. In the electric case, there is the subtlety that the field
must be purely imaginary on the Euclidean section and we
must keep the boundary term for the bulk part [40]. Note,
however, the partition function in a definite charge sector
for the electric cases with the boundary term is the same as
that for the magnetic cases without the boundary term
in the semiclassical approximation. Hereafter we will
omit the boundary term for the form field, because it will
vanish in this paper.
Varying the action with respect to the metric gives the

Einstein equation

R�� ¼ 2�

n� 1
g�� þ �2

ðn� 1Þ!
�
ðn� 1ÞðF2

½n�1�Þ��

� n� 2

n� 1
g��ðF2

½n�1�Þ
�
; (2)

where we have defined ðF2
½n�1�Þ�� ¼ F

�1����ðn�2Þ
� F��1����ðn�2Þ

and ðF2
½n�1�Þ is its trace.

A magnetically charged BH solution in the (anti-) de
Sitter ((A)dS) spacetime is given by

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
ðn�1Þ;

fðrÞ ¼ 1� 2�r2

nðn� 1Þ �
2m

rn�2
þ q2

r2ðn�2Þ ; Fa1a2���an�1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 1Þ!p

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðn�1Þ

p
�a1���an�1

; (3)
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where �a1���an�1
¼ �1, �ðn�1Þ is the volume element of the

(n� 1)-sphere, and indices faig are those for it. The other
components of the form field are zero. The existence and
number of the horizons crucially depend on the parameters.
In this paper, we will focus on the cases of four- and five-
dimensional BHs.

A. The four-dimensional case

In the case of n ¼ 3, the solution Eq. (3) becomes
the magnetic Reissner-Nordstroem-(A)dS BH in four
dimensions

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d	2Þ;

fðrÞ ¼ 1��r2

3
� 2m

r
þ q2

r2
;

F�	 ¼
ffiffiffi
2

p
q

�
sin�:

(4)

There are at most two BH horizons r� (rþ � r�). There
is also a cosmological horizon outside the BH horizons
rc � rþ. The phase is quite similar to Fig. 1 for�> 0 (see
also [16]) and Fig. 2 for�< 0, replacing�m and�q with
�m2 and �q2 respectively, where Figs. 1-2 represent the
five-dimensional cases. The solid (red) curve in Fig. 1
corresponds to the extremal solutions of rþ ¼ r�, while
the dashed (blue) curve corresponds to the charged Nariai
solutions of rþ ¼ rc. The point where these two curves
meet represents the ultracold solution of rþ ¼ r� ¼ rc. In
the region surrounded by these two curves and q ¼ 0 axis,
three horizons exist at the same time. For the case of
q ¼ m, obtained from f0ðrþÞ ¼ �f0ðrcÞ, there is the spe-
cial solution with three horizons, known as the lukewarm

solution. The horizon positions in this solution are simply
given by

rc ¼
ffiffiffi
3

p

2
ffiffiffiffi
�

p
0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

ffiffiffiffi
�

3

svuut 1
CA;

rþ ¼
ffiffiffi
3

p

2
ffiffiffiffi
�

p
0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

ffiffiffiffi
�

3

svuut 1
CA;

r� ¼
ffiffiffi
3

p

2
ffiffiffiffi
�

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

ffiffiffiffi
�

3

svuut � 1

1
CA:

(5)

Such a simple analytic expression for the lukewarm solu-
tions can not be found in other dimensions, although the
lukewarm solutions themselves can also exist.
For �< 0, the phase diagram is essentially the same as

the Fig. 2, replacing j�jm and j�jq with j�jm2 and j�jq2,
respectively. The solid curve shows the extremal solution
and below this curve a BH has both the outer and inner
horizons.

B. The five-dimensional case

In the case of n ¼ 4, the Eq. (3) becomes

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
3;

fðrÞ ¼ 1��r2

6
� 2m

r2
þ q2

r4
;

F
�	 ¼
ffiffiffi
6

p
q

�
sin2
 sin�;

(6)

where d�2
3 ¼ d
2 þ sin2
ðd�2 þ sin2�d	2Þ denotes the

unit 3-sphere and we take �
�	 ¼ þ1.
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FIG. 1 (color online). The phase of a magnetically charged BH
with a positive cosmological constant in five-dimensional space-
time is shown. The vertical and horizontal axes show �q and
�m, respectively. The solid (red) curve corresponds to the
extremal solutions rþ ¼ r� [Eq. (7)], while the dashed (blue)
curve corresponds to the charged Nariai solutions rþ ¼ rc
[Eq. (8)]. The intersecting point of these curves corresponds to
the ultracold solution rþ ¼ r� ¼ rc.

0.5 1.0 1.5 2.0
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1.0
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FIG. 2. The phase of a magnetically charged BH with a nega-
tive cosmological constant in five-dimensional spacetime is
shown. The vertical and horizontal axes show j�jq and j�jm.
The solid curve corresponds to the extremal solutions rþ ¼ r�.
For solutions corresponding to the side below this curve, there
are two horizons, and for those left to this curve there is no
horizon.
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For �> 0, the existence of three horizons is ensured
by three curves on the ð�m;�qÞ plane, namely q ¼ 0
and

q�¼qext� :¼ 2ffiffiffi
3

p ðð�2þ3�mÞþ2ð1��mÞ3=2Þ1=2; (7)

q�¼qcN� :¼ 2ffiffiffi
3

p ðð�2þ3�mÞ�2ð1��mÞ3=2Þ1=2; (8)

where qext and qcN correspond to the charges of the
extremal and charged Nariai solutions, which are
rþ ¼ r� and rc ¼ rþ, respectively. The phase of a mag-
netically BH with a positive cosmological constant in five
dimensions is shown in Fig. 1. qext and qcN are shown by
the solid (red) and dashed (blue) curves, respectively.
There is no essential difference from the four-dimensional
case. The point where these two curves meet, where
�m ¼ 1 and �q ¼ 2ffiffi

3
p , represents the ultracold solution,

where rþ ¼ r� ¼ rc ¼
ffiffiffi
2
�

q
. There is also the lukewarm

condition satisfying f0ðrþÞ ¼ �f0ðrcÞ. As mentioned pre-
viously, there is no simple analytic expression for the
horizons as in four dimensions. Note that the ultracold
solution corresponds to the common end point of the
previous two curves. In the closed region surrounded
by these curves, there are three nondegenerating horizons.
Outside this region, there is only the cosmological
horizon. The essential picture remains the same in other
dimensions.

For�< 0, the condition for existing two BH horizons is
given by

qj�j�qextj�j :¼ 2ffiffiffi
3

p ð2ð1þj�jmÞ3=2�ð2þ3j�jmÞÞ1=2:
(9)

The phase of a magnetically charged BH in five dimen-
sions is shown in Fig. 2. Note that there is no endpoint of
the curve. The essential picture remains the same in other
dimensions.

III. CHARGED BH PAIR SEPARATED
BYA DOMAIN WALL

After giving BH solutions in the four and five dimen-
sions, we construct the solution representing a pair of
charged BHs separated by a domain wall. We assume the
case with the Z2 symmetry with respect to the domain wall.

A. BH pair separated by a domain wall

From now on, we work in the Euclidean section. We
consider a pair of charged BHs separated by a domain wall.
We focus on the Euclidean action involving the contribu-
tion of a boundary domain wall

SE¼�
Z
M
dnþ1x

ffiffiffi
g

p �
1

2�2
ðR�2�Þ

� 1

2ðn�1Þ!F�1����n�1
F�1����n�1

�

þ
I
@M

dnx
ffiffiffi
q

p �
�þK�Ko

�2

þ 1

ðn�2Þ!F
�1����n�1n½�1

A�2����n�1�
�
; (10)

where M and @M represent the bulk spacetime and the
domain wall, respectively. Here, � denotes the tension of
the domain wall. The last two terms denote the boundary
term for gravity and the form field.
The magnetically charged BH solutions in the Euclidean

section are given by

ds2E ¼ fðrÞdt2 þ dr2

fðrÞ þ r2d�2
ðn�1Þ;

fðrÞ ¼ 1� 2�r2

nðn� 1Þ �
2m

rn�2
þ q2

r2ðn�2Þ ;
(11)

where the avoidance of the conical singularity at the
outer horizon r ¼ rþ imposes the periodicity of t coordi-
nate to be

� ¼ 4

jf0ðrþÞj : (12)

Here, � is the inverse of Hawking temperature of BHs.
Applying the cut-and-paste method or employing the
instanton solutions mediating tunneling between the de-
generate vacua, the solution representing an oppositely
charged BH pair separated by a domain wall is constructed.
Now we will employ the Israel junction condition [41].
In this framework, Einstein equations should be solved
on either side of the wall. In the Euclidean section, a
domain wall is moving along the trajectory characterized
by the affine parameter �, r ¼ rð�Þ. � is normalized to

satisfy _r2

fþf _t2¼1, where ‘‘dot’’ means the derivative with

respect to �. The equation of motion for rð�Þ is given by
_r2�VðrÞ¼0, where the effective potential is given by

VðrÞ :¼ fðrÞ � �4�2

4ðn� 1Þ2 r
2: (13)

By redefining the parameters, the potential is given by

VðrÞ ¼ �Ar2 þ 1� 2m

rn�2
þ q2

r2ðn�2Þ ; (14)

where

A :¼ 2�

nðn� 1Þ þ
�4�2

4ðn� 1Þ2 : (15)

From Eq. (15), in general we find

A � 2�

nðn� 1Þ : (16)

On the other hand, for A < 0 (and �< 0),
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jAj � 2j�j
nðn� 1Þ : (17)

We then regard A as an input parameter, rather than the
tension � itself. A stationary domain wall can exist at an
equilibrium point r ¼ r�, which satisfies

Vðr�Þ ¼ dV

dr
jr¼r� ¼ 0: (18)

The corresponding mass of the BH is denoted bym�. In the
next subsections, wewill obtain the explicit expressions for
r� and m� in the four- and five-dimensional spacetimes.
The induced metric on domain wall metric is given by

ds2ind ¼ d�2 þ r2�d�2
n�1: (19)

For the domain wall at the equilibrium point, the Euclidean

proper time on the wall has the periodicity of
ffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ

p
�,

which can be interpreted as the inverse of the temperature
measured by an observer living on the domain wall. The
system composed of a domain wall together with a BH pair
is now in the thermal equilibrium.

In the semiclassical approximation, the production rate
for a creation of a charged BH pair is given in Eq. (10). The
boundary term for the form field vanishes for our solution.
From now on, we rewrite the Euclidean action useful for
the evaluation. By employing the Israel junction conditions
½K� ¼ � n

n�1�
2� and the Einstein equations, the

Euclidean action can be rewritten as

SE¼�
Z
M
dnþ1x

ffiffiffi
g

p �
2�

ðn�1Þ�2
� n�2

ðn�1Þðn�1Þ!F
2
ðn�1Þ

�

� 1

n�1

I
@M

dnx
ffiffiffi
q

p
�: (20)

Note that the Euclidean geometry is smooth at the horizon
because of our choice of � as Eq. (12), and hence there is
no contribution of the horizon to SE. We therefore take
only the boundary term of the domain wall into consider-
ations. Our strategy is to compute the Euclidean action for
our system in four- and five- dimensional spacetimes and
compare our results of the charged case with those of the
neutral case with a same cosmological constant. After

plugging F2
ðn�1Þ ¼ ½ðn�1Þ!�2q2

�2r2ðn�1Þ into Eq. (20), which further

reduces to

SE¼� 2�n�1

ðn�1Þ�2
�

�
2�

n
ðrn��rnþÞþðn�1Þ!q2

�
1

rn�2�
� 1

rn�2þ

��

��rn�1� �n�1

ðn�1Þ �
ffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ

q
: (21)

From Eq. (18) and (12), we find

fðr�Þ¼
�
A� 2�

nðn�1Þ
�
r2�; �¼ 2rþ

nm�
rn�2
þ

�1�ðn�1Þq2
r2n�4
þ

; (22)

respectively. Thus, we finally obtain

SE¼� 2�n�1

ðn�1Þ�2

2rþ
nm�
rn�2
þ

�1�ðn�1Þq2
r2n�4
þ

	
�
�2�

n
rnþþðn�1ÞArn� þðn�1Þq2

�
1

rn�2�
� 1

rn�2þ

��
;

(23)

where m� is the mass of the BH when the domain wall is
placed at r ¼ r�. For later convenience, we introduce the
dimensionless quantities measured in the unit of charge

r̂ :¼ r

q1=ðn�2Þ ; Â :¼Aq2=ðn�2Þ; �̂ :¼�q2=ðn�2Þ;

m̂ :¼m

q
; �̂2:¼ �2

qðn�1Þ=ðn�2Þ ; �̂ :¼qn=ðn�2Þ�:
(24)

B. The four-dimensional case

For the case of n ¼ 3, from Eq. (18) we obtain

�1þAr2�þ2m

r�
�q2

r2�
¼0; 2Ar2��2m

r�
þ2q2

r2�
¼0: (25)

For A > 0, the solution to Eq. (25) is given by

r̂ �;� ¼
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12Â

p
6Â

�
1=2

;

m̂�;� ¼
ffiffiffi
2

p

6
ffiffiffiffiffiffi
3Â

p 1þ 12Â�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12Â

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12Â

pq :

(26)

The positions of r�;þ and r�;� correspond to the local

maximum and minimum of VðrÞ, respectively.
Thus, for 0 � Â � 1

12 , there are two roots, which we call

the (þ)- and (�)-branch, respectively. For Â > 1
12 , there

is no root in both branches. We find m2�;� > 8
9q

2. For

a (þ)-branch domain wall, m2�;þ > q2 for 0< Â < 1
16 .

For a (�)-branch domain wall, 8
9 q

2 � m2�;� < q2 for

0< Â � 1
12 . A special case is Â ¼ 1

12 , where the degener-

ate root is given by r� ¼
ffiffiffi
2

p
q, resulting in m2� ¼ 8

9 q
2 ¼

4
9 r

2�. This is the case of a pair of the ultracold BHs rþ ¼
r� ¼ rc, where m2� ¼ 2

9 and q2� ¼ 1
4 . Thus, from the

definition of A, we find � ¼ 0. The other special case is a
pair of the lukewarm BHs, Eq. (5). This is obtained for

m2�;� ¼ q2, namely, for Â ¼ 1
16 of the (þ)-branch and for

Â ¼ 0 of the (�)-branch. In the limit of q ! 0,

r�;þ ! 1ffiffiffiffiffiffi
3A

p ; r�;� ! 0: (27)

Thus, only for the (þ)-branch can the domain wall exist.
The corresponding mass of the BH is given by

m�;þ ! 1

3
ffiffiffiffiffiffi
3A

p : (28)
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Until now, we have not taken the existence of the outer
horizon into consideration. However, it is straightforward
to confirm that there is no real solution of the outer horizon

for the (þ)-branch of A � �
3 and for the (�)-branch of

A � �
3 . It means that for the (�)-branch no horizon can be

formed for A � �
3 obtained from Eq. (16) with n ¼ 3. For

the special lukewarm solution, r�;þ ¼ 2q ¼ 2m�, and then
rc > r� > rþ, since rc > 2q and rþ < 2q, which ensures
that the (þ)-branch domain wall is always located between
the cosmological and outer horizons. On the other hand,
however, the (�)-branch domain wall for the lukewarm
solution may exist for A ! 0with q � 0. But it contradicts

the condition A > �
3 , and hence no (�)-branch BH pair is

formed.
For A < 0, the solution to Eq. (25) is given by

r̂� ¼
0
@�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12jÂj

q
6jÂj

1
A1=2

;

m̂� ¼
ffiffiffi
2

p

6
ffiffiffiffiffiffiffiffiffi
3jÂj

q �1þ 12jÂj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12jÂj

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12jÂj

qr :

(29)

The position of r� corresponds to the local minimum of

VðrÞ. For jÂj ! 0, m� ! q and for larger jAj, m̂2� is in-
creasing. In the limit of q ! 0, r� ! 0.

However, it is straightforward to confirm that for A < 0

no horizon is formed for jAj � j�j
3 . But from Eq. (17) with

n ¼ 3, we must have jAj � j�j
3 . Therefore, the horizon

cannot be formed for A < 0.
The phase diagram for a domain wall in four dimensions

is quite similar to Fig. 3, which is for the five-dimensional
case discussed in the next subsection.

C. The five-dimensional case

Along the similar arguments to the case of four dimen-
sions, we discuss the properties of a domain wall in the
five-dimensional spacetime. For A > 0, the position of the
domain is given by either of the following two branches

r̂2�;þ ¼ 1

6Â
½1þ CðÂÞ�1=3 þ CðÂÞ1=3�;

r̂2�;� ¼ 1

12Â
½2þ ð�1þ ffiffiffi

3
p

iÞCðÂÞ�1=3

þ ð�1� ffiffiffi
3

p
iÞCðÂÞ1=3�: (30)

The positions of r�;þ and r�;� correspond to the local

maximum and minimum of VðrÞ, respectively. For A < 0,

r̂ 2� ¼ 1

6jÂj ½�1þDðjÂjÞ�1=3 þDðjÂjÞ1=3�: (31)

Here, the position of r� corresponds to the local minimum
of VðrÞ. We defined

CðÂÞ :¼ 1� 54Â2 þ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3Â2 þ 81Â4

p
;

DðjÂjÞ :¼ �1þ 54jÂj2 þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3jÂj2 þ 81jÂj4

q
;

(32)

and the expression for r�;� is real. Thus, we find Â � 1
3
ffiffi
3

p .

In the limit of q ! 0 for A > 0, only for the (þ)-branch
there is the domain wall solution r2�;þ ! 1

2A . For A < 0,

there is no domain wall solution of q ! 0.
For A > 0, the corresponding BH mass is given by

m̂�;þðÂÞ¼ 1

24Â
ð1�Ĉ�2=3ðÂÞþ2Ĉ�1=3ðÂÞ

þ2Ĉ1=3ðÂÞ�Ĉ2=3ðÂÞÞ;
m̂�;�ðÂÞ¼ 1

48ÂCðÂÞ2=3	fð�1�i
ffiffiffi
3

p Þð1þ12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3Â2þ81Â4

p
Þ

�ð1�i
ffiffiffi
3

p ÞCðÂÞ1=3þ2½CðÂÞ1=3ð3ð1�i
ffiffiffi
3

p Þ
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3Â2þ81Â4

p
þCðÂÞ1=3Þ

þ27Â2ð2ð1þi
ffiffiffi
3

p Þ�CðÂÞ1=3ð1�i
ffiffiffi
3

p ÞÞ�g: (33)

Similarly for A < 0, the mass becomes

m̂ �ðÂÞ ¼ 1

24jÂj ð�1þD�2=3ðÂÞ þ 2D�1=3ðÂÞ

þ 2D1=3ðÂÞ þD2=3ðÂÞÞ: (34)

In Fig. 3, we have shown the phase of a domain wall in five

dimensions. For Â ¼ 1
3
ffiffi
3

p , mass in the both branch becomes

the degenerate value m�;� ¼
ffiffi
3

p
2 q, which corresponds to

the ultracold BHs. Then, from Eq. (15) for n ¼ 4 with

�̂ ¼ 2ffiffi
3

p of the ultracold case, it turns out that the corre-

sponding domain wall is tensionless. In the limit of q ! 0,

0.0 0.2 0.4 0.6 0.8 1.0
A q

0.5

1.0

1.5

2.0

m
q

FIG. 3 (color online). The mass of the BH m̂� is shown as the
function of jÂj in the five-dimensional case. The solid, dashed
and thick (red) curves represent m̂�;þ, m̂�;� (for A > 0) and m̂�
(for A < 0) as functions of jÂj, respectively. For the case of the
four dimensions, we obtain essentially the same picture. There is
no endpoint for the curve of A < 0.
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the mass of the domain wall for the (þ)-branch becomes
m�;þ ! 1

8A .

As in the four-dimensional case, however, it is straight-
forward to confirm that there is no outer horizon for the

(þ)-branch of A � �
6 and for the (�)-branch of A � �

6 .

Therefore, for the (�)-branch no horizon can be formed

since A � �
6 from Eq. (16) with n ¼ 4. Similarly, it is

straightforward to confirm that for A < 0 no horizon can

exist for jAj � j�j
6 . From Eq. (17) with n ¼ 4, we must

have jAj � �
6 . Therefore, there is no BH pair for A < 0.

IV. PAIR CREATION RATES

In the semiclassical approximation, the formula of the
production rate without a prefactor in the bounce approach
is equivalent to the formula in the quantum cosmological
approach [28]. In the bounce approach, the production rate
for a neutral BH pair in the background spacetime with a

domain wall is given by �1 ¼ Ae�½SEðnblsÞ�SEðbgÞ�, where
SEðnblsÞ and SEðbgÞ mean the Euclidean action of neutral
BHs with a domain wall and the action of the wall, re-
spectively. The charged case also has the same form. Thus

the ratio of two production rates is written by � ¼
�2=�1 ¼ e�½SEðcblsÞ�SEðnblsÞ�, where SEðcblsÞ means the
Euclidean action of charged BHs with a domain wall. In
the quantum cosmological approach, the ratio of two prob-

abilities is given by � ¼ P2=P1 ¼ e�½SEðcblsÞ�SEðnblsÞ�,
where P2 ¼ e�SEðcblsÞ and P1 ¼ e�SEðnblsÞ mean the proba-
bility of charged BHs with a domain wall from nothing and
of neutral BHs with a domain wall from nothing. This
method does not need the interpolating instanton solution.
In the approximation, the half of the Euclidean action is
used in the wave function. The probability is related to the
real part of the Euclidean action in the quantum cosmo-
logical approach. This action is equivalent to the action,
SE, in the present work.

In this section, we compute the Euclidean action for
each solution representing a BH pair separated by a domain
wall in four- and five-dimensional spacetimes by employ-
ing the quantum cosmological approach. As we have seen
in the previous section, the outer horizon of BHs can be
formed only for the (þ)-branch of the A > 0 case. Thus, in
this section we will focus on these cases. We then evaluate
the nucleation rates.

A. The four-dimensional case

1. For a pair of neutral BHs

For a pair of the four-dimensional neutral BHs, a domain
wall solution can exist only for A > 0, with m� ¼ 1

3
ffiffiffiffiffi
3A

p and

r� ¼ 3m� ¼ 1ffiffiffiffiffi
3A

p . Thus, we have to focus on the case of

A > 0. From Eq. (23) for n ¼ 3 with we obtain

SEðnblsÞ ¼ � 162rþ
3�2j1��r2þj

�
�2�r3þ þ 2ffiffiffi

3
p

A1=2

�
: (35)

From now on, we discuss the cases of�> 0 and of�< 0,
separately. For �> 0, we obtain

rþ ¼ 2

�1=2
cosð1

3
ðþ �ÞÞ; (36)

where cos:¼ �x1=2 and sin� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p
with x :¼ �

3A ¼ 1
3 ~A
.

Here a quantity with tilde is dimensionless, and normalized
by an appropriate power of �. Since 0< x< 1, 0<

cosð13 ðþ �ÞÞ< 1
2 . Finally, the Euclidean action is ob-

tained by

SEðnblsÞ ¼ � 642

3�2�
F4;Schð ~AÞ;

F4;Schð ~AÞ :¼ 3cos2
�
1

3
ðþ �Þ

�
:

(37)

To derive it, we have employed the formula cos3� ¼
4cos3�� 3 cos�. It is easy to confirm that

F4;Sch ¼ 3r2þ�
4

; (38)

which leads to

SEðnblsÞ ¼ � 162r2þ
�2

¼ � 2r2þ
G

¼ �A
4G

; (39)

where A ¼ 2	 ð4r2þÞ and G ¼ �2

8 represent the area of

horizons (the factor 2 means two sides) and the effective
gravitational coupling. Thus, the absolute value of the
Euclidean action is equal to the entropy of created BHs,
following the area law. This result is somewhat natural
since the domain wall with a pair of BHs is now in the
thermal equilibrium. As we will see below, the same
relation also holds for a charged BH pair with a domain
wall, as well as in the five-dimensional cases. Note that the
cosmological horizon is always out of our system and the
thermal contribution from it is absent.
Similarly, for �< 0 we obtain

rþ ¼ 2

�1=2
sinh

�
1

3
�

�
; (40)

where sinh� :¼ y1=2 with y :¼ j�j
3A ¼ 1

3 ~A
. Here a quantity

with tilde is dimensionless, and normalized by an appro-
priate power of j�j. Finally, the Euclidean action is ob-
tained by

SEðnblsÞ ¼ � 642

3�2j�jF 4;Schð ~AÞ;

F 4;Schð ~AÞ :¼ 3sinh2
�
1

3
�

�
:

(41)

To derive it, we employed the formula sinhð3�Þ ¼
4sinh3�þ 3 sinh�. It is easy to confirm that

F 4;Sch ¼ 3r2þj�j
4

; (42)
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which leads to Eq. (39). The absolute value of the
Euclidean action is equal to the entropy of created BHs,
following the area law.

2. For a pair of lukewarm BHs

For a charged BH pair, the only analytically tractable
case is the case of a pair of lukewarm BHs in four dimen-
sions, in which r� ¼ 2m� ¼ 1

2
ffiffiffi
A

p are satisfied. In this

solution, the position of the outer horizon is given by

rþ ¼
ffiffiffi
3

p

2
ffiffiffiffi
�

p
0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
�

3A

�
1=2

s 1
A: (43)

From Eq. (23) for n ¼ 3 with

� ¼ 2
ffiffiffi
3

p
ffiffiffiffi
�

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð 1

3 ~A
Þ1=2

q ; (44)

the Euclidean action becomes

SEðcblsÞ ¼ � 642

3�2�
F4;lukeð ~AÞ;

F4;lukeð ~AÞ :¼ 9

16

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1

3 ~A

�
1=2

s 1
A2

:

(45)

For a given �, it is straightforward to see F4;lukeð ~AÞ<
F4;Schð ~AÞ for any ~A (See Fig. 4), where F4;Sch is given in

Eq. (37). Thus, the production probability P2 ¼ e�SEðcblsÞ
of a lukewarm BH pair is always smaller than that of the
neutral case. It is easy to find

F4;luke ¼ 3r2þ�
4

; (46)

which leads to

SEðcblsÞ ¼ � 162r2þ
�2

¼ � 2r2þ
G

¼ �A
4G

: (47)

As for the neutral case, the absolute value of the Euclidean
action is equal to the entropy of created BHs, following the
area law.

3. For a pair of general charged BHs

We focus on the case of the (þ)-branch domain wall
with A > 0. Substituting n ¼ 3 into Eq. (23),

SEðcblsÞ ¼ � 162rþ
�2ð3m�

rþ
� 1� 2q2

r2þ
Þ

	
�
� 1

3
r3þ�þ r3�Aþ q2

�
1

r�
� 1

rþ

��
: (48)

For �> 0, for comparison with the case of a neutral BH
pair, it is useful to rewrite the Euclidean action

SEðcblsÞ ¼ � 642

3�2�
F4; (49)

where

F4ð ~A; ~qÞ :¼3~rþ
4

1
3 ~m�
~rþ

� 2~q2

~r2þ
�1

�
~A~r3��~r3þ

3
þ ~q2

�
1

~r�
� 1

~rþ

��
:

(50)

Here a quantity with tilde is dimensionless, and normalized

by an appropriate power of �. Note that F4ð ~A; 0Þ ¼
F4;Schð ~AÞ defined in Eq. (37), and F4ð ~A; 1

4 ~A1=2Þ ¼ F4;lukeð ~AÞ
defined in Eq. (45). We then numerically evaluate the func-

tionF4ð ~A; qÞ for the general cases. In Fig. 4, the comparison

of F4ð ~A; ~qÞ, F4;Schð ~AÞ and F4;lukeð ~AÞ is shown. Note that for
this choice of parameters, 1

3 
 0:333< ~A < 1. In Fig. 5,

F4 is shown as a function of ~q for a fixed ~A. We find that

F4ð ~A; ~qÞ<F4;Schð ~AÞ. Therefore, the pair production rate for

0.0 0.2 0.4 0.6 0.8 1.0
A

0.2

0.4

0.6

0.8

1.0
F4

FIG. 4 (color online). F4ð ~A; ~qÞ, F4;Schð ~AÞ and F4;lukeð ~AÞ are
shown by the solid (blue), dashed (red) and thick (green) curves,
respectively, as the function of ~A for ~q ¼ 1

2
ffiffi
3

p 
 0:289.

0.0 0.1 0.2 0.3 0.4 0.5
q

0.1

0.2

0.3

0.4

0.5
F4

FIG. 5 (color online). F4ð ~A; ~qÞ is shown by the solid (red)
curve as the function of ~q for ~A ¼ 0:5.
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a charged BH is always smaller than that of the neutral case.
We then numerically confirmed

F4 ¼ 3r2þ�
4

; (51)

which leads to Eq. (47). As for the neutral case, the absolute
value of the Euclidean action is equal to the entropy of
created BHs, following the area law. Then, the decreasing
pair creation rate for the charged case can be understood in
terms of the decreasing area of the outer horizon for increas-
ing charge with a fixed cosmological constant.

Similarly for �< 0,

SEðcblsÞ ¼ � 642

3�2j�jF 4; (52)

where

F 4ð ~A; ~qÞ :¼ 3~rþ
4

1
3 ~m�
~rþ

� 2~q2

~r2þ
�1

�
~A~r3� þ~r3þ

3
þ ~q2

�
1

~r�
� 1

~rþ

��
:

(53)

Here a quantity with tilde is dimensionless, and normalized

by an appropriate power of j�j. Note that F 4ð ~A; 0Þ ¼
F 4;Schð ~AÞ defined in Eq. (41). In Fig. 6, the comparison

ofF 4ð ~A; ~qÞ andF 4;Schð ~AÞ is shown. In Fig. 7,F 4 is shown

as a function of ~q for a fixed ~A. Therefore, the pair
production rate for a charged BH is smaller than that of
the neutral case. We then numerically confirmed

F 4 ¼ 3r2þj�j
4

; (54)

which leads to Eq. (47). The absolute value of the
Euclidean action is equal to the entropy of created BHs,
following the area law. Similarly, the decreasing pair
creation rate for the charged case can be understood in
terms of the decreasing area of the outer horizon for
increasing charge with a fixed cosmological constant.

B. The five-dimensional case

In this subsection, we repeat the similar computations
for the five-dimensional spacetime.

1. For a pair of neutral BHs

Similarly to the case of four dimensions, in the case of
the neutral BHs q ¼ 0, the domain wall solution exists

only for A > 0, with m� ¼ 1
8A and r� ¼ 1ffiffiffiffiffi

2A
p ¼ 2m1=2

� . For

�> 0 and �< 0, the BH horizon is located at

r2þ¼ 3

�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

6A

s 1
A; 3

j�j

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj�j

6A

s
�1

1
A; (55)

respectively. From Eq. (23) for n ¼ 4, for�> 0 we obtain

SEðnblsÞ ¼ � ð2 ffiffiffi
3

p Þ33

�2�3=2
F5;Sch;

F5;Schð ~AÞ :¼
0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

6 ~A

s 1
A3=2

;

(56)

where ~A :¼ A
� , while for �< 0 we obtain

SEðnblsÞ ¼ � ð2 ffiffiffi
3

p Þ33

�2j�j3=2 F 5;Sch;

F 5;Schð ~AÞ :¼
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

6 ~A

s
� 1

1
A3=2

;

(57)

where ~A :¼ A
j�j . It is easy to confirm that

SEðnblsÞ ¼ �A
4G

; (58)

irrespective of the sign of �, where A ¼ 2	 ð22r3þÞ is
the area of black horizon. As for the four-dimensional case,
the absolute value of the Euclidean action is equal to the
entropy of created BHs, following the area law. The result
agrees with that for a bulk BH pair of Ref. [26].

0.0 0.1 0.2 0.3 0.4 0.5
q
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0.30
F4

FIG. 7 (color online). F 4ð ~A; ~qÞ is shown by the solid (red)
curve as the function of ~q for ~A ¼ 0:5.
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FIG. 6 (color online). F 4ð ~A; ~qÞ and F 4;Schð ~AÞ are shown by
the solid (blue) and dashed (red) curves, respectively, as the
function of ~A for ~q ¼ 1

2
ffiffi
3

p 
 0:289.
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2. For a pair of general charged BHs

We focus on the case of the (þ)-branch domain wall
with A > 0. Substituting n ¼ 4 into Eq. (23), the Euclidean
action reduces to

SEðcblsÞ ¼ � 83rþ
�2ð4m�

r2þ
� 1� 3q2

r4þ
Þ

	
�
� 1

2
r3þ�þ 3r3�Aþ 6q2

�
1

r2�
� 1

r2þ

��
: (59)

For �> 0,

SEðcblsÞ ¼ � ð2 ffiffiffi
3

p
Þ3

�2�3=2
F5; (60)

where

F5ð ~A; ~qÞ :¼ ~rþ
9

ffiffiffi
3

p 1
4 ~m�
~r2þ

� 3~q2

~r4þ
� 1

	
�
3 ~A~r4� � ~r4þ

2
þ 6~q2

�
1

~r2�
� 1

~r2þ

��
: (61)

Here a quantity with tilde is dimensionless, and norma-

lized by an appropriate power of �. Note that F5ð ~A; 0Þ ¼
F5;Schð ~AÞ defined in Eq. (56). In Fig. 8, the comparison of

F5ð ~A; ~qÞ and F5;Schð ~AÞ is shown. In Fig. 9, F5 is shown as a

function of ~q for a fixed ~A. We find that F5ð ~A; ~qÞ<
F5;Schð ~AÞ. Therefore, as in the four-dimensional case, the

pair production rate for a charged BH is always smaller than
that of the neutral case. We then numerically confirmed

F5 ¼ r3þ�3=2

ð ffiffiffi
3

p Þ3 ; (62)

which leads to

SEðcblsÞ ¼ � ð2rþÞ3
�2

¼ �2r3þ
G

¼ �A
4G

; (63)

whereA ¼ 2	 ð22r3þÞ andG ¼ �2

8 represent the area of

horizons (the factor 2means two sides). The absolute value

of the Euclidean action is equal to the entropy of created
BHs, following the area law. Then, the decreasing pair
creation rate for the charged case can be understood in
terms of the decreasing area of the outer horizon for the
increasing charge with a fixed cosmological constant.
For �< 0, we obtain

SEðcblsÞ ¼ � ð2 ffiffiffi
3

p
Þ3

�2j�j3=2 F 5; (64)

where

F 5ð ~A; ~qÞ :¼ ~rþ
9

ffiffiffi
3

p 1
4 ~m�
~r2þ

� 3~q2

~r4þ
� 1

	
�
3 ~A~r4� þ ~r4þ

2
þ 6~q2

�
1

~r2�
� 1

~r2þ

��
: (65)

Here a quantity with tilde is dimensionless, and normalized

by an appropriate power of j�j. Note that F 5ð ~A; 0Þ ¼
F 5;Schð ~AÞ defined in Eq. (57). In Fig. 10, the comparison

of F 4ð ~A; ~qÞ and F 5;Schð ~AÞ is shown. In Fig. 11, F 5 is

shown as a function of ~q for a fixed ~A. We find that

F 5ð ~A; ~qÞ<F 5;Schð ~AÞ. Therefore, the production rate for

a charged BH pair is smaller than that of the neutral case.
We then numerically confirmed

F 5 ¼ r3þj�j3=2
ð ffiffiffi

3
p Þ3 ; (66)

which leads to Eq. (63). As for the neutral case, the
absolute value of the Euclidean action is equal to the
entropy of created BHs, following the area law.
Similarly, the decreasing pair creation rate for the charged
case can be understood in terms of the decreasing area of
the outer horizon for increasing charge with a fixed cos-
mological constant.
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FIG. 8 (color online). F5ð ~A; ~qÞ, and F5;Schð ~AÞ are shown by the
solid (blue) and dashed (red) curves, respectively, as the function
of ~A for ~q ¼ 0:3.
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FIG. 9 (color online). F5ð ~A; ~qÞ is shown by the solid (red)
curve as the function of ~q for ~A ¼ 0:5.
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C. Application to the braneworld cosmology

After the nucleation, the domain wall may evolve in the
radial direction of the bulk spacetime. The particular case
of interest is that of the five-dimensional spacetime, where
the moving domain wall may be interpreted as our brane-
world universe. Thus in this subsection, we will focus on
the five-dimensional case. The cosmological equations on
the domain wall have been studied in [26,42,43].

The behavior after the nucleation crucially depends on
the sign of A and the branch of the domain wall. For A > 0,
there are two branches of r�;þ and r�;� (see Sec. III C).

They correspond to the local maximum and minimum of
the potential VðrÞ, respectively. However, as we have dis-
cussed previously, for the (�)-branch domain wall the BH

pair cannot be formed for A > �
6 obtained from Eq. (16)

with n ¼ 4. Thus, we focus on the (þ)-branch domain
wall. In the (þ)-branch, the domain wall is initially the
Einstein static universe just after the nucleation, but may
evolve once the wall position deviates from the equilibrium
point due to the small perturbations. Assuming that the

domain wall evolves as r ¼ að�Þ, where að�Þ plays the
role of the scale factor of the Robertson-Walker universe
on the domain wall and � is now the proper time in the
Lorentzian signature, the cosmological equation is given
by _a2 þ VðaÞ ¼ 0, hence

_a2

a2
þ 1

a2
¼ 1

3
�þ 2m�

a4
� q2

a6
; (67)

where � :¼ 3A becomes the effective cosmological con-
stant [26,42]. The second and third terms on the right-hand
side are induced due to the mass and charge of the created
BHs, respectively. The mass term behaves as the radiation
in the universe [26,42], while the charge term behaves as
the stiff matter with a negative energy density.
Cosmological solutions of the domain wall universe in
the charged BH background have been studied in, e.g.,
Ref. [33]. There are two possibilities, namely, the expand-
ing (a > r�;þ) or contracting (a < r�;þ) domain wall. The

first case corresponds to the expanding universe, approach-
ing the de Sitter inflation with �, since the contributions of
the mass and charge terms are diluted. The second
case corresponds to the initially collapsing universe.
However, in this case the domain wall does not run into
the singularity and experiences a bounce, since there is the
barrier in VðaÞ because of the charge q.
For A < 0, the BH pair cannot be formed for jAj< j�j

6

obtained from Eq. (17) with n ¼ 4, and we do not consider
this case.

V. SUMMARYAND DISCUSSIONS

In this paper, we have studied the creation of a BH pair
separated by a domain wall in the four- or five-dimensional
spacetime with a cosmological constant. We have con-
structed the solution representing a BH pair with a domain
wall. In any dimensions, the solution which involves the
domain wall outside the outer BH horizon can be formed
only at the local maximum of the potential, which has a
smooth limit to the neutral case. The singularity of the
domain wall universe with charged BHs, as distinct from
that with neutral BHs, can be avoided.
There are two kinds of approach to the creation of a BH

pair. One is the bounce approach. The other is the quantum
cosmological approach. In the semiclassical approxima-
tion, the formula of the production rate without a prefactor
in the bounce approach is equivalent to the formula in the
quantum cosmological approach [28].
We have computed the Euclidean action for the above

system in four- and five- dimensional spacetimes by
employing the quantum cosmological approach. We
then have compared our results of the charged case with
those of the neutral case with a same cosmological con-
stant. We find that the production rate of a charged BH
pair is always smaller than that in the case of a neutral
BH pair in both dimensions. We also have confirmed that
the Euclidean action is always equal to the minus entropy
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FIG. 10 (color online). F 5ð ~A; ~qÞ and F 5;Schð ~AÞ are shown by
the solid (blue) and dashed (red) curves, respectively, as the
function of ~A for ~q ¼ 1
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FIG. 11 (color online). F 5ð ~A; ~qÞ is shown by the solid (red)
curve as the function of ~q for ~A ¼ 0:5.
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of the created BHs, following the area law. We have given
the first explicit proofs on the relation between the pair
creation rate and the area of horizons of the created BHs
in the four- and five-dimensional spacetimes. The space-
time of the domain wall can be provided either by a cut-
and-paste method or by the instanton solution mediating
tunneling between the degenerate vacua in curved space
[29–32]. The braneworldlike object can be obtained as
the interpolating instanton solution by applying the
mechanism in [31,32]. From this point of view, our
present work can be the basic framework to make the
spacetime, where we can describe the dynamics of a
domain wall universe in the charged BH spacetime not
only in the Einstein-Maxwell theory in Refs. [33,34]
but also in the more general Uð1Þ gauge theories in
Refs. [35–37]. With this motivation, the application to
the braneworld cosmology has also been discussed. The
four-dimensional geometry just after the nucleation is the
Einstein static universe. The branch which is smoothly
connected to the neutral case corresponds to the local
maximum of the potential and eventually evolves, while
the others are the local minimum.

In this paper, we have employed the time periodicity by
the Hawking temperature of BHs [38] so that no conical
singularity appears at the horizon. The Euclidean geometry
is smooth at the horizon, and therefore we only employed
the boundary term by the presence of the domain wall. We
omitted the boundary term for the form field, because it
vanished in this paper.

We briefly discuss the possible generalization and the
results expected from the previous results.

The first straightforward generalization is to the case of
more than six-dimensional spacetimes. Even in such a
case, the phase diagrams of the BHs and domain walls
are very similar to Figs. 1–3, respectively. Similarly, the
instanton for a pair of BH with a domain wall can be
constructed. Note that the horizon inside the domain wall
can be formed only at the local maximum of the potential
VðrÞ for A satisfying Eq. (16). Then, the creation proba-
bility is also similarly evaluated, which gives the essen-
tially the same results as in the previous cases. In
particular, the Euclidean action for the charged BH pair
with a domain wall is expected to be

SEðcblsÞ ¼ �A
4G

; (68)

whereA ¼ 2	�n�1r
n�1þ is the area of the outer horizon,

where the factor 2 means two sides. Following the area law,
(�SE) coincides with the BH entropy, which is expected
from our construction of the instanton. The nucleation rate

e�SE for a charged BH pair is always suppressed in com-
parison with that of a neutral pair for a given cosmological
constant, since the area of the outer horizon decreases as
the charge increases.
Although it may be most plausible that two identical

BHs are produced across the wall, it would be interesting to
discuss the possibility without Z2-symmetry. This is the
case where the cosmological constant in both sides is
different and the domain wall is interpolating two different
vacua. In this case, in terms of the continuity of the
magnetic field strength across the wall, two BHs must
have the same amount of charge. In the case with Z2

symmetry, for a given cosmological constant �, charge q
and domain wall tension � (or A), we could determine the
positions of the outer event horizon rþ and that of the
domain wall r�, and the BH mass m�, through the horizon
condition fðrþÞ ¼ 0 and two stationary conditions for the
wall Eq. (18). We can extend this argument to the case
without Z2 symmetry. For the given bulk cosmological
constant �I, charge q, and tension of the domain wall �,
where I specifies the side with respect to the wall, totally
five quantities, i.e., the masses mI and horizon positions
rþ;I of BHs (four quantities) and the domain wall position

r� must be specified by the five independent conditions. In
our case, they are the horizon condition in each side
fIðrþ;IÞ ¼ 0 (hence two conditions), two stationary con-

ditions as Eq. (18), and the continuity of �
ffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ

p
across

the wall. The last condition is due to the requirement that
the temperature measured by an observer on the domain
wall must be unique. Thus, in contrast to the case with Z2

symmetry, even if a solution for the above set of equations
exists, the masses of BHs are generically different.
Otherwise, the system becomes overdetermined. It would
be interesting to look for instanton solutions satisfying
the above five relations, and evaluate the nucleation proba-
bility, although we now leave these issues for future
studies.
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