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Split-complex fields usually appear in the context of Euclidean supersymmetry. In this paper, we

propose that this can be generalized to the non-Euclidean case and that, in fact, the split-complex

representation may be the most natural way to formulate the scalar fields of the five dimensional universal

hypermultiplet. We supplement earlier evidence of this by studying a specific class of solutions and

explicitly showing that it seems to favor this formulation. We also argue that this is directly related to the

symplectic structure of the general hypermultiplet fields arising from nontrivial Calabi-Yau moduli. As

part of the argument, we find new explicit instanton and 3-brane solutions coupled to the four scalar fields

of the universal hypermultiplet.
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I. INTRODUCTION

Studying the dimensional reduction ofM-theory and the
theories that arise from it is an ongoing quest of great
relevance to further understanding the general picture of
the string theory landscape. Particularly important are the
N ¼ 2 (and higher) theories that appear as a result of
dimensionally reducing M=string theory over manifolds
with special holonomy. These theories contain tensor and
vector supersymmetric multiplets, as well as scalar super-
fields known as the hypermultiplets. The physics of those
fields depend greatly on the inherent symmetries and to-
pology of the underlying subspace, hence a study of them
constitutes one way of studying the submanifolds them-
selves. Such theories in both D ¼ 4 and D ¼ 5 are related
via certain mathematical transformations such as the so-
called c-map, making a study of one essentially the same as
the study of another. Our focus in this paper, one in a series,
is the study of the five dimensional N ¼ 2 supergravity
theory that arises from the dimensional reduction of the
unique 11 dimensional theory over a Calabi-Yau 3-fold
(CY). This contains both vector multiplets and scalar hy-
permultiplets. An abundance of work on the theory (and
the related one in four dimensions) exist in the literature.
One notes, however, that most of these study couplings
with the vector multiplets sector (for example, see [1–8]).
In contrast, hypermultiplets-coupled solutions are quite
rare (e.g. [9–12]). Hence, our focus on the latter also fills
a particular gap in the literature.

The hypermultiplet fields have a rich symplectic struc-
ture that arises from the topology of the underlying
CY space. We have focused on this in previous works
([13–15]), and have proposed that a certain formulation
of the theory, based on defining a symplectic vector space
where the hypermultiplet fields appear as symplectic vec-
tors and scalars, is an optimal formulation providing tools
for generating solutions and a further understanding of the

theory’s structure. If one, however, studies only the special
case of the universal hypermultiplet (UH), which arises
even in the most trivial case of a rigid CY submanifold
([16,17]), the symplectic structure seems to be hidden. In
this paper, we propose that this is not quite true, and that
the symplectic structure of the more general theory con-
tinues to manifest itself if one chooses a formulation of the
theory that is based on the so-called ‘‘split-complex’’
numbers, as opposed to the usual, traditional, formulation
based on the ordinary complex numbers. There is early
evidence of this, such as in [18] and our [17]. We further
supplement this evidence by studying a class of solutions
that satisfy the Bogomol’nyi-Prasad-Sommerfield (BPS)
condition if and only if they are written in split-complex
form. Specifically, these have the interpretation of instan-
tons and 3-branes in D ¼ 5.

II. COMPLEX AND SPLIT-COMPLEX
N ¼ 2 SUPERGRAVITY

The dimensional reduction (see [19] for a review) of
D ¼ 11 supergravity theory over a rigid Calabi-Yau 3-fold
with constant Kähler and complex structure moduli yields
an ungauged N ¼ 2 supersymmetric gravity theory in
D ¼ 5 with a matter sector comprised of four scalar fields
and their superpartners; collectively known as the universal
hypermultiplet. These are the dilaton � (volume modulus
of the CY space), the universal axion a, the pseudoscalar
axion � and its complex conjugate ��, all together parame-
terizing the quaternionic manifold SUð2; 1Þ=Uð2Þ [20,21].
The bosonic part of the action can be written in the follow-
ing way:

S5 ¼
Z
5

�
R ? 1� 1

2
d� ^ ?d�� e�d� ^ ?d ��

� 1

2
e2�

�
daþ i

2
f

�
^ ?

�
da� i

2
�f

��
; (1)

where ? is the D ¼ 5 Hodge duality operator and we have
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f ¼ ð�d ��� ��d�Þ �f ¼ �f; (2)

for brevity. The variation of the action yields the following
field equations for �, ð�; ��Þ and a, respectively,

ð��Þ?1�e�d�^?d ���e2�
�
daþ i

2
f

�
^?

�
da� i

2
�f

�

¼0 (3)

dy
�
e�d�þ ie2��

�
daþ i

2
f

��
¼ 0 (4)

dy
�
e�d ��� ie2� ��

�
da� i

2
�f

��
¼ 0 (5)

dy
�
e2�

�
daþ i

2
f

��
¼ 0; (6)

where dy is the adjoint exterior derivative and � is the
Laplace-De Rahm operator. The full action is invariant
under the following set of supersymmetry (SUSY) trans-
formations of the gravitini c and hyperini � fermionic
fields, respectively, (M ¼ 0; � � � ; 4):

��c
1 ¼ D�1 þ i

4
e�

�
daþ i

2
f

�
�1 � 1

4
eð�=2Þd��2 (7)

��c
2 ¼ D�2 � i

4
e�

�
da� i

2
�f

�
�2 þ 1

4
eð�=2Þd ���1 (8)

���1 ¼ 1

2

�
ð@M�Þ � ie�

�
@Maþ i

2
fM

��
�M�1

þ eð�=2Þffiffiffi
2

p ð@M�Þ�M�2 (9)

���2 ¼ 1

2

�
ð@M�Þ þ ie�

�
@Ma� i

2
�fM

��
�M�2

� eð�=2Þffiffiffi
2

p ð@M ��Þ�M�1; (10)

where

D ¼ dxMð@M þ 1
4!

M̂ N̂
M �M̂ N̂Þ (11)

is the usual covariant derivative, the �’s are the D ¼ 5
Dirac matrices, ð�1; �2Þ are theN ¼ 2 SUSY spinors,! is
the spin connection and the hatted indices are frame in-
dices in a flat tangent space. To tie in to previous work,
we recall that the universal axion a is magnetically dual
to a 3-form gauge potential A, such that its field strength
F ¼ dA can be defined as follows:

F ¼ e2� ?

�
daþ i

2
f

�
: (12)

It is interesting to note that F ¼ 0 does not necessarily
imply the vanishing of da, since the value of f may not be
zero.

At this point, we note that there is a strange discrepancy
between Eqs. (7) and (8), and then again between (9) and
(10) manifest in the appearance of a change of sign in the
last term of each pair. As such, the ðc 1; c 2Þ and ð�1; �2Þ
variations are not, strictly speaking, complex conjugate of
each other. This particular property will result, as we will
show, in certain restrictions on the solutions forcing us to
resort to a different representation of the axion fields
ð�; ��Þ; that of the split-complex numbers rather than the
ordinary complex numbers. The split-complex numbers
have been previously shown to naturally arise in the con-
text of hypermultiplet couplings obeying Euclidean super-
symmetry (see e.g. [18] and the references within).
Furthermore, in a previous paper [17], we used the split-
complex representation to overcome the problem that the
axion fields, for the specific solution we studied therein,
had to satisfy

d� ^ d �� ¼ d� ^ ?d �� ¼ 0; (13)

while not themselves explicitly vanishing. One is then led
to wonder if the split-complex representation of the axions
may not generally be the best, or more ‘‘natural,’’ repre-
sentation to use. To do so, we redefine the axions as
follows:

� ¼ �1 þ j�2 �� ¼ �1 � j�2; (14)

where ð�1; �2Þ are real functions and the ‘‘imaginary’’
number j is defined by j2 ¼ þ1 but is not equal to �1.
Split-complex numbers1 are a generalization of the ordi-
nary complex numbers satisfying the ‘‘hyperbolic scalar
product’’2:

j�j2 ¼ �2
1 � �2

2: (15)

In contrast to the complex numbers, which form a field,
the split-complex numbers form a ring. They have the
interesting property, absent from the complex numbers,
of containing nontrivial idempotents (other than 0 and 1),
where an idempotent Z is defined by Z2 ¼ Z. This property
can be used to define the so-called diagonal, or null, basis:

g ¼ 1
2ð1þ jÞ �g ¼ 1

2ð1� jÞ; (16)

such that any split-complex quantity, such as our axion
fields, can be written in the form:

� ¼ ð�1 þ �2Þgþ ð�1 � �2Þ �g
�� ¼ ð�1 � �2Þgþ ð�1 þ �2Þ �g;

(17)

1Also known as ‘‘para-complex numbers,’’ ‘‘real tessarines,’’
‘‘algebraic motors,’’‘‘hyperbolic complex numbers,’’ ‘‘double
numbers,’’ ‘‘perplex numbers,’’ ‘‘Lorentz numbers,’’ and several
others.

2Technically (15) is not a true scalar product because it is not
positive definite, but it is this very property that makes it useful
as far as our objectives are concerned.
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where g is idempotent as well as null, i.e. jgj2 ¼ g �g ¼ 0. It
is somewhat straightforward to see that (15), being the
defining relation of split-complex mathematics, naturally
arises from the symplectic scalar product of the full set of
hypermultiplets, detailed in [15], because it has the same
form. And as such, it may not be too surprising that it is,
as we argue, the better representation for the theory. The
bosonic action, field equations and SUSY variations can
then be rewritten (i ! j):

S5 ¼
Z
5

�
R ? 1� 1

2
d� ^ ?d�� e�d� ^ ?d ��

� 1

2
e2�

�
daþ j

2
f

�
^ ?

�
da� j

2
�f

��
; (18)

ð��Þ?1�e�d�^?d ���e2�
�
daþ j

2
f

�
^?

�
da� j

2
�f

�

¼0 (19)

dy
�
e�d�þ je2��

�
daþ j

2
f

��
¼ 0 (20)

dy
�
e�d ��� je2� ��

�
da� j

2
�f

��
¼ 0 (21)

dy
�
e2�

�
daþ j

2
f

��
¼ 0; (22)

��c
1 ¼ D�1 þ j

4
e�

�
daþ j

2
f

�
�1 � j

4
eð�=2Þd��2 (23)

��c
2 ¼ D�2 � j

4
e�

�
da� j

2
�f

�
�2 þ j

4
eð�=2Þd ���1 (24)

���1 ¼ 1

2

�
ð@M�Þ � je�

�
@Maþ j

2
fM

��
�M�1

þ j
eð�=2Þffiffiffi

2
p ð@M�Þ�M�2 (25)

���2 ¼ 1

2

�
ð@M�Þ þ je�

�
@Ma� j

2
�fM

��
�M�2

� j
eð�=2Þffiffiffi

2
p ð@M ��Þ�M�1: (26)

Since inserting ‘‘j’’ in by hand is tantamount to simply
inserting a factor of ‘‘1,’’ we have done so in the last term
of the SUSY variations to fix the aforementioned discrep-
ancy by making them conjugate of each other; clearly
an advantage over the traditional (ordinary) complex
formulation.

III. SPACETIME BACKGROUND

We will study the possible complex/split-complex uni-
versal hypermultiplet solutions in the background of a
p-brane spacetime with ðPoincar�eÞpþ1 � SOð4� pÞ sym-

metry, including instantons (p ¼ �1). The most general
such metric is

ds2 ¼ e2C�ðrÞ�abdx
adxb þ e2B�ðrÞ���dx

�dx�;

a; b ¼ 0; . . . ; p �; � ¼ pþ 1; . . . ; 4;
(27)

where C and B are constants, (x1; . . . ; xp) define the direc-
tions tangent to the brane and (xpþ1; . . . ; x4) those trans-

verse to it. The variable r ¼ ð���x�x�Þ1=2 is the usual

radial variable in the directions orthogonal to the brane.
If one requires the brane to satisfy the Bogomol’nyi-
Prasad-Sommerfield condition, breaking half of the super-
symmetries of the theory, then one must also necessarily
require the vanishing of the variation of gravitini and
hyperini backgrounds, i.e. �c ¼ 0 and �� ¼ 0, which,
we will show, suffers from problems if the theory is in
the ordinary complex representation. Since it turns out that
both �c ¼ 0 and the Einstein equations require the van-
ishing of the constant C, we set it to zero from the start:

ds2 ¼ �abdx
adxb þ e2B�ðrÞ���dx

�dx�: (28)

We find the following components of the Einstein and
stress tensors, respectively,

Gab ¼ Bð3� pÞ�abg
��ð@�@��Þ

þ 1

2
B2ð2� pÞð3� pÞ�abð@	�Þð@	�Þ

G�� ¼ �Bð2� pÞð@�@��Þ þ Bð2� pÞ����
	
ð@	@
�Þ

þ 1

2
B2ð1� pÞð2� pÞg��ð@	�Þð@	�Þ

þ B2ð2� pÞð@��Þð@��Þ: (29)

Tab ¼ 1

4
�abð@	�Þð@	�Þ þ 1

2
�abe

�ð@	�Þð@	 ��Þ

þ 1

4
�abe

2�

�
@	aþ c

2
f	

��
@	a� c

2
�f	
�

T�� ¼ 1

4
g��ð@	�Þð@	�Þ � 1

2
ð@��Þð@��Þ

þ 1

2
e�g��ð@	�Þð@	 ��Þ � e�ð@��Þð@� ��Þ

þ 1

4
e2�g��

�
@	aþ c

2
f	

��
@	a� c

2
�f	
�

� 1

2
e2�

�
@�aþ c

2
f�

��
@�a� c

2
�f�

�
; (30)

where c is either i or j, depending on which representation
we choose to use. Other bits and pieces needed for the
calculations are as follows: The fünfbeins and Christoffel
symbols are
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eâb ¼ �â
b; e�̂� ¼ eB���̂

�

��
�� ¼ B½��

� ð@��Þ þ ��
� ð@��Þ � ����

�	ð@	�Þ�;
(31)

resulting in the following spin connections and covariant
derivatives:

!	

̂ �̂ ¼ Bð�
̂

	��̂� � �
̂���̂
	Þð@��Þ

Da ¼ @a

D� ¼ @� þ B

2
ð@��Þ��

�;

(32)

as well as the Dirac matrices projection conditions3:

��̂ �̂�s ¼ bs"�̂ �̂�s; s ¼ ð1; 2Þ; bs ¼ �c

��
��s ¼ bs"�

��s; ���s ¼ �bs"�
����s:

(33)

IV. ANALYSIS

We begin by considering Eqs. (6)/(22). It can be inte-
grated once to yield

e2�
�
daþ c

2
f

�
¼ 	dH; (34)

whereHðrÞ is a harmonic function;�H ¼ dydH ¼ 0. The
reality of the constant 	 is required for all positive values
of p, however it may become complex for the case B ¼ 0,
since this gives a Minkowski spacetime background,
which, upon performing a Wick, or Wick-like, rotation
t ! cx0 yields Euclidean spacetime. This automatically
restores the reality of da and clearly yields an instanton
solution to the theory.
Since we require that �� ¼ 0, then one can write

Eqs. (9) and (10)/(25) and (26) as follows:

1
2

�
ð@M�Þ � ce�

�
@Maþ c

2 fM

��
�M j eð�=2Þffiffi

2
p ð@M�Þ�M

�j eð�=2Þffiffi
2

p ð@N ��Þ�N 1
2

�
ð@N�Þ þ ce�

�
@Na� c

2
�fN

��
�N

2
664

3
775 �1

�2

� �
¼ 0; (35)

satisfied if the determinant of the given matrix vanishes:

d� ^ ?d�� c2e2�
�
daþ c

2
f

�
^ ?

�
da� c

2
�f

�

þ 2e�d� ^ ?d �� ¼ 0: (36)

Note that (36) is true whether one inserts a ‘‘j’’ in the d�
term or not. Using (34) and (36) into the dilaton field
equation [(3)/(19)] gives

ð��Þ ? 1þ 1

2
d� ^ ?d� ¼ 	2

�
1þ c2

2

�
e�2�dH ^ ?dH;

(37)

and the components of the stress tensor also reduce to

Tab ¼ 	2

4
ð1þ c2Þ�abe

�2�ð@	HÞð@	HÞ (38)

T�� ¼ 	2

4
ð1þ c2Þg��e

�2�ð@	HÞð@	HÞ

� 	2

2
ð1þ c2Þe�2�ð@�HÞð@�HÞ: (39)

Finally, the Einstein equations lead to

1
2Bð3� pÞ½Bð2� pÞ � 1�d� ^ ?d�

¼ 	2½14ð1þ c2Þ � 1
2Bð3� pÞð2þ c2Þ�e�2�dH ^ ?dH

(40)

Bð2� pÞð2Bþ 1Þd� ^ ?d�

¼ 	2½Bð2� pÞð2þ c2Þ � ð1þ c2Þ�e�2�dH ^ ?dH

(41)

Bð2� pÞ½Bð1� pÞ � 1�d� ^ ?d�

¼ 	2½12ð1þ c2Þ � Bð2� pÞð2þ c2Þ�e�2�dH ^ ?dH;

(42)

where (34) and (36) were used.
To begin, we check that for c ¼ i, Eqs. (37) and (40)–

(42), are satisfied only for the instanton case B ¼ 0 (	 ¼ 0
and 	 � 0) as well as for the (p ¼ 3, 	 ¼ 0) case where
one can show that B ¼ �1=2. Attempts to find a solution
for the most general p-brane case with nonvanishing 	 fail
for most p cases and are problematic for p ¼ 2 and p ¼ 3.
For the former, one finds that the conditions ð��Þ ? 1 ¼ 0
and d� ^ ?d� ¼ 	2e�2�dH ^ ?dH have to be simulta-
neously true, which is not possible within the symmetries
assumed. For the latter, we also find that ð��Þ ? 1 ¼
Bd� ^ ?d� and ð2Bþ1Þd�^?d�¼	2e�2�dH^?dH
have to be simultaneously satisfied. This can be easily
shown to be possible if and only if 	 is imaginary, which
is only true for the instanton case. We will show below that
even the allowed cases pose serious problems with the BPS
condition �� ¼ 0, and one is forced to abandon the com-
plex representation altogether.
For the case c ¼ j, there are only two allowed solutions:

the instanton (B ¼ 0, 	 ¼ 0) and the 3-brane (B ¼ �1=2,
	 ¼ 0). All nonvanishing 	 cases do not simultaneously
satisfy (37) and (40)–(42). As we will show below the

3The Einstein summation convention is not used over the
index s.

MOATAZ H. EMAM PHYSICAL REVIEW D 84, 045016 (2011)

045016-4



allowed cases smoothly satisfy the vanishing of the SUSY
variations condition and enforce the argument that the
split-complex representation of the UV fields is the more
natural representation to use.

V. NON-BPS ALMOST-SOLUTIONS IN
THE COMPLEX REPRESENTATION

In this section, we give all possible solutions found for
the ordinary complex form of the theory and show that, in
addition to some reality issues, these solutions cannot
possible satisfy the BPS condition �� ¼ 0. This can be
traced back to the ambiguous sign problem of (9) and (10).

A. Instantons with vanishing �

For all 	 ¼ 0 cases Eq. (37) becomes

ð��Þ ? 1þ 1

2
d� ^ ?d� ¼ 0 ! �e�=2 ¼ 0: (43)

Equivalently

� ¼ 2 lnðHÞ: (44)

The ð�; ��Þ Eqs. (4) and (5) are easily integrated to give

� ¼ n� qe��=2 �� ¼ �n� �qe��=2; (45)

where q and n are arbitrary complex constants. From this
one can easily find da using (34) with 	 ¼ 0 and integrate
to find

a ¼ k� Imðn �qÞe��=2; (46)

where k is a real integration constant. However, a problem
arises when one tries to verify the BPS condition (36),
since it yields

jqj2 ¼ �2: (47)

Clearly, this condition cannot be satisfied unless q is
split-complex. So one concludes that only non-BPS instan-
tons coupled to the above fields can exist for as long as we
insist on using a pure complex representation of the theory.

B. Instantons with nonvanishing �

Equation (37) gives

ð��Þ ? 1þ 1

2
d� ^ ?d� ¼ 	2

2
e�2�dH ^ ?dH; (48)

which is solved by

� ¼ lnðHÞ; (49)

only if 	 ¼ i as expected. The ð�; ��Þ Eqs. (4) and (5) can
be integrated once to give

e�d�� �dH ¼ qdH e�d ��þ ��dH ¼ �qdH; (50)

clearly not complex conjugates, once again due to a sign
difference. Integrating these two first order differential
equations gives the strange solution

� ¼ ’e� � q �� ¼ �’e�� þ �q; (51)

where ’ is a complex integration constant. This solution is
reminiscent of, albeit simpler than, the one found in [22], in
that it has the strange property � / 1= �� such that � and ��
are not complex conjugates. As shown in the same source,
making the � solution (49) more general partially im-
proves the situation by making � and �� complex conju-
gates at radial infinity. The more serious problem, however,
arises when once again one tries to check the BPS condi-
tion (36) to find that it is not satisfied unless

1þ 	2 ¼ 2j’j2e�; (52)

which, along with 	 ¼ i, can only be true if and only if
j’j2 is zero, only possible if ’ is a null split-complex
number. As such, it would be reminiscent of the result
we found in [17].

C. 3-branes with vanishing �

This is the only p-brane case where Eqs. (40)–(42) are
satisfied. They give B ¼ �1=2. Because of the vanishing
of 	, the solutions (44)–(46) are satisfied here as well.
Unfortunately, so is the result (47) which once again
implies a non-BPS solution.

VI. EXACT BPS SOLUTIONS IN THE
SPLIT-COMPLEX REPRESENTATION

Since only solutions with 	 ¼ 0 are found in this case,
the UH fields have a similar form to that of (44)–(46). They
are well-behaved and do not suffer from the issues dis-
cussed in the past section (specifically, Eq. (47) is no longer
a problem). The two split-complex solutions differ only in
their metrics as well as the explicit spatial dependence of
the harmonic function H.

A. Instantons with vanishing �

The harmonic function for the instanton case is simply

H ¼ QI

r3
þ h; (53)

where QI is an arbitrary charge and the constant h is
defined such that the value of the dilaton at radial infinity
is �1 ¼ 2 lnðhÞ. Using (44)–(46), the complete solution in
the D ¼ 5 Euclidean background is then

� ¼ 2 ln

�
QI

r3
þ h

�
(54)

� ¼ �0 � qr3

ðQI þ hr3Þ (55)

�� ¼ ��0 � �qr3

ðQI þ hr3Þ (56)

a ¼ a0 � Imð �q�1Þr3
ðQI þ hr3Þ ; (57)
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where �0 and a0 are the (r ¼ 0) values of these fields, and
�1 is the (r ! 1) value of �. The following relations
between the various constants hold:

hð�0 � �1Þ ¼ q and jqj2 ¼ �2: (58)

Finally, the vanishing of the SUSY variations (23) and
(24) gives

�s ¼ e�ð�=4 ffiffi
2

p Þ�̂s; s ¼ 1; 2; (59)

where �̂s are constant spinors.

B. 3-branes with vanishing �

For the 3-brane (B ¼ �1=2) the function H is harmonic
in the single transverse direction r ¼ x4 and has the form

HðrÞ ¼ Q3

ffiffiffi
r

p
: (60)

This gives the metric

ds2 ¼ �abdx
adxb þ e��dr2;

¼ �abdx
adxb þ dr2

Q2
3r

;

a; b ¼ 0; 1; 2; 3 (61)

and the UH fields

� ¼ 2 lnðQ3

ffiffiffi
r

p Þ � ¼ �1 � q

Q3

ffiffiffi
r

p

�� ¼ ��1 � �q

Q3

ffiffiffi
r

p a ¼ a1 � Imð�1 �qÞ
Q3

ffiffiffi
r

p :

(62)

One can easily check that the SUSY spinors �s have
exactly the same form as (59). Note the interesting property,
possibly worth exploring in future research, that in the far

field region (r ! 1), the metric reduces to four dimen-
sional Minkowski. In other words, the fifth dimension is
lost. Attempts to fix this by adding a constant to (60), as in
the previous case (53), violated the UH field equations.

VII. CONCLUSION

We argued that, in general, the most natural way to
represent the fields of the universal hypermultiplet,
specifically the axions, is with the split-complex represen-
tation. In addition to past evidence, we enforced this argu-
ment by attempting to classify all possible solutions based
on the general ansatz (34) and found that BPS solutions
cannot exist as long as one insists on using the ordinary
complex representation. On the other hand, switching to
the split-complex form of the theory, all problems are
instantly fixed and we find two well-behaved solutions
representing BPS instantons and 3-branes. This argument
may be thought of as a special case of [15] where we had
argued that the same theory, but with the full set of non-
trivial hypermultiplet scalars, is best represented using a
formulation based on the theory’s inherent symplectic
structure. This was done by defining a symplectic space
on which the hypermultiplet fields appear as either vectors
or scalars. The connection lies in the fact that the inner
product of vectors on this space has exactly the same form
as the modulus of split-complex numbers (15). The classi-
fication of hypermultiplet solutions is an ongoing quest
that may further be made rigorous by adopting the split-
complex representation. Possible directions of future
research include generalizing the background metric to
include other possible configurations of branes. It may
also be worthwhile to further explore the connection with
the more general symplectic structure of the full theory.
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