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We investigate the 2-point correlation functions of Yang-Mills theory in the Landau gauge by means of
a massive extension of the Faddeev-Popov action. This model is based on some phenomenological
arguments and constraints on the ultraviolet behavior of the theory. We show that the running coupling
constant remains finite at all energy scales (no Landau pole) for d > 2 and argue that the relevant
parameter of perturbation theory is significantly smaller than 1 at all energies. Perturbative results at low
orders are therefore expected to be satisfactory and we indeed find a very good agreement between one-
loop correlation functions and the lattice simulations, in three and four dimensions. Dimension-2 is shown

to play the role of an upper critical dimension, which explains why the lattice predictions are qualitatively

different from those in higher dimensions.
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I. INTRODUCTION

There is currently no fully satisfying covariant gauge
fixing of non-Abelian gauge theories. The common
Faddeev-Popov (FP) procedure is known to be invalid
because of the Gribov ambiguity [1]: the gauge constraint
(such as d,A¢ = 0 in the Landau gauge) has many solu-
tions (Gribov copies) equivalent up to a gauge transforma-
tion. Taking into account this ambiguity would give
nonperturbative contributions [typically of the form
exp(—const./g?)] that vanish at all orders of the perturba-
tion theory. Consequently, the FP procedure is actually
justified when studying high-energy phenomena and the
perturbative predictions are in excellent agreement with
the experiments. On the other range of the spectrum, when
considering infrared (IR) properties, the perturbative
analysis extracted from the FP procedure is inconsistent
because the coupling becomes large. The coupling is found
to diverge at a finite energy scale (known as a Landau pole)
but of course this prediction is out of the range of validity
of perturbation theory. There are two possible explanations
of the failure of the perturbative predictions of the FP
procedure. Either the coupling indeed reaches large values
(but this seems to be at odds with the lattice simulation
results) or some nonperturbative effects, such as the Gribov
ambiguity, invalidate the FP procedure itself.

In fact, we can avoid fixing the gauge by simulating
gauge invariant quantities on the lattice and most of the IR
studies are done in this way. However it would be conve-
nient to have some analytic (or semianalytic) predictions in
that regime, which seem to require one to fix the gauge (see
however [2-4]), and therefore to take into account the
Gribov ambiguity.

Several analytic methods have been considered in order
to access the IR properties. The most developed is based
on the Schwinger-Dyson (SD) equations [5-16], which
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consist of an infinite set of coupled equations for the vertex
functions. In order to make predictions, it is necessary to
truncate in some way this infinite set. Different schemes
have been proposed but most of them consider the equa-
tions for the 2-point functions with an ansatz for the 3- and
4-point functions. (Most of the analyses have been done in
the Landau gauge and we restrict the discussion to this
gauge in the rest of the paper.) This leads to some predic-
tions on the behavior of the ghost and gluon propagators
and two types of solutions have been found. In the so-
called scaling solution [5-9,15], both propagators have a
power-law behavior in the IR, the ghost propagator is more
singular than the bare one, and the gluon propagator
approaches zero in that limit. The exponents governing
these two power-laws are not independent. In the so-called
decoupling solution (or massive solution) [9-14,16], the
gluon propagator goes to a constant in the IR, and the ghost
propagator is as singular as in the bare theory.

These correlation functions were also studied in the
framework of the nonperturbative renormalization group
(NPRG) equation [17,18]. Again, one has to make some
truncations in an infinite set of coupled equations
[15,19,20]. The results again depend on the approximation
scheme, but seem to be consistent with the scaling solution.

A third approach, known as the Gribov-Zwanziger (GZ)
model [1,21,22], relies more specifically on the influence
of the Gribov copies. By introducing several auxiliary
fields, it is possible to restrict effectively the functional
integration on the gluon field to the first Gribov region,
where the FP operator is positive-definite. It was originally
expected that this restriction would give an unambiguous
gauge fixing but it was later realized that many copies of
some field configuration were present within the first
Gribov region [23]. This procedure significantly reduces
the number of Gribov copies but unfortunately not to a
single one. The Gribov ambiguity is therefore still present
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in this model. In the first implementations of the GZ model,
the predictions for the propagators were consistent with
the scaling solution. More recently a refined version of this
model was introduced [24], that takes into account the
appearance of some condensates. The results are then
consistent with the massive solution of SD equations.

The results obtained in the SD approach triggered a large
activity from the lattice community. Since the predictions of
the SD approaches are mostly for gauge dependent quanti-
ties, it was necessary to implement a gauge-fixing procedure
in the lattice, at odds with usual simulations. One of the
merits of the precursor work of Alkofer and von Smekal
[5,6] was to discard very singular solutions found previously
for the gluon propagator and this was confirmed by the
lattice simulations. However, a broad consensus on the de-
tails of the simulation results in d = 3 and 4 was achieved
only recently, mainly through large lattice simulations
[25-29]. It is now well established that in these dimensions,
the simulations support the massive solution. The d = 2
case is different in this respect [26,30] and is well described
by the scaling solution and the explanation of this difference
is still unclear (see however [31]).

Recently [32], we proposed an alternative to the analyti-
cal methods described above. Its motivation relies on the
fact that we do not have so far a fully justified covariant
gauge-fixing procedure that can be handled in analytical
calculations. Ideally, we should try to construct such an
unambiguous gauge-fixing procedure, but this is an ex-
tremely hard task. Alternatively, we propose to construct
a model that uses, as a guiding principle, the behavior of
correlation functions observed on the lattice and that re-
spects as many important known properties of correlation
functions as possible. More precisely, since the gluon
propagator is observed to be massive in the lattice simula-
tions (for d > 2), we propose to include this mass term
directly at the bare level. (This corresponds to a particular
case of the Curci-Ferrari model [33].) This modifies the
theory in the IR but preserves the standard FP predictions
for momenta p >> m at all orders of perturbation theory. In
particular, the mass term does not spoil the renormaliz-
ability. This model reproduces at one-loop order with
excellent precision the lattice predictions. We also showed
that the spectral function of the gluons is not positive-
definite, in agreement with other studies [6,34,35].

Our aims in the present article are the following. First,
we give a detailed version of the calculations presented
in [32], including some other one-loop calculations that
were not presented in the previous work for lack of space.
Second, we show that an appropriate renormalization
scheme can be chosen that does not present a Landau
pole in the IR. Third, we discuss in detail the size of higher
loop corrections showing that, in fact, they seem to be
rather small. This opens the door to perturbative calcula-
tions in QCD in the IR regime, with a huge number of
possible applications. Fourth, we analyze the d = 2 case
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and explain why in the present model it is very different
from the d > 2 case.

The article is organized as follows. In Sec. II, we de-
scribe in detail the model and its general properties. In
Sec. 111, we present the one-loop perturbative calculation of
the 2-point functions and compare our results with the
lattice data in d = 4 and d = 3. In Sec. IV, we perform a
renormalization group (RG) analysis of these propagators.
We propose two different renormalization schemes, one of
which is shown to be IR safe in the sense that it leads to no
Landau pole in the IR. We compare the RG results with the
lattice data in d = 4 and d = 3. In Sec. V, we discuss the
d = 2 case. Some technical details are presented in two
appendixes.

II. THE MODEL

As said in the introduction, the FP action is not justified
at a nonperturbative level. In this section, we present a
modification of the FP action in the Landau gauge, based
on phenomenological considerations. Our main guide is
the observation that the gluon propagator tends to a finite
positive value in the IR for d > 2. We propose to impose
this property at the tree level by adding a mass term for the
gluon in the FP action. We do not change the ghost sector
since the ghost propagator is found to be IR divergent in the
simulations. This may also be motivated by assuming that
the shift symmetry ¢ — ¢ + const. is preserved beyond
perturbation theory. Moreover, we do not want to modify
interactions in the action so as to preserve the ultraviolet
(UV) behavior of the theory and maintain the predictions
of perturbative QCD (or gluodynamics) for momenta much
larger than Agcp. From this analysis it is clear that if we
choose not to modify the field content of the theory, mass
terms are the only local and renormalizable modifications
of the FP action that do not affect the UV behavior of the
model. If we restrict to local terms, the only other possible
way to modify the action is to introduce new fields as done
in the GZ model [1,21,22]. The origin of the appearance of
the effective mass term in the IR is a complex problem and
could be related with the Gribov ambiguity, with some kind
of condensates (see for example [24,36,37]), or with other
nonperturbative effects, but our phenomenological ap-
proach does not rely on which of these scenarios is valid.

This analysis leads us to consider the Landau-gauge FP
Euclidean Lagrangian for pure gluodynamics, supple-
mented with a gluon mass term:

1 _ ) m?
L =Z(F;‘“,)2 +9,¢D,0) +ihd,AY +7(A;;)2, (1)

where (D,,¢)* = 9,¢* + gf**°A% ¢ and the field strength
F4,=0,A% — 0,A% + gf"AL A are expressed in
terms of the coupling constant g, and the Latin indices
correspond to the SU(N) gauge group. The Lagrangian (1)
corresponds to a particular case of the Curci-Ferrari
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model [33]. At the tree level, the gluon propagator is
massive and transverse in momentum space:

1
Gibu(l’) = 5abP,J£V(P)my (2)

with P%,(p) = 8,, — p,p,/p* It is interesting to note
that the spectral density associated with the propagator (2)
is positive and therefore there is no violation of positivity
at the tree level. As discussed in [32], violations of pos-
itivity are present in the model but they are caused by
fluctuations.

The gluon propagator observed in the lattice is not
compatible at a quantitative level with the bare propagator
(2) and we will show below that, by including the one-loop
corrections, one obtains propagators for gluons and ghosts
that are in impressive agreement with those obtained in the
lattice in d = 4 and d = 3.

Let us mention that a mass term has been used to
improve perturbative QCD results in order to reproduce
the phenomenology of strong interactions [38—40].
Moreover, there are successful confinement models [41]
that use actions including a gluon mass term. The differ-
ence with the model used in those works is that the Curci-
Ferrari model is renormalizable, allowing one to perform
perturbative calculations at any order. This also implies
that the UV beta function identifies with the standard
results of the FP procedure.

When analyzing the model described above, we must
face the problem that the mass term breaks the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry [42,43] which is
very important in the perturbative analysis. This symmetry
has the form:

a a a — g aoc C
0AS, =n(D,c)*, oct = —"qu beebee,

oct = niht, o6ih* =0, 3)
where 7 is a global Grassmanian parameter. The BRST
symmetry is in general used to prove the renormalizability
of the theory. However, the breaking of the BRST symme-
try by the mass term is soft and therefore does not spoil
renormalizability [33,44].

The BRST symmetry is also used to reduce the state
space to the physical space, in which the theory is unitary
(at least at the perturbative level) and breaking this sym-
metry spoils the standard proof of unitarity. This problem is
actually common to essentially all methods that try to go
beyond the standard perturbation theory (as the GZ model)
because they all break the standard BRST symmetry. In this
respect, the model considered here is not in a worse position
than other approaches considered in the field. We must
insist that this model is equivalent to the standard FP model
in the UV limit p > Agcp if m ~ Agep. This means
that in the domain of validity of standard perturbation
theory, the model is as unitary as QCD. The unitarity of
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the model in other momentum regimes is of course an
important open problem, as it is in all gauge fixings in
which standard BRST symmetry is broken.

The model with Lagrangian (1), as a particular case of
the Curci-Ferrari model, has a pseudo-BRST symmetry
(not nilpotent) that has the same form as the standard
BRST (3) except for the & variation which reads §ih® =
nm?c?. On top of this symmetry, the Lagrangian has all the
standard symmetries of the FP action for the Landau gauge.
This includes the shift in antighost ¢ — ¢ + const. a sym-
plectic group [45], and four gauged supersymmetries
[46,47]. As a consequence, the mass [48] and coupling
constant [49] renormalization factors are fixed in terms of
gluon and ghost field renormalizations. More precisely, by
using the standard definition of renormalization factors
(here the subscripts B denote bare quantities corresponding
to their respective renormalized quantities without sub-
scripts):

AW = JZ A,
8 = Zgg;

¢4 = \Z.c", ¢4 = Z.c°,
my = Z,.m?, )
one can prove that the divergent part of the renormalization

factors (or, similarly, the renormalization factors them-

selves in a MS scheme) verify the two nonrenormalization
theorems [48,49]:

ZNZyZ, =1, &)
Z,2Z,Z. = 1. (6)

These nonrenormalization theorems are particular cases
of those found in the Curci-Ferrari model for any gauge
parameter &, as proven recently [46,50]. The finite parts of
renormalized vertices also verify nonrenormalization the-
orems, as will be discussed below, but their explicit forms
depend on the considered renormalization scheme.

III. PERTURBATIVE CALCULATION OF 2-POINT
CORRELATION FUNCTIONS

We present in this section a strict one-loop calculation
(that is, without taking into account RG effects) of gluon
and ghost propagators in arbitrary dimension. These cor-
relators require the calculation of four Feynman diagrams
as shown in Fig. 1. The corresponding results in d = 4 and
d = 3 are then compared with lattice results, showing a
very good agreement (for momenta not much larger than
m). Some of these results were presented in [32] but for
completeness we review all of them here.

Observing that the gluon propagator is transverse in the
Landau gauge, it is convenient to parametrize the gluon
G4}, (p) and the ghost G**(p) propagators in the form:

Gub(P) = Sth(p)/pz’ G;{,va(p) = P/J;V(p)éahG(p)

)
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FIG. 1. First line: three diagrams contributing to the gluon
self-energy. Second line: diagram contributing to the ghost
self-energy.

The F(p) is known as the ghost dressing function and the
scalar function G(p) will be referred to as the gluon pro-
pagator below. We also define the 2-point vertex functions

I2p)=6"p), T20p) =pF'(p. ®

We choose the following renormalization conditions for
2-point functions:

=0 =m’  TP(p=p) =m+p
T&(p=p) = p. ©)

We use the Taylor scheme for the coupling [49], defining
the coupling constant from the ghost-antighost-gluon ver-
tex when the ghost momentum is zero. Using the fact that
this vertex has no quantum corrections, one deduces that (5)
is valid also for the finite part of the renormalization factors.

A. Strict perturbative results for 2-point
correlation functions

Let us first consider the calculation of the ghost self-
energy in arbitrary dimension using dimensional regulari-
zation. Only one diagram contributes (see second line of
Fig. 1). The only difference with respect to standard Yang-
Mills calculations is the form of the bare gluon propagator
(2). Introducing Feynman parameters and performing

|
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internal momentum integrals one easily arrives at the
following expression for the ghost 2-point vertex:

&N P_Zr(z _ 51)
(477.)11/2 m2 2

1
X f a'x{(xm2 + x(1 — x)p?)4/272
0

xm? + x(1 — x)pz)
2—d

2),11
P (p) = -

X <m2 + pH(1 —x)? +

— (x(1 — x)p2)4/2- 2<p2x2 I x(lz_ )ZP )}

(10)

The remaining integral can be performed analytically in
integer dimensions as discussed below. Let us only men-
tion here the UV divergent part when d — 4:

3 gszz

I@Mw@ﬁﬁ_imHM—m'

(1)

This is in agreement with previous calculations in the
literature [44,51].

Let us now consider the 2-point vertex for gluons. The
first diagram contributing to this vertex function is the
gluon tadpole (first diagram in the first line of Fig. 1) and

gives a contribution:
(d— 1y d-2 d
—_— rr——=) 12
omr(i=5) a2

The only effect of this diagram is to renormalize the mass.
The second term contributing to the gluon self-energy is
the ghost sunset (second diagram in first line of Fig. 1)
which reads:

¢’N
(47T)d/2

) =

g’N
(4ar)4/2

LTEIre-9
2 - adl'd)

T(p) = (13)
Finally, the third diagram contributing to the gluon self-
energy is the gluon sunset (third diagram in the first line
of Fig. 1). Again, introducing Feynman parameters, we
obtain:

202 ptd + (x* +2)¢? p> + ¢*
F%(p)=2g2N[ f(zw)d{( p ( )q"p”+q*)

m2d

2p* +4*

1 1
(¢*+xm?>+x(1—x)p?)?> (m>+q>+x(1— x)pz)z)
(d+2)g + (8x*> — 8x+2d(x* —x+ 1)+ 5)¢* p*> + (d + 2)(x* — x + 1)*¢*p*

(m + g%+ x(1 — x) p?)?

d(d +2)m*

1 1
e e o T

1 1
"o (0P (@Al - x)p2)2)}'
(14)

The integral in the internal momentum ¢ can be done analytically in arbitrary dimensions but the result is lengthy and not
particularly illuminating. We can compute the divergent part of the gluon 2-point function, which reads:
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N N 3 13
I‘f)’l 1oop(p) d—4 8 ( 2

————(Zm? = —p?) 15
6@ —a\2" 3 p) (1>
Together with (11), this leads to the determination of the
divergent part of the renormalization factors at one loop:

35 ¢2N 1 3 ¢’N 1
Z,=1—--°""_" Z, =1+22"_-
" 6 16724 —d 21674 —d
13 2N 1
Zi=1+—-°>"__ 16
A 3162 4—d (16)

which coincide with previous results [44,51].

g>Ns

38472

G lp)/m*=s+1+

(st 1252 — 205 + 12) log<

g*N
6472

Fl(p)=1+

where s = p?/m?>.

In Fig. 2, we compare these expressions for the SU(2)
gauge group with the lattice simulations of [25]. The
best choice of parameter is g = 7.5 and m = 0.68 GeV
when the normalization prescriptions are imposed at . =
1 GeV. One observes that both gluon and ghost propaga-
tors can be fitted with the same choice of parameters in a
very satisfactory way. Note that the normalization condi-
tions used in lattice simulations are not (9). Accordingly, it
is necessary to introduce a global multiplicative renormal-
ization factor when comparing the curves.

We have also compared our results with the data of two
different lattice studies [28,29] for the SU(3) group. These
two data sets have different overall momentum scale and
we have rescaled the momenta of the data of [28] for
superimposing them with those of [29]. Contrarily to the
SU(2) case where data are only available in a small mo-
mentum interval up to 1.9 GeV, the data for SU(3) were
computed for momenta up to 8 GeV. Consequently one can
explore the crossover from standard perturbative results
when p is significantly larger than m (requiring RG meth-
ods) and an IR regime similar to the one analyzed in the
SU(2) case. We represent in Fig. 3 the gluon propagator
and the ghost dressing function. We present also the gluon
dressing function p>G(p) in order to make visible the UV
regime. The best choice of parameters is g = 4.9 and m =
0.54 GeV (again with the renormalization prescription
imposed at u = 1 GeV) and it leads to a very satisfying
agreement for momenta p < 2 GeV. Beyond 2 GeV, the
agreement is not as good but this is not a surprise because
expressions (17) are one-loop results obtained from a fixed
coupling constant calculation in a fixed renormalization
point. It is well-known that in order to analyze the regime
p >> m, one must take into account RG effects and, in
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B. Results in d = 4

When d — 4 the expressions for correlation functions
(10) and (12)—(14), diverge in the UV. In order to calculate
the renormalized 2-point functions, one must consider the
sum of those self-energies with a bare contribution with
renormalization factors. When d approaches an integer
dimension, the remaining integrals can be performed
analytically.

Once the renormalization conditions are imposed [see
Eq. (9)] the renormalized functions F(p) and G(p) are
finite in the limit d — 4 and read:

{mf1 “ 252 4 (2 — ) log(s) + 2(s~! + 1)3(s% — 105 + 1) log(1 + 5)

VEF s — 5
VE+s+ 5

{—slog(s) + (s + 1)3s72log(s + 1) — s7' — (s = u?/m?)},

) == /)

(17)

G(p)

p (GeV)

FIG. 2 (color online). Four-dimensional correlation functions
for SU(2) gauge group. The results of the present work (red
curve) are compared with lattice data of [25] (blue points).
Top figure: gluon propagator. Bottom figure: ghost dressing
function.
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G(p)

p’G(p)

p (GeV)

FIG. 3 (color online). Four-dimensional correlation functions
for SU(3) gauge group. The results of strict perturbation theory
(red solid curve) are compared with lattice data of [28] (blue
open circles) and [29] (blue crosses). The black dashed curve is
obtained by the zero momentum prescription RG (see Sec. [IVA).
Top figure: gluon propagator. Middle figure: gluon propagator
times p>. Bottom figure: ghost dressing function.

particular, the running of the coupling. The corresponding
procedure is presented in detail in the next sections. Once
RG effects are included, the agreement is essentially within
error bars for p > m as is also shown in Fig. 3. In any case,
it is obvious that when p > m, the model (1) reproduces
correctly the high momentum regime once RG effects are
taken into account because it just coincides in that case
with the standard FP model.
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A natural question to raise at this point is whether the
parameters found by the previous fitting procedure are
compatible with other determinations. We choose to com-
pare g with the results of [52] which make use of a very
similar renormalization scheme: the coupling is defined
through the Taylor scheme and the ghost renormalization
factor is fixed by the second line of Eq. (9). The only
difference is that the gluon renormalization factor is fixed

by the condition Ff)(p = u) = u’. Because of the non-
renormalization theorem of the coupling, this amounts to a
relation between the coupling constant g of [52] and ours
which reads:

gV = (18)

-
1+ 2

k)

We extract from Fig. 1 of Ref. [52] the value g =~ 3.5 at
p = 1 GeV while the right-hand side of (18) leads to 4.3.
The error is about 20% which, as discussed below, is the
typical estimate of higher loop corrections; see Sec. [V E.

An interesting feature of the one-loop gluon propagator
is that it is increasing in the IR. In fact, the inverse
propagator behaves at small momenta as m? +
Ng?p?/(1927%) log(p?/m?) + O(p?). This prediction of
our calculation has a very small effect for d = 4 and it is
not visible in Figs. 2 and 3, but appears clearly in d = 3, as
shown below.

C.Resultsind = 3

Let us now consider the three-dimensional case. As in
d = 4, the 2-point vertex functions can be obtained in an
explicit form:

2
g mN 5
+24/s(1 —
3277_\/5(77'5 Js(1 —s)

— 2(s + 1)? arctan(+/5)),

2),11
e (p) =

19)

2
g mN )
T G

+ m(s2 —2)s? —4(s + 1) (s> —6s+ 1)
X arctan(+/s) + 2s(s + 4)(s® — 125 + 8)

X arctan(%g)),

where again s = p?/m?.

These expressions are finite because in d = 4 all diver-
gences are logarithmic and lowering the dimension reduces
the level of UV divergence of any diagram. Accordingly, a
possible renormalization scheme could be to use as renor-
malized parameters just the bare ones (that are finite).
However it is well-known that it is more convenient to
choose a renormalization scheme where renormalized pa-
rameters are defined at a running scale. This corresponds

2),11
0 (p) =

(20)
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1.6 T T T T T T T

G(p)

F(p)

0.2 0.4 0.6 0.8
p (GeV)

FIG. 4 (color online). Three-dimensional correlation functions
for SU(2) gauge group. The results of strict perturbation theory
(red solid curve) are compared with lattice data of [25] (blue
points). The black dashed curve is the IR safe RG improved
result (see Sec. IVB). Top figure: gluon propagator. Bottom
figure: ghost dressing function.

to a finite renormalization with respect to the bare
parameters. This is convenient in order to avoid large
perturbative corrections. Moreover, choosing renormalized
parameters at a running scale will allow us to perform a RG
analysis in the next sections (that considerably improves
the results). In the present section we use the renormaliza-
tion conditions (9).

The model (1) is able to account for the main features of
gluon and ghost propagators found in lattice simulations.
In Fig. 4 the results of our calculation with the best fit
parameters g = 3.74/GeV and m = 0.89 GeV for u =
1 GeV are compared with d = 3 simulations performed
with the gauge group SU(2) [25]. We observe that the best
fit for gluon and ghost propagators are not as good as in
d = 4. We will show below that the inclusion of RG effects
improve significantly one-loop results. In any case, our
calculation reproduces the finite IR gluon propagator and
ghost dressing function. It also reproduces the increasing
behavior of the gluon propagator in the IR. Indeed, an
expansion of the inverse propagator at low momentum
leads to m> — Ng?p/64 + O(p?).
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IV. RENORMALIZATION GROUP ANALYSIS

We showed in the previous section that the one-loop
perturbative results compare very well with the lattice data
up to energies of order 2 GeV and get worse at higher
energies. This is not a surprise since in d = 4 the pertur-
bation theory generates logarithms of the momentum
divided by some momentum scale (the mass or the renor-
malization point w). The pure perturbation theory fails at
energies higher than 2 GeV because these logarithms are
large and one needs to implement the ideas of the RG.
Actually since we have massless modes (ghosts) in the
theory, it is expected a priori that the RG analysis is
necessary also for p << m. We will see however that, in
this particular model, the IR behavior is milder than ex-
pected, essentially because ghosts interact by the exchang-
ing gluons which are massive.

For d <4, the UV behavior does not present large
logarithms, and consequently the use of the RG is not
mandatory in that regime. However, in practice, taking
into account RG effects may improve the quantitative
results. This idea is natural, but we are not able to test it
because there is no UV data available in d = 3 or d = 2.
For d < 4, a RG adapted for the IR is much more important
than for d = 4 and at the end of the present section we
show that such a RG procedure considerably improves the
results in d = 3. The d = 2 case can also be better under-
stood by including the RG effects but the discussion of this
point is postponed to Sec. V.

A. Vanishing-momentum prescription scheme in d = 4

We recall the main steps of renormalization, mainly
to fix the notations. We concentrate in this section on
the renormalization prescriptions that were described
in Sec. II. We define the B functions and anomalous
dimensions as:

d
Blegm)=puot| @1
Mo gpm?
dm?
Bo2(g, m?) = - , (22)
Mo gpm?
dlogZ
yalg, m?) = M% : (23)
M gpmy
dlogZ.
%®m5=ﬂj%— - (24)
M gpm5

We can then use the RG equation:

1
(lu“a/!« - E(nA'YA + nc'}/c) + Bgag + ﬁmzam2>r(nmnf) = O’
(25)

to relate the 2-point vertex functions at different scales:
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2
TP(p, w, g(w),
(26)

2(Mo)),
(27)

T2(p, p, g(w), m*(w) = z.(W)T(p, po, g(1o),

where g(u) and m?(u) are obtained by integration of the
beta functions with initial conditions given at some scale
Mo and:

d /
PR (e, mE(u)),
o M (28)

logz, () = [ g dTM,/ ye(g(p'), m*(u')).
Mo

logza(p) =

Using the normalization conditions described in Sec. II,
we then get:

>+ m*(p)
Ff)(l), Mos 8 mz) = %» (29)
A
@ p’
I (p, o, g m?) = : (30)
z.(p)

The renormalization scheme considered here leads to a
relation between the B functions and the anomalous di-
mensions y, and y.. As explained before, in the Taylor
scheme the nonrenormalization theorem (5) is also valid
for the finite parts. This leads to the following expression
for the B function of the coupling constant:

2
) - o2

The choice of a normalization prescription at vanishing
momentum for the gluon 2-point vertex simplifies greatly
the analytical treatment because as shown in Appendix A
the following relation is satisfied for the finite parts of the
propagators and dressing functions:

Yels. m2)). (31)

[$(p = 0) = Zym}Fy(p = 0. (32)
It is then easy to prove that:
B2 (g, m?) = m*y,(g, m?). (33)

The perturbative results together with the renormaliza-
tion scheme (9) enable us to compute the anomalous
dimensions. We get:

g°N

AT "o

(t(34t2 — 175t + 6) — 2£ logt

+2(t + 1)%Q23 — 11£2 + 20t — 3) log(t + 1)
+ 28323t + 43 — 972 + 201 — 36)

X1 g(J_V;LH 9) (34)

m () = za(wTD (P, mo, 8(o), m*(1o)),
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2

Ve = 3§ 5 20+ e = £ logt
+ (1 + 12t — 2)log(t + 1)), (35)

where t = u?/m?.

These expressions for the anomalous dimensions lead,
together with Egs. (31) and (33), to the expressions of the 3
functions. Observe that these B functions are not only
functions of the coupling constant g (as, for example, if
we use the MS scheme), but also depend on the dimen-
sionless ratio u?/m?. In principle, once these flow equa-
tions are integrated with some appropriate initial
conditions, we would need to make another integral to
determine z4(w) and z.(u) [see Eq. (28)] in order to
determine the inverse propagators. However, since the
flows of g and m? are expressed in terms of the anomalous
dimensions for the ghost and gluon fields, these integrals
can be done explicitly:

*(n)
2alp) = 7;:2(:0)’ (36)
_ g(w) [m*(po)
) e V() 7

Studying the behavior of these anomalous dimensions
for u much larger and much smaller than m together with
Eq. (31), we find:

g
ﬁg -~ {_ g63
67

In the UV (u > m) we obtain the standard, universal, 8
function. This is in contrast to other approaches where
masses are introduced in Yang-Mills theory but modifying
the UV behavior of the model [41]. In the IR (u <K m), we
observe that, although smaller in absolute value than in the
UV, B, remains negative which means that the coupling
constant diverges at a finite energy scale: we encounter a
Landau pole in the integration.

However, we stress that there are no large quantum
corrections when p << m (at least when d > 2) because
there are no IR divergences. In this configuration, a natural
scheme is to use strict perturbation theory for p =< m and a
RG improvement when p = m. The absence of IR diver-
gences might be surprising since the ghosts are massless. A
simple way of understanding this is to observe that all
diagrams, except those with a single ghost loop, include
at least one gluon propagator, which regularize the IR
behavior (this issue is discussed in more detail in
Appendix B). In this sense a purely perturbative calcula-
tion for momenta p < 1 GeV and a RG improvement for
UV regime (p = 1 GeV) is fully justified. In practice,
since the RG flow presents a Landau pole at an energy
scale not far from 1 GeV, we want to make the matching

=z

if > m,
if u <K m.

=9
= ]

(38)

—_

S
—_
[\
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at a higher energy, but lower than 2 GeV, where strict
perturbation theory begins to become untrustworthy. A
compromise is to perform the matching condition at
1.5 GeV and this gives impressively good results, as can
be seen in Fig. 3.

B. IR safe scheme in d = 4

A drawback of the procedure described in the previous
section is that there is some arbitrariness in the choice of
the matching scale to join strict perturbative and RG re-
sults. In this sense a unified procedure, valid at all scales,
would be more satisfactory and this motivates the search
for an IR safe RG scheme.

In this respect, it is interesting to note that the IR Landau
pole that appears in the previous RG scheme is not a
physical effect but is actually a consequence of our renor-
malization scheme (9). Indeed, the prescriptions we chose
there are not consistent, if u is too small, with the one-loop
results (and with the actual behavior observed in lattice
simulations in d = 3) that lead to an increasing propagator
in the IR (see Sec. III). In order to avoid this problem and
be able to take renormalization prescriptions at arbitrary
scales, we present here a scheme which is not based on an
explicit constraint of the 2-point vertex function but which
comes from the nonrenormalization theorem (6). In prac-
tice, we replace the first condition in (9) by imposing the
relation:

ZaZZ2 = 1, (39)

not only for the divergent parts but also for the finite parts.
The renormalized mass m? does not correspond any more
to the value of the renormalized propagator at zero mo-
mentum and accordingly there is no contradiction with the
increase of the propagator in the IR.

Within this new scheme, few formulas must be modified.
The B function for the mass is now changed to:

B (g, m?*) = m*(y,(g, m?) + y.(g, m?)). (40)

The anomalous dimension for the ghost is unchanged [see
Eq. (35)] while the anomalous dimension for the gluon
field reads:

g*N 2 2
=————(t—2)°2r—=3)(r+ 1)*log(r + 1

Y=g (=22 Q= 3)(e+ 1 log(e +1)

+ (=172 + 74t — 12)t + £ log(¢)

+ —
— AT AR — 92 + 201 — 36)10g( Vita \ﬁ))

Vit+4+ 4/t
(41)

where, as before, t = u?/m?. Finally, the expressions
relating z,(x) and z.(w) to the coupling constants read
now:
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m4(M) 82(M0)
m*(mo) g*(w)’

2a(p) = (42)

82(,&) mz(Mo)
82(,“0) mz(,U«) .

z2e(m) = (43)

The UV universal behavior of the B function (for
m >> m) is unchanged as expected. However, we observe

that the beta function for the coupling constant in the IR is
now positive:

2’N 1

Py~ 1672 6

if u << m. (44)

We need to insist on the fact that the universality of the beta
function is only valid for mass-independent schemes or for
M > m up to two-loop order. In particular, for u < m
there is no reason for the beta function to be scheme-
independent and it is typically not the case. The result
(44) means that in the present scheme, the IR behavior is
possibly safe. Actually, depending on the initial conditions
of the flow we do, or do not, hit a Landau pole. (Obviously,
if we start with a vanishing mass, we retrieve the standard
one-loop calculation and we do hit the Landau pole, so a
sufficiently large initial mass is necessary to be IR safe).
A second consequence of this IR behavior is that if the
flow does not hit a Landau pole, then the coupling constant
is attracted towards zero in the IR: the massive Gaussian
fixed point is attractive. This is a very appealing property
because this justifies the use of perturbation theory in the
regime p < m, although its use at intermediate momenta
(p ~ m) is more delicate. The validity of perturbation
theory at intermediate momenta is discussed in Sec. IV E.
In Fig. 5 the results for the correlation functions ob-
tained from the numerical integration of the RG equations
for the coupling and mass are presented. The best choice of
parameters at the scale u =1 GeV is g = 3.7 and m =
0.39 GeV. One observes a very good agreement of the one-
loop RG result when compared with lattice simulations,
particularly, as expected, in the UV and in the IR. The only
region where a significative departure is seen is for inter-
mediate momenta (1 GeV < p < 2 GeV) for the gluon
dressing function. The results, however, are not as good
as those obtained with the scheme of Sec. IVA. This may
be surprising and we now explain why it is not so. First, as
already mentioned and explained in detail in Appendix B,
there are no IR divergences and consequently the use of
RG analysis is not mandatory for p < m. Second, the
results of the previous section have been obtained by a
mixed treatment, by using the best fit of strict perturbation
theory and imposing a matching with RG results in the UV.
The results discussed here are obtained with a unified
treatment, valid at all scales. This is a more challenging
situation because we do not have the freedom of choosing
the matching scale. In this sense the IR safe scheme gives
a more satisfying construction. Third, as discussed in
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FIG. 5 (color online). Four-dimensional correlation functions
for the SU(3) gauge group. The results obtained by the IR safe
RG (see Sec. IV B) (red solid line) are compared with lattice data
of [28] (blue open circles) and [29] (blue crosses). Top figure:
gluon propagator. Middle figure: gluon propagator times pZ.
Bottom figure: ghost dressing function.

Sec. IVE, even if the relevant coupling in the present
model is never large, it is nevertheless not very small.
Accordingly the results obtained in the present section
are quite satisfactory and the surprise is more the level of
precision achieved in the previous one. A possible expla-
nation is that the choice of RG prescriptions that can be
directly read from correlation functions [and not from an
implicit RG scheme as done in (39)], may in practice
reduce the contributions of higher loop corrections. In
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any case we may expect that two-loop corrections should
improve considerably the present results and correspond-
ingly reduce the scheme dependence of them. Finally,
the coupling constant compares much better with the one
extracted from lattice simulations [see Eq. (18)]. Taking
into account the difference of renormalization scheme, we
now find, at u = 1 GeV, g = 3.4 which compares very
well with the lattice data 3.5 [52]; see Eq. (18).

C. The IR behavior in arbitrary dimensions

Before discussing the results in d = 3, it is convenient to
study the IR (u << m) behavior of RG functions of the
model in arbitrary dimensions. We saw in the previous
subsection that, in that regime, the beta function for the
coupling constant is positive and accordingly the Gaussian
IR fixed point is attractive. When d # 4, the coupling
constant g has dimension [energy]“~%/2 and it is conve-
nient to introduce the dimensionless coupling

g(p) = g(p)puld=472, (45)

in order to analyze a process with characteristic momen-
tum w. Of course, it may be appropriate to use powers of
the mass in order to define a dimensionless coupling. This
point is discussed below (see Sec. IV E), but for the mo-
ment let us concentrate on the choice (45) which is the
natural definition of the dimensionless coupling in the UV
regime (u >> m). The B function associated with g is:

gu\ =972 4-d
op 2

B:=n g+ ulI2B,. (46)

For dimensional reasons, the function 3; is only a function
of g and of the dimensionless squared mass:

m?=m’u 2 47)

For any d < 4, as well known, in the UV regime (u > m
or, equivalently /> < 1), the coupling g approaches rap-
idly a Gaussian fixed point because of the dominance of the
dimensional term — %g. The case d = 4 is also domi-
nated by a Gaussian fixed point in the UV, because of the
negative sign of the g* term. At intermediate momenta
p ~ m, the expressions of the B; function are very com-
plicated in arbitrary dimensions and its (nonilluminating)
expression involves special functions. However in the IR
regime u << m things become easier again, and one can
give an explicit expression for the 8; function at one-loop:

_ 4—d_  (4—-d)d—- 2)m3-d)/2 "
B: = — B g+ 22d+1r(%) Sin((4—2d)7,) Ng». (48)

The coefficient of the g term is regular (and nonzero) in
all dimensions d > 0. One observes the appearance of an
IR fixed point g:

045018-10



INFRARED SAFE PERTURBATIVE APPROACH TO YANG- ...

49T (44) sin(“U=27)
(d —2)mB-9/2

Ng: =

(49)

When d — 4, expression (48) approaches the d = 4 result
(44) and the fixed point value approaches the Gaussian
limit g2 = 0.

The coherence of these results relies on the hypothesis
that m> — oo, when u — 0. To check this hypothesis,

we write the 8 function for the dimensionless mass

2, -2
Wmn™) oy w2B, e (50)
opm

As before, the UV regime (where g — 0) is compatible
with /2 — 0 and this can already be seen in the ~ — 2’
term. The intermediate momentum regime (u ~ m) gives
complicated expressions, but the IR regime again simpli-
fies to:

(4 —d)(d —2)m3- D2
_ 252
B 22 +Ng 4d1-*(d+1) sin ((4 d)ﬂ')

&1V

Note that the prefactor of g2/? of this expression is twice
the prefactor of g° in Eq. (48). Consequently when g2
approaches its IR fixed point:

B ~ (2 — d)in. (52)

For d > 2, this implies that a regime with m?> — oo and
g ~ g. exists (under the hypothesis that the flow does not
hit a Landau pole before approaching it). Note that the
dimensionless square mass diverges as u>~ ¢, but the di-
mensionful mass goes to zero for d <4. This is not in-
compatible with the fact the gluon propagator is finite in
the zero momentum limit, because in the present scheme,
the mass is not defined through the renormalization condi-
tion (9). It is easy to show that:

L)y g2m* (o)
}){%FA (p) masgz( 0) (53)

where m?(p) ~ m2,p> . The d = 2 case is different. In
that dimension, the coupling constant would approach a
fixed point in an hypothetical IR regime, but the leading
contribution to the flow of /7 is zero and one must analyze
subleading contributions. This important particular case is
analyzed in Sec. V.

D. IR safe scheme ind = 3

Having considered the general IR behavior, we now
repeat the calculation of the Sec. IVB in the d =3
case and compare the results with the lattice simulations.
The calculation now leads to the following anomalous
dimensions:
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2

v, = ﬁ(wﬂ( 312 4+ 2) + 4/1(712 — 291 + 15)
— 21(3 — 812 + 407 — 96) arctan(+/1/2)
+ 4(3¢* — 47 + 82 — 15) arctan(v/7)), (54)
Y. = (=7t + 24/t(t + 3)
32,U,7T
+2(¢ + 1)(t — 3) arctan(/7)), (55)

where again t = u?/m?. We then deduce the 8 functions
for g and m? via the nonrenormalization theorems (31) and
(40). For some initial conditions the flow shows a Landau
pole, but for the particular values of couplings that do
match with numerical simulations, there is no Landau
pole. The dimensionless running mass 7i(u) increases
when u decreases and we get an IR regime when
um << m. As discussed in the previous section, this regime
is characterized by the u << m limit of the function B; that
ford =3 is

+ = (56)

and the corresponding IR fixed point is
NgZ = 64. (57)

In the Sec. IV E it is discussed why, in fact, these couplings
are not as large as it seems here. We want here only to
discuss the corresponding consequences for gluon and
ghosts propagators. The RG equations can be integrated
numerically and from them the propagators can be ob-
tained as discussed in the d = 4. The corresponding results
are presented in Fig. 4. We note that the inclusion of these
RG running considerably improve the results when com-
pared with those of strict one-loop perturbative results and
now compare very well with lattice simulations. This is not
surprising, because even if the present model does not have
IR divergences it is very common that RG effects play an
important role in field theories below four dimensions even
at moderate values of the couplings.

E. An estimate of higher loop corrections

The coupling constants that appear throughout this
work are frequently relatively large at intermediate scales
pm ~ 1 GeV. This situation is much better than having a
Landau pole, but it is problematic for a perturbative analy-
sis. In this section we argue that although the coupling
constant is not small, the perturbation theory seems to be
under control anyway.

First of all, as is well known [53], the parameter expan-
sion is not g2 but, because of angular factors and group
factors:
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g (p)Np?*

P = aminr gy

(58)

where p is the momentum scale used to define the coupling
constant. In d # 4, g has dimension p“*~9/2 and the power
of momenta in the previous formula is necessary in order to
have a dimensionless expansion parameter. The angular
factors considerably reduce the size of the expansion pa-
rameter. For example, for d = 4 and N = 3, this expansion
parameter has a maximum at values of order one as shown
in Fig. 6.

There is actually another effect that suppresses the ra-
diative corrections in the IR as we discuss now in detail.
Note that when momenta are much smaller than the gluon
mass, all diagrams that include internal gluon lines are
suppressed by inverse powers of the gluon mass. This has
two consequences. First, as shown in Appendix B, the
present model does not present IR divergences for d > 2
at nonexceptional momenta. This is surprising at first sight
since there are massless modes (ghosts), but it can be
understood because their interactions are mediated by
massive gluons. A second consequence is that in that
regime, the leading contributions are those with a mini-
mum number of gluon propagators and we can consider an
effective theory where the only dynamical degrees of free-
dom are the (massless) ghosts. In this effective theory,
gluons appear only as external sources coupled to the
ghosts via the bare ghost-gluon vertex while the ghosts
interact via an effective 4-point vertex that behaves as
p1P282/m?, where p, and p, are the antighost momenta
[54]. This implies that the effective expansion parameter is
suppressed by p?/m?, where p is a typical external mo-
mentum. A naive interpolation between the UV parameter
expansion u given in (58) and the one relevant for the IR
would be:

Parameter expansion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1 (GeV)

FIG. 6 (color online). Four-dimensional expansion parameter
for SU(3). Solid curve (red), u(u) is the dimensionless parame-
ter expansion, valid in the UV. Dashed curve (blue),
u(u)p?/(u? + m*(w)) takes into account the IR freeze-out.
The parameters are fixed at 1 GeV as in Sec. IV B.
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Parameter Expansion

1 (GeV)

FIG. 7 (color online). Three-dimensional expansion parameter
for SU(2). Solid curve (red), u(u) is the dimensionless parame-
ter expansion, valid in the UV. Dashed curve (blue),
u(u)p?/(u? + m*(w)) takes into account the IR freeze-out.
The parameters are fixed as in Sec. IV D.

o g*(p)Np?—2

“P e G

As shown in Fig. 6 this parameter is indeed relatively small
and this makes a perturbative analysis well founded.
Actually, in a small region around 1 GeV, the expansion
parameter is of the order of 0.4. This means that two-loop
corrections in this region will give contributions of order
0.4*(~15%), which fits with the discrepancy between the
one-loop results and the lattice results shown in Fig. 5. A
two-loop calculation would give a more precise estimate of
higher order corrections.

Similar results apply for other values of N and d. As an
example, the same curve is presented for N = 2 and d = 3
in Fig. 7. It is shown that the actual values in the IR are
slightly larger but remain relatively small.

V. DISCUSSION OF THE d = 2 CASE

The explicit expression for propagators can also be
obtained in d = 2. As before, there are no UV divergences
for the same reasons as for d = 3. The corresponding
result is:

2),11 _

I (p) =

2
%(s log(s) — (s + 1)log(s + 1)), (60)

2

167rs

mlog(j: j )os -2

+ s(s2 —2) log(s)), (61)

r@tioop(,) — 8N (—2(s ~12s + 1) log(s + 1)

where, again s = p?/m?.
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Within the model, the difference between d = 2 and
d > 2 which is observed in the lattice (see the introduction)
appears natural. In d = 2, we find that the gluon propaga-
tor and ghost dressing function develop logarithmic diver-
gences when p — 0:

N N
e e =t (a)]

dam
(62)

Such divergences exclude the possibility of controlling a
strict one-loop calculation as was used above for d > 2. A
proper treatment of the d = 2 case requires a RG approach
adapted to the IR regime.

As shown in Appendix B, the IR convergence of the loop
integrals in d = 2 does not improve when increasing the
order of perturbation theory, as it does for d > 2. This is the
typical situation at the upper critical dimension of a model
and it is well-known that a RG treatment is then necessary
to study the IR behavior. We therefore apply the IR safe
scheme described in Sec. IV B in the d = 2 case.

The anomalous dimensions read:

IN
v, = (—ﬁ log(r) + 2(7 — 4)log(1 + 1)

g
8w u’t
t V4 =\t
L= +4+12) 10g<7\/_)),
4+t Vi+d+

(63)

N 2
Yo = ——>log(l + 1) (64)
47

with t = u?/m?. As before, we can extract from them the
B functions for the mass and coupling constant. As dis-
cussed at the end of Sec. IV C, the leading behavior of the
flow of the dimensionless mass is vanishing in d = 2. In
order to study the IR behavior, it is convenient to consider
the following dimensionless combination:

r=5 (65)

m

whose B function takes the form:

A NA3 log(1 + 1)
Ba YT T T
m t

Observe that this 8 function is always negative and there-
fore leads to a IR Landau pole. The only way round would
be that /> = 1/t would run to zero sufficiently fast when
w decreases. However the study of the flow of 777 in the IR
is at odds with this hypothesis. Indeed, the 8 function for
m? behaves at small 7i2® as:

| NA® log(e )), (66)

T 1

B = —rhz(Z

which leads to an increase of 72 in the IR.
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In conclusion, the case d = 2 is very different from
higher dimensions: There is no fixed point and the flow
runs to a Landau pole. We relate this first property with the
observation that, in d = 2 and for u < />, the B func-
tions for g and 7i? are proportional [see Eqgs. (48) and (51)]:

(67)

A similar situation appears in the random mass Ising model
[55] which is characterized by two ¢* coupling constants.
The associated  functions are found to be proportional (in
the sense of the previous equation) at leading order in the €
expansion. The two-loop calculation [56,57] lifts this de-
generacy and yields a fixed point with coupling constants
~\/€. It would be interesting to study if the two-loop
contributions lift in the same manner the degeneracy of
the B functions for g and 7i?.

VI. CONCLUSION

We have shown in detail that a particular case of the
Curci-Ferrari model, motivated by phenomenological con-
siderations reproduces quantitatively several nontrivial
correlation functions of pure gluodynamics in all ranges
of momenta. The result is obtained from a very simple one-
loop perturbative calculation and the surprising agreement
is justified by estimating the size of higher loop correc-
tions. Moreover, we have proposed an IR safe RG scheme
that does not show a Landau pole. Therefore we have at
hand a phenomenological model that correctly describes
Yang-Mills correlators. These results question the common
idea that the IR properties of QCD are beyond the scope of
perturbation theory.

At the conceptual level, it would be more satisfying to be
able to calculate the mass parameter from first principles
and this is probably a nonperturbative and very difficult
issue (see however [36,37]). However, once the existence
of this mass is accepted, the rest of the analysis seems to be
purely perturbative. The determination of the mass from
first principles would be also interesting since it would fix
the results in terms of the single parameter appearing in
pure Yang-Mills theory. Another important open issue is
that of the unitarity of the model. A discussed in Sec. II, the
usual proofs of unitarity do not work in this model because
the nilpotency of the BRST symmetry is broken. The
situation is actually common to all schemes beyond the
FP procedure, such as the GZ model, but it does not
unavoidably mean that the model breaks unitarity. It could
be that a procedure permits one to reduce the state space
down to a physical Hilbert space (where unitarity is recov-
ered) that would not rely on the nilpotency of the BRST
operator. Devising such a procedure is an open issue.

Beyond these fundamental problems, the evidences that
the model considered here is a good and simple phenome-
nological one opens the way to many applications. Let us
mention here some of them. The 3-point correlation
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functions have been measured on the lattice and their
calculation is a direct extension of the work presented
here and would give another test of the ability of the model
to reproduce Yang-Mills correlation functions. It would
also be interesting to compute the two-loop contributions
to the ghost and gluon propagators, that would, in particu-
lar, give a direct measure of the size of higher order
corrections. The calculation of RG flows and 2-point cor-
relation functions can be easily extended at finite tempera-
ture and many thermodynamic properties can be extracted
from it. Of great physical interest would be to calculate
within this model the quark-antiquark potential in the
quenched approximation, although it is hard to believe
that confinement would appear in such a simple analysis.
Let us mention finally that introducing matter fields is
straightforward and studying the influence of the quarks
on the ghost and gluon correlation functions is a natural
extension of this work.
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APPENDIX A: NONRENORMALIZATION
THEOREM FOR THE MASS

We derive in this appendix the nonrenormalization
theorem for the mass. We used this result in Sec. IVA to
simplify the RG analysis. The main part of the proof is
done with bare quantities but in order to simplify the
notations we omit the subscript B.

The proof makes use of the Slavnov-Taylor identity
and we therefore introduce sources not only for the primary
fields A ws G Cs and A, but also for their BRST variations.
The partition function then reads:

- [ DA, DeDeDhe S Sams, (Al

where

Ssources = [ddx(JﬂAM + yc+cxy+Rh+ IZSAM + l_,SC),

(A2)

and § is the integral of the Lagrangian (1). The BRST
variations s of the fields are defined as the prefactors of 7
in the right-hand sides of (3). It is not necessary to intro-
duce sources for the variation of £ or for the variations of
variations of the primary fields since these are either van-
ishing or linear in the primary fields. We also introduce the
Legendre transform as:
r+w= f d'x(J A

u t Xc+ Cx + Rh). (A3)
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We first make the change of variables ¢(x) — ¢(x) +
77(x). This yields the equation:

or or
Oy ssr~ = soar (A4)
H 8K (x)  6c(x)
Deriving this equation with respect to ¢’(y) and taking
the Fourier transform [our convention is f(p)=
[ déxexp(ipx)f(x)], we get:
Tos(p) = =ip, TR (). (AS)

We moreover need the Slavnov-Taylor equation, which
reads:

j 4 { or or’ or’
8AY(x) 8K¢ (x) dc(x) SL(x)

or’ ., oI
im?—
(X) 8h“(x)
We derive this expression with respect to A5(y) and c¢(z)
and take this expression at vanishing sources. Using the
fact that the vacuum does not break the ghost number

conservation, only two terms contribute and making the
Fourier transform we get:

L (DT o (p) = im? T, (p) =

where we used the fact that the & sector is not
renormalized.

Now, using the fact that re

— [h® (x) c? (x)} =0. (A6)

—im?p, 8%, (A7)

AL A,,(p) is analytic at low

momentum and behaves as 6% 0,,G~ 1(0), and contracting
Eq. (A7) with p,, we obtain at low energy:

Gy ' (0)F'(0) = mj, (A8)

where we have introduced the subscript B to recall that all
this calculation was done (as emphasized at the beginning
of the appendix) with bare quantities.

APPENDIX B: INFRARED BEHAVIOR OF THE
FEYNMAN DIAGRAMS

In this appendix we study the IR corrections coming
from higher order diagrams. Our aim is twofold. First we
check that the regular IR behavior found at one-loop is not
modified by higher order corrections. Second we study
the IR behavior of the low-energy effective theory for the
ghosts obtained by considering only a minimal number of
gluon propagators (see Sec. IVE).

Consider first a generic diagram of the model (1). It has
N, external gluon legs, N, external ghost/antighost legs, v
three-gluon vertices, v, four-gluon vertices, and v, ghost-
antighost-gluon vertices. Looking at the bare vertex, we see
that each external antighost leg comes with an external
momentum. In the following when we speak of diagrams,
it is understood that these trivial external momenta depen-
dences have been factorized.
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Let us calculate the superficial degree of IR divergence
w of this diagram for vanishing external momenta, which
characterize the IR behavior of the associated integrals.
A negative superficial degree of IR divergence indicates
that the corresponding diagram is IR divergent (at zero
momenta). Each ghost propagator contributes —2 but the
gluon propagators being massive do not contribute. The
3-point interactions being proportional to a momentum
contribute + 1 and each loop contributes d. Using textbook
techniques [58], it is easy to prove that:

w>d—iiN —EN +iiv +dv +d_ v

= D) A D) c D) 3 4 D) c*
Observing that the prefactors of vs, v4, and v, are positive
in d > 2, we conclude that, at a fixed number of external
legs, increasing the number of vertices suppresses the
contributions in the IR. Moreover we check that the
2-point vertex functions at zero momenta are finite at all
loops. The case d = 2 is different because increasing the
number of ghost-gluon vertices does not improve (or
even worsen for d <?2) the IR behavior. In this sense,
d = 2 plays the role of an upper critical dimension.

The situation is, as expected, more favorable if we
consider nonexceptional momentum configurations.
Using the method described in [58], we find that the degree
of IR divergence is:

d d—1

(B1)

d+2 d—2
Ne+=——vs +dvy +—=v,,

= > (B2)
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where now N, and N,_ are the external soft legs of the
diagram and vs, vy, and v, are the number of vertices
attached only to soft momenta. This expression is always
positive for d > 2 but again d = 2 plays the role of an
upper critical dimension.

We now come to the discussion of the IR behavior of the
diagrams in the effective theory. We consider first diagrams
with vanishing external momenta (as before, we first
factorize the external momenta of the antighosts). As dis-
cussed in Sec. IV E, the ghosts interact via a 4-point vertex
which behaves as the product of momenta of the anti-
ghosts. Denoting v,. the number of such vertices in a
diagram, we find the IR degree of divergence:

d—1

©=d=Ny==5=N.+(d=2vs. (B

Again, we see that, at a fixed number of external legs,
increasing the number of vertices suppresses the contribu-
tions in the IR and check that the 2-point vertex functions
at zero momenta remain finite at higher loops. Using
nonexceptional momentum configurations, we get:

d—1
w=——N,+ (d—2)v,,

. (B4)

which ensures that the diagrams are IR finite for d = 2.
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