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Low energy descriptions of metastable supersymmetry breaking models often possess an accidental R

symmetry. Viable phenomenological applications of this class of models require R symmetry to be broken

in the ground state. This can be achieved in O’Raifeartaigh-like models where some of the chiral

superfields carry negative R charges. In this paper we consider UV completions of this class of models and

formulate necessary conditions that they must satisfy. We show that the R symmetry of the IR description

can be traced to an anomalous or anomaly-free R symmetry of the UV theory and discuss several

representative examples.
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I. INTRODUCTION

Supersymmetry has been extensively explored as one of
the most plausible extensions of the standard model at the
TeV scale. One of its most attractive features is the poten-
tial to solve the gauge hierarchy problem. Models with
softly broken supersymmetry guarantee that the electro-
weak scale is radiatively stable, thus providing a solution
for the technical naturalness problem. In addition, if su-
persymmetry is broken dynamically, such breaking is nec-
essarily nonperturbative and the supersymmetry (SUSY)
breaking scale is naturally small compared to the funda-
mental scale of the theory (such as the grand unification
scale or the Planck scale). Understanding of the dynamical
supersymmetry breaking (DSB) is especially important in
scenarios with gauge mediated supersymmetry breaking
(GMSB). Indeed, in GMSB models, supergravity contri-
butions to the parameters of the low energy Lagrangian are
negligible and studies of the full theory, including both the
standard model and SUSY breaking sectors, may be under
full theoretical control. Moreover, in models with ex-
tremely low SUSY breaking scales (of order tens or hun-
dreds of TeV), many new particles or interactions may be
experimentally accessible.

However, it is difficult to find DSB models with phe-
nomenologically desirable features. Moreover, once the
DSB sector is coupled to the standard model, the SUSY
breaking vacuum generically survives only as a local mini-
mum of the potential. This is acceptable as long as the
lifetime of the metastable vacuum is sufficiently long. The
model building prospects improved significantly when
Intriligator, Seiberg, and Shih (ISS) [1] proposed to em-
brace metastability as a fundamental feature of the models.
They showed that metastable, long-lived (and often calcu-
lable) nonsupersymmetric vacua are generic in SUSY

gauge theories. ISS models usually possess an accidental
R symmetry which is unbroken in the metastable vacuum.
This poses a significant obstacle to constructing viable
extensions of the standard model since an unbroken R
symmetry forbids gaugino masses. Several implementa-
tions of direct gauge mediation based on ISS models
proposed in the literature [2–4] circumvent this difficulty
by modifying the underlying theory so that R symmetry is
broken either explicitly or spontaneously. Nevertheless, it
was argued in [5] that even then gaugino masses are
numerically suppressed compared to sfermion masses.
The phenomenology of low scale GMSB models with
spontaneous and explicit R-symmetry breaking as well as
the ability to discriminate these two classes was investi-
gated in [6].
Motivated by these problems, Shih studied conditions

for spontaneous R-symmetry breaking in O’Raifeartaigh-
like models [7]. He found that the Coleman-Weinberg
potential may result in simultaneous supersymmetry
and R-symmetry breaking if the model contains chiral
superfields with R charges other than 0 and 2. This re-
quirement implies that models must contain at least
one chiral superfield with a negative R charge. Although
the O’Raifeartaigh description is often sufficient for
phenomenological purposes, it is desirable to understand
R-symmetry breaking dynamics in terms of a complete UV
description.1 The requirement of negative R charges sug-
gests that searching for a UV description may be tricky.
Indeed, the presence of negative R charges allows one to
write superpotential terms with negative exponents of the
superfields. Such terms must be forbidden by the symme-
tries of the microscopic physics—otherwise they would
necessarily be generated dynamically and destabilize the
SUSY breaking minimum.
In this paper we will study general requirements for UV

completions of O’Raifeartaigh-like models with perturba-
tive R-symmetry breaking. We will show that in viable*j.goodman@uci.edu
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models the low energy R symmetry arises as a linear
combination of a (possibly anomalous) R symmetry of
the UV physics and an anomaly-free global symmetry. In
the case of an anomalous R symmetry, R charges of all
physical fields in the microscopic description will be
anomalous. When the R symmetry is anomaly-free, R
charges of the low energy fields arise due to contributions
of the non-R global symmetry. In this case dangerous
operators do not appear since the non-R global symmetry
is respected by all the nonperturbative dynamics.

II. GENERAL PROPERTIES OF UV
COMPLETIONS

We are interested in models of metastable SUSY break-
ing where some of the low energy degrees of freedom are
composites of the microscopic physics.2 There exist sev-
eral possibilities for the origin of the R symmetry of the
low energy physics:

(i) An R symmetry of the low energy description arises
from the nonanomalous R symmetry of the micro-
scopic physics. In this case, the R symmetry is a
symmetry of the Lagrangian at all scales. Many
classic models of dynamical supersymmetry break-
ing belong to this class. They possess R symmetries
under which some superfields carry negative
charges. Nonperturbative dynamics generates super-
potential terms with negative powers of the super-
fields. Both SUSYand R symmetry are broken due to
the interplay between tree-level and nonperturbative
interactions while perturbative corrections are small.
In Sec. IVA, we will show that this class of models
also contains theories where negative exponents of
superfields do not appear in the dynamical super-
potential and R symmetry is broken by perturbative
dynamics.

(ii) An R symmetry of the IR physics corresponds to an
anomalous R symmetry of the ultraviolet descrip-
tion. Since the R symmetry is anomalous, it will
necessarily be broken by nonperturbative dynamics.
As we will show, the existence of the negative R
charges in the low energy description implies that
the microscopic theory contains at least some ele-
mentary chiral superfields with negative R charges.
Thus, in general, it is possible that the superpoten-
tial terms containing fields with negative exponents
will be generated by the nonperturbative dynamics.
Such terms can never be negligible near the origin
of the moduli space. In models with classical flat

directions they tend to destabilize the SUSY break-
ing vacuum of the O’Raifeartaigh-like model.
However, we will construct models where an
anomalous R symmetry is given by a linear combi-
nation of anomalous and anomaly-free symmetries
(e.g., baryon number). While certain composites
carry negative R charge, they only show up in the
dynamical superpotential in combination with fields
carrying sufficiently large positive R charge so
that the dynamical superpotential does not contain
superfields with negative exponents. As a result, the
SUSY and R-symmetry breaking minimum of an
O’Raifeartaigh model will survive as a local mini-
mum of the UV completion. We will discuss the
correspondence between an accidental R symmetry
of the effective low energy description and an
anomalous R symmetry of the microscopic theory
in Secs. IVB and IVC.

III. ANOMALOUS R SYMMETRIES AND
NONPERTURBATIVE SUPERPOTENTIALS

IN SQCD

Let us briefly review exact results from supersymmetric
QCD. For our purposes it is convenient to follow the
presentation of [10]. Consider an SUðNÞ gauge theory
with F flavors in the fundamental representation. The
quantum numbers of the fields under gauge and global
symmetries are

SUðNÞgauge SUðFÞL SUðFÞR Uð1ÞB Uð1ÞA Uð1ÞR
Q h h 1 1 1 0
�Q �h 1 �h �1 1 0

(1)

Both the Uð1ÞA and the Uð1ÞR symmetries are anoma-
lous. If we perform the corresponding symmetry trans-
formation parametrized by an angle �, each fermion
transforming under representation r and carrying charge
qr under the anomalous symmetries will contribute a factor
of nr�F ~F to a shift in the Lagrangian, where nr is an
anomaly coefficient given by

nr ¼ 2qrCðrÞ ¼
�
qr r ¼ h or �h
2Nqr r ¼ adjoint:

(2)

This shift can be absorbed into a redefinition of the � angle,
� ! ��P

rnr�, thus formally restoring the symmetry.
In SUSY gauge theories, the gauge coupling and the �
angle combine into a holomorphic background superfield �
given by

� ¼ �

2�
þ 4�i

g2
: (3)

Thus quantum physics remains formally invariant under
anomalous symmetries if the gauge function � transforms
nonlinearly:

2We explicitly exclude from consideration retrofitting models
[9] where the role of the nonperturbative dynamics is restricted
to generation of mass parameters in the superpotential. On the
other hand, our results can be easily generalized to models where
IR and UV degrees of freedom are related by a duality
transformation.
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� ! ��
P

r nr�

2�
: (4)

For example, in the case of an anomalous R symmetry, as
defined in Eq. (1), the fermions in the quark supermultip-
lets carry R charge�1, while the R charge of gauginos is 1.
Thus

P
nr ¼ 2ðN � FÞ. On the other hand, the renormal-

ization group evolution of the gauge coupling allows us to
associate � with the dynamical scale of the theory using

�b0 ¼ Mb0e2�i�ðMÞ; (5)

where b0 ¼ 3N � F is a one loop beta function coefficient
of SUSY QCD and �ðMÞ is a running coupling evaluated at
the scale M. We see that nonlinear transformations of �
under the R symmetry correspond to linear transformations
of �b0 with R charge 2ðN � FÞ. If we now specialize to
models with F <N, we can easily see that the function

W ¼
�

�b0

detQ �Q

�
1=ðN�FÞ

(6)

has an R charge of 2. Similar arguments lead to the con-
clusion that W is invariant under Uð1ÞA if �b0 carries
charge 2F under Uð1ÞA. Indeed, the superpotential of
Eq. (6) is the celebrated nonperturbative Affleck-Dine-
Seiberg (ADS) superpotential (in the case F ¼ N � 1,
the overall coefficient of this term can be evaluated by an
explicit instanton calculation). Applying this formalism to
O’Raifeartaigh-like models, we will be able to relate the R
symmetry of the IR description to anomalous or anomaly-
free symmetries of the UV physics.

IV. METASTABLE DYNAMICAL SUSY BREAKING
WITH SPONTANEOUSLY BROKEN R SYMMETRY

It is well-known that O’Raifeartaigh models possess
pseudoflat directions in the field space which can be pa-
rametrized by vacuum expectation values (vevs) of moduli
fields with R charge 2. Thus, at a generic point on the
pseudomoduli space, R symmetry is spontaneously broken.
Perturbative corrections lift the pseudoflat direction and
generically stabilize pseudomoduli at the origin so that R
symmetry is unbroken in the ground state. It was shown in
[7] that O’Raifeartaigh models can be generalized to a
class of models where the Coleman-Weinberg potential
results in the existence of a local minimum of the potential
with spontaneously broken R symmetry (albeit the SUSY
breaking minimum is only a local one). Here we will
discuss several UV completions of models in this class
and will show how the R symmetry of the effective de-
scription arises from the symmetries of the microscopic
theory.

For simplicity we will study SUðNÞ SQCD with F
flavors. As we have seen in Sec. III, the maximal global
symmetry is SUðFÞL�SUðFÞR�Uð1ÞB�Uð1ÞA�Uð1ÞR,
where Uð1ÞA and Uð1ÞR are anomalous. If we require that
nonperturbative dynamics does not generate superpotential

terms that are singular at the origin of the moduli space, we
must have F >N � 1. On the other hand, to simplify the
discussion we will assume that there are no light gauge
fields in the IR description, which implies F < N þ 2.
In Sec. IVA we study a model with F ¼ N and explain

how an accidental R symmetry of the IR physics can arise
from an anomaly-free R symmetry of the UV theory. In
Secs. IVB and IVC, we consider the case with F ¼ N þ 1
and identify the R symmetry of the low energy physics
with an anomalous R symmetry of the UV completion.

A. A model with a nonanomalous R symmetry

The simplest SUSY and R-symmetry breaking model,
introduced in [7], has the superpotential

W ¼ �Xð�2 ��1�2Þ þm1�1�3 þm2

2
�2

2: (7)

The model possesses an R symmetry with the charges of
the chiral superfields given by

RðXÞ ¼ 2; Rð�1Þ ¼�1; Rð�2Þ ¼ 1; Rð�3Þ ¼ 3:

(8)

Our UV completion will be based on a perturbation of
the Intriligator-Thomas-Izawa-Yanagida (ITIY) model
[11,12] with an SUð2Þ gauge group, 4 doublet chiral super-
fields Qi, and 6 gauge singlet fields Sij transforming under

gauge and global symmetries as

SUð2Þgauge SUð4Þ Uð1ÞR
Q h h 0

S 1 ⊟ 2

(9)

The classical superpotential is chosen to be

W ¼ X4
i;j¼1;i<j

�ijSijQiQj þ ðQ3Q4Þ2
�UV

þmS

2
S234: (10)

The second two terms in Eq. (10) break the maximal
anomaly-free global symmetry down to SOð4Þ �Uð1Þ0R,
where the unbroken anomaly-free R0 symmetry is a linear
combination of the original R symmetry and the Uð1ÞF
subgroup of SUð4Þ generated by T ¼ diagð�1;�1; 1; 1Þ.
The R0-symmetry charges are given by

R0ðQ1Þ ¼ R0ðQ2Þ ¼ �1

2
; R0ðQ3Þ ¼ R0ðQ4Þ ¼ 1

2
;

R0ðS12Þ ¼ 3; R0ðS34Þ ¼ 1;

R0ðS1Þ ¼ R0ðS2Þ ¼ R0ðS3Þ ¼ R0ðS4Þ ¼ 2:

(11)

One of the important features of the ITIY model is the
absence of classical flat directions involving quark super-
fields. A quick analysis of Eq. (10) shows that for generic
choices of the tree-level parameters this remains true in the
presence of our perturbation. Classical flat directions are
reintroduced when �2

34=ð2mSÞ � 1=�UV ¼ 0, leading to

restoration of supersymmetry.
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Let us show the correspondence between the models
defined by Eqs. (7) and (10). The full superpotential of
the perturbed ITIY model is

W¼�ðPfM��4ÞþX
ij

�ijSijMijþc
M2

34

�UV

þmS

2
S234; (12)

where � denotes the Lagrange multiplier which repre-
sents the quantum deformed moduli constraint. Our per-
turbation singles out two mesons, M12 ¼ ðQ1Q2Þ and
M34 ¼ ðQ3Q4Þ, and their associated singlets. We will use
the unbroken SOð4Þ symmetry to denote the remaining
mesons and singlets as Ma and Sa, a ¼ 1; . . . 4, respec-
tively. Using the quantum constraint, we can integrate out
one of the mesons, say, M1,

M1 ¼
�
�4 � X4

a¼2

M2
a � 2M12M34

�
1=2

’ �2 � X4
a¼2

M2
a

2�2
�M12M34

�2
þ . . . ; (13)

where the dots represent higher order terms in the expan-
sion. The superpotential becomes

W ¼ �1S1

�
�2 �X

a

M2
a

2�2
�M12M34

�2

�
þX

a

�aSaMa

þ�12S12M12 þ�34S34M34 þ c
M2

34

�UV

þmS

2
S234: (14)

Once we integrate out the massive fields, Ma, Sa, and S34,
the correspondence between UV and IR descriptions be-
comes obvious:

X�S1; �1�M12=�; �2�M34=�; �3�S12: (15)

Thus the pseudomoduli spaces of the two models are
identical.

It is important to note that relation Eq. (15) constrains
the coupling constants and masses of fields in the low
energy effective description according to

���; �� �1; m1 � �12�;

m2 �
�

1

�UV

� �2
34

2mS

�
�2: (16)

In the model from Eq. (7), SUSY is restored when m2 is
massless. From the point of view of the microscopic de-
scription, this happens precisely when UV parameters are
chosen so that the classical flat direction is reintroduced.
On the other hand, for a generic choice of the parameters,
the local SUSY breaking minimum exists, and for a range
of parameters, R symmetry is broken in this vacuum (see
Fig. 1).

The model we discussed here clearly exemplifies the
importance of the UV completion, which possesses a larger
set of anomaly-free global symmetries. Indeed, while
superpotential terms with negative superfield exponents

are allowed by all of the symmetries of the model of
Eq. (7), such terms are forbidden by additional symmetries
present in the UV completion of Eq. (10). In particular, the
R symmetry of the low energy physics is a linear combi-
nation of the Uð1ÞR and vectorlike Uð1ÞF symmetries. In
fact, it is Uð1ÞF which is responsible for the appearance of
composites with negative R charges. At the same time,
dynamical terms in the superpotential must be invariant
under all anomaly-free global symmetries, thus preventing
the appearance of the terms with negative exponents of the
superfields.

B. A model with an anomalous R symmetry

We have seen in the previous section that global
symmetries of the UV physics play an important role in
understanding of the IR dynamics of O’Raifeartaigh-like
models. Therefore, we will consider a generalization of the
model from Eq. (7) in the form

W ¼ ��iX
ij ~�j ��2�1 þ 1

2
mTrX2 þ n ~�iS

i; (17)

where i, j ¼ 1; . . .F, are flavor indices, �, m, and n are
mass parameters, and � is a coupling constant. The model
possesses a large global symmetry, including an R sym-
metry under which chiral superfields carry the following
charges:3

R� ¼ 2; R ~� ¼ �1; RX ¼ 1; RS ¼ 3: (18)

For a UV completion, we will consider SUðNÞ theory
with F ¼ N þ 1 flavors and map �i, ~�i, and Xij to

baryons, antibaryons, and mesons of the microscopic de-
scription, respectively, while Si remain elementary:

�i � Bi; ~�i � �Bi; Xij �Mij: (19)

FIG. 1 (color online). Relative Coleman-Weinberg potential as
a function of pseudomodulus S1 for the model in Eq. (14) where
� ¼ 1, �UV ¼ 10, �1 ¼ 0:02, �a ¼ 1, �12 ¼ 0:03, �34 ¼ 0:03,
mS ¼ 1, and c varied from 0.2 (blue, dotted, top) to 0.6 (purple,
solid, middle) to 1.0 (green, dashed, bottom).

3Because of the presence of the large global symmetry, this
definition of R charges is not unique for some fields.
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In the absence of the superpotential, the global symmetry is SUðFÞL � SUðFÞR �Uð1ÞB �Uð1ÞA �Uð1ÞR. Charges
of the matter fields, gauge invariant composites, and the dynamical scale � are given by

SUðNÞgauge SUðN þ 1ÞL SUðN þ 1ÞR Uð1ÞB Uð1ÞA Uð1ÞR
Q h h 1 1

N
1
N 0

�Q �h 1 �h � 1
N

1
N 0

S 1 1 �h 1 �1 2

�2N�1 2ðNþ1Þ
N �2

B ¼ QN 1 �h 1 1 1 0

�B ¼ �QN 1 1 h �1 1 0

M ¼ Q �Q 1 h �h 0 2
N 0

(20)

To analyze the model from the microscopic point of
view, we need to choose a tree-level superpotential that
matches Eq. (17) as closely as possible. It is easy to check
that the superpotential Eq. (17) does not possess any R
symmetry when written in terms of the elementary fields.
An R symmetry may appear if the superpotential depends
on the dynamical scale � which transforms under anoma-
lous symmetries. Therefore, at least some terms in Eq. (17)
must be generated dynamically. Indeed, it is well-known

[13,14] that �X ~�� BM �B=�2N�1 is generated nonpertur-
batively. Let us then restrict our attention to the remaining
three terms in Eq. (17). If we require that these terms
correspond to the tree-level superpotential of the micro-
scopic description, we find an anomalous R symmetry
given by

Uð1Þ0R ¼ Uð1ÞR þ N

2
Uð1ÞA þ

�
2� N

2

�
Uð1ÞB: (21)

The full dynamical superpotential is

W¼�
BiM

ij �Bj�detM

�2N�1
þcB

B1

�N�3
UV

þcM
TrM2

�UV

þc �B

�BiS
i

�N�2
UV

;

(22)

where the dimensionless coefficients cB, cM, and c �B are of
Oð1Þ in the absence of fine-tuning (we will see shortly that
in this model one must choose cB � 1). This superpoten-
tial is invariant under Eq. (21) once the transformation
properties of � are taken into account. An additional
term, detM, appearing in Eq. (22) remains irrelevant in
the IR and decouples from low energy physics.

Since the existence of the R symmetry in the UV de-
scription required an addition of the spurion �2N�1, the
matching of R charges is not completely trivial. Charges of
the tree-level terms B1 and TrM2 must match directly
between the UV and IR. Comparing the nonperturbative
term to its counterpart in the IR superpotential, we see that

the charge of �B=�2N�1 matches the charge of ~�. This, in
turn, determines the matching between UVand IR charges

of the gauge singlet fields. The full set of relations between
the R charges is

R� ¼ RB; RX ¼ RM; R ~� ¼ R �B � R�2N�1 ;

RSIR ¼ RSUV
þ R�2N�1 :

(23)

It is important to note that in our construction all the
superfields of the microscopic theory have positive R
charges. Negative R charges of the low energy effective
description are due to the contribution of the anomaly
through the spurion �2N�1. This guarantees that all terms
generated by nonperturbative dynamics are regular at the
origin of the moduli space.
To study the Coleman-Weinberg potential, we first ne-

glect the nonrenormalizable term detM in Eq. (22) and thus
restrict our attention to the superpotential Eq. (17). We also
note that the parameters of the low energy model are
related to those of the microscopic description according to

�2 ¼ cB

�
�

�UV

�
N�3

�2;
m

2
¼ cM

�
�

�UV

�
�;

n ¼ c �B

�
�

�UV

�
N�2

�;

(24)

and ��Oð1Þ. Otherwise, our analysis closely follows
that of [7] and arrives at the same conclusions. It is easy
to see that at tree level the model possesses a flat direction
in the field space along which the energy is nonvanishing,
with scalar potential Vmin ¼ �4. This direction is parame-
trized by

~� i ¼ Si ¼ 0; Xji ¼ 0; and �i arbitrary: (25)

There also exists a runaway direction along which SUSY
is restored. Up to global symmetry transformations it is
given by

�1 ¼ �
�
mn2S21
�2�2

�
1=3

; X11 ¼
�
�2nS1
�m

�
1=3

;

~�1 ¼
�
�4m

�2nS1

�
1=3

;

(26)
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with �i, ~�i, and Xii with i � 1 given by Eq. (25). Using
global symmetry transformations, we can rotate any�i vev
into �1 and �2. Assuming that h�2i ¼ 0, the superpoten-
tial for �1 is similar to the R-symmetry breaking model
discussed in [7], where it was shown that a metastable
minimum may exist near the origin of the moduli space
if (in our notation)

�2�4

m2n2
< 1;

�2�4 �m2n2

2m�2�2
< h�1i<m2n2 � �2�4

2m�2�2
:

(27)

In terms of the parameters of the microscopic theory, these
relations imply that cB � 1. We now calculate the one
loop correction to the potential to determine the mass of
the pseudomoduli fields. A numerical calculation with
arbitrary �1 and �2 shows a minimum of the Coleman-
Weinberg potential at �2 ¼ 0. Thus, we expand the poten-
tial around the �2 ¼ 0 in order to obtain an analytic
expression for the mass of �1. We find, in agreement
with [7],

m2
�1

¼��2�4

8�2

�3m4þ2m2n2þn4þ2m2ðm2þ3n2ÞlogðmnÞ
ðm2�n2Þ3

þNfð�2;�;m;nÞ; (28)

where fð�2; �; m; nÞ is strictly positive. For an appropriate
choice of parameters, the pseudomodulus obtains a non-
zero vacuum expectation value thus breaking the R sym-
metry. In Fig. 2, we show the Coleman-Weinberg potential
for a few different parameter choices, demonstrating that
for a suitable choice of input UV parameters we can drive
the pseudomodulus �1 to attain nonzero vev and break R
symmetry.

We now turn our attention to the detM term present in
the full dynamical superpotential. We note that it does not
destabilize the location of the SUSY breaking vacuum

since it vanishes in the vicinity of this minimum.
Interestingly, detM is also vanishing along the runaway
direction. This seems to imply that the runaway behavior
persists in the full theory. On the other hand, the analysis of
the tree-level superpotential shows that the only classical
flat directions are associated with gauge singlets Si. Thus
there can be no runaways with large vevs for composites
M, B, and �B. This apparent contradiction is resolved by a
careful examination of the vevs in Eq. (26) to� and the UV
cutoff �UV. In terms of composites of the microscopic
theory, we find

B1

�N �
�

�

�UV

�ðN�2Þ=3� S

�UV

�
2=3

&

�
�

�UV

�ðN�2Þ=3 M
�2

�
�

�

�UV

�ð2N�7Þ=3� S

�UV

�
1=3

&

�
�

�UV

�ð2N�7Þ=3
; (29)

where we chose the maximal value for cB and in the second
inequality on each line we used the fact that even in terms
of elementary quarks our theory is only an effective de-
scription valid below �UV . We conclude that along the
runaway direction this effective theory breaks down
before the perturbative regime of the SUðNÞ gauge
dynamics is reached. Thus the reliable determination of
the global supersymmetric minimum of the model requires
one to specify the origin of the nonrenormalizable terms in
Eq. (22).

C. An anomalous R symmetry in a deformation
of an ISS model

It is instructive to consider another effective model given
by the superpotential

W ¼ ��iX
ij ~�j ��2 TrX þ 1

2
m�2

i þ n ~�iS
i; (30)

where i, j ¼ 1; . . .F are flavor indices as before. The
R-symmetry charges of the chiral superfields are given by4

RX ¼ 2; R� ¼ 1; R ~� ¼ �1; RS ¼ 3: (31)

It is easy to see that once again the model possesses both
runaway and pseudoflat directions in the field space. The
pseudoflat direction is parametrized by

�i ¼ ~�i ¼ Si ¼ 0; Xij arbitrary; (32)

and the energy along this direction is Vmin ¼ ðN þ 1Þ�4,
where F ¼ N þ 1. Most of the X fields are perturbatively
stabilized at the origin. On the other hand, the Coleman-
Weinberg potential for X11 is the same as the potential for
the pseudomodulus in the model of [7]. In particular for
r � m=n * 2:11, the mass of X11 is negative and a local
minimum with spontaneously broken R symmetry exists.

FIG. 2 (color online). Relative Coleman-Weinberg potential as
a function of pseudomodulus B1 for Eq. (22) with � ¼ 1,
�UV ¼ 10, N ¼ 4, � ¼ 1, cB ¼ 0:1, cM ¼ 4:0, and c �B varied
from 1.5 (green, dashed, bottom) to 2.5 (purple, solid, middle) to
3.5 (blue, dotted, top).

4As usual, the choice of R charges is not unique for some
fields.
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The runaway direction is given by

X11 ¼ �
�
mn2S21
�2�2

�
1=3

; �1 ¼
�
�2nS1
�m

�
1=3

;

~�1 ¼
�
�4m

�2nS1

�
1=3

;

(33)

and in the limit S1 ! 1, the vacuum energy is lowered to
Vmin ¼ N�4. Once again, the remaining X fields are sta-
bilized at the origin by perturbative corrections.

We now turn to the analysis of the UV completion of this
model. Once again we will look for a microscopic descrip-
tion in terms of a deformation of an s-confining SQCD.
The association between gauge invariant composites of the
microscopic description and the fields of the low energy
model is the same as before [see Eq. (19)]. The full non-
perturbative superpotential of the UV complete description
is given by

W¼�
BiM

ij �Bj�detM

�2N�1
þmQTrMþdB

B2
i

�2N�3
UV

þd �B

�BiS
i

�N�2
UV

:

(34)

In this case, the parameters of the UV and IR descriptions
are related by

�2 ¼ mQ�;
m

2
¼ dB

�
�

�UV

�
2N�3

�;

n ¼ d �B

�
�

�UV

�
N�2

�;

(35)

and ��Oð1Þ. Requiring that R symmetry is spontane-
ously broken we find

r ¼ 2
dB
d �B

�
�

�UV

�
N�1

* 2:11: (36)

Thus R-symmetry breaking requires a mild hierarchy be-
tween parameters of tree-level superpotential dB > d �B.
The Coleman-Weinberg potential for several choices of
the parameters is shown in Fig. 3.

The analysis of the symmetries in this model is analo-
gous to that in Sec. IVB. Tree-level terms in the super-
potential are invariant under an anomalous Uð1ÞR
symmetry given by

Uð1Þ0R ¼ Uð1ÞR þ NUð1ÞA � ðN � 1ÞUð1ÞB: (37)

Furthermore, assigning the charge 2N to the dynamical
scale �2N�1 makes the full nonperturbative potential in-
variant under this symmetry. The R-symmetry matching
between the UV and IR is again given by Eq. (23). Once
again, there are no fields with negative R charges in the
microscopic description.

We conclude this section by discussing the restoration of
SUSY in the microscopic description. Recall that there
are no supersymmetric ground states in the low energy

description given by Eq. (30). Moreover, detM� detX
vanishes along the nonsupersymmetric runaway Eq. (33).
However, the presence of this nonperturbatively generated
term leads to the appearance of supersymmetric vacua
elsewhere.

V. CONCLUSIONS

O’Raifeartaigh-like models with spontaneously broken
R symmetry require that some of the IR degrees of freedom
carry negative R charges. Therefore symmetries of the low
energy description allow superpotential terms that are sin-
gular at the origin of the moduli space. Such terms could, in
principle, be generated by nonperturbative dynamics of
the UV theory and, if present, would be dangerous. This
possibility underscores the importance of finding UV com-
pletions of phenomenologically viable models. In this
paper we have considered several generalizations of mod-
els introduced in [7] and constructed their UV completions.
We have shown that an R symmetry of the effective low
energy description can be mapped either to an anomaly-
free or anomalous R symmetry of the microscopic physics.
In the former case, the R symmetry of the IR description is
a linear combination of R and non-R symmetries of the UV
physics. In the latter case, the negative R charges in the IR
description are due to the anomaly—specifically, the con-
tribution of the spurion—while all the elementary fields
carry non-negative R charge. In either case, the existence
of the anomaly-free non-R symmetry forbids the appear-
ance of dangerous terms in the dynamical superpotential. It
is interesting to note that some models of direct gauge
mediation (see, for example, [3]) possess an anomalous
R symmetry which is broken perturbatively through the
mechanism of [7].
We have shown that in successful UV completions the

dynamics of the model in the vicinity of the SUSY break-
ing ground state usually can be analyzed reliably in terms
of the low energy description. On the other hand, the

FIG. 3 (color online). Relative Coleman-Weinberg potential as
a function of pseudomodulus Tr X for the model in Eq. (34)
where� ¼ 1,�UV ¼ 10, N ¼ 2, � ¼ 1,mQ ¼ 0:1, dB ¼ 8, and

d �B varied from 0.50 (green, dashed, bottom) to 0.70 (purple,
solid, middle) to 0.90 (blue, dotted, top).
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location (or even existence) of the supersymmetric ground
state depends sensitively on the details of the microscopic
physics. Thus several important issues, such as the lifetime
of the SUSY breaking vacuum and the cosmological his-
tory of the model, cannot be reliably analyzed within the
low energy approximation.
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