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We study the finite-temperature phase of a gluon ensemble in a variational approximation to QCD in the

Coulomb gauge. We derive and numerically solve the underlying Dyson-Schwinger equations up to one-

loop order. Assuming the subcritical solution at T ¼ 0, we find a sharp transition in the infrared value of

the gluon energy at a critical temperature.
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I. INTRODUCTION

The determination of the phases of hadronic matter
plays a major role in understanding the mechanisms of
confinement and dynamical symmetry breaking in quan-
tum chromodynamics (QCD). The methods available to
investigate these phase transitions are the following: There
are lattice simulations, which have been successful in
mapping out the deconfinement transition of the QCD
phase diagram as a function of temperature for near zero
chemical potential [1–5], and phenomenological models,
that in addition can cover the high-density regime [6–10].
Finally, in the asymptotically large temperature or density
limit, due to asymptotic freedom, the weak interactions
between quarks and gluons are expected to determine the
properties of the quark-gluon plasma [11–15].

In this paper we investigate the thermal properties of
the low-density phase using a set of tools that bridge
QCD and phenomenology. In particular, we formulate the
problem in the physical, Coulomb gauge, canonical
Hamiltonian framework of the pure gauge theory. While
there have been numerous studies of QCD based on
Dyson-Schwinger resummation techniques [16–19], renor-
malization group flow equations [20], and lattice simula-
tions [21–23] in covariant gauges, the few that exist in
physical gauges are rather loosely related to the underlying
QCD interactions [24–29], with a recent attempt at a self-
consistent calculation at finite density [30].1

The advantages of physical gauges for phenomenology
and for developing physical intuition are clear, and we
summarize them here. The degrees of freedom of the
pure Yang-Mills (YM) theory are transverse gluons, and
thermal excitations connect color-singlet states of arbitrary
number of gluons. Transverse gluons are expected to be
effective only at high temperatures, while at low tempera-
tures it would be more effective to compute the partition
function in terms of the ground state glueballs [34,35]. The
underlying interactions in Coulomb gauge are dominated
by the instantaneous Coulomb potential acting between

color charges. In the non-Abelian theory, the potential
not only couples charges but it also depends on the gluon
distribution of the state in which it is calculated. At zero
temperature, in the vacuum state this distribution is such
that the Coulomb potential becomes confining, i.e., pro-
portional to the distance R between the external color
charges, VðRÞ ¼ �CR [36,37]. Using various approximate,
variational models for the ground state YM wave func-
tional, it has been possible to obtain a potential that is
confining [38] or almost confining, i.e., VðRÞ / R1�� with
� � Oð10%Þ [39–41]. The Coulomb string tension �C is
larger than the string tension computed from the temporal
Wilson loop. This is because the Coulomb potential repre-
sents the energy of a static quark-antiquark pair submersed
in the QCD vacuum, while the Wilson loop measures the
energy of the exact Q �Q state in which the gluon distribu-
tion is squeezed by closed vortex lines. Since the Coulomb
potential is an instantaneous observable, one might expect
that it remains confining even in the high-temperature limit
[37]: At high temperatures the integration over transverse
fields becomes even less restricted than in the vacuum, and,
according to the Gribov-Zwanziger confinement scenario
[42,43], Coulomb confinement originates from large field
configurations near the Gribov horizon.
In the following, we investigate the finite-temperature

properties of Coulomb gauge Yang-Mills theory with focus
on the aspects of deconfinement at finite temperature. We
extend the variational approach of Refs. [38,40,41] to finite
temperature. In particular, the variational Gaussian ansatz
for the vacuum wave functional is extended to include
single-particle, quasigluon excitations. In Secs. II and III
we present the general setting for the finite-temperature,
canonical Coulomb gauge problem. In Sec. IV we discuss
the details of the variational approximation. In Sec. V we
give details of the numerical computations and results. Our
summary and outlook are given in Sec. VI.

II. HAMILTONIAN APPROACH
AT FINITE TEMPERATURES

After resolving Gauss’s law in Coulomb gauge, the
Yang-Mills Hamiltonian reads

1At zero temperature and density, Dyson-Schwinger studies in
Coulomb gauge have been performed in Refs. [31–33].
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HYM ¼ 1

2

Z
d3xðJ�1½A��J½A��þB2Þ þHC

� HK þHB þHC; (1)

HC ¼ g2

2

Z
d3xd3yJ�1½A��aðxÞJ½A�Fab

A ðx; yÞ�bðyÞ; (2)

where �aðxÞ ¼ �i�=�AaðxÞ is the canonical momentum
(electric field) operator, and

J½A� ¼ Detð�DrÞ (3)

is the Faddeev-Popov determinant with

D ¼ rþ gÂ; Âab ¼ T̂cA
c; ðT̂cÞab ¼ facb (4)

being the covariant derivative in the adjoint representation.
Furthermore,

�aðxÞ ¼ �fabcAb ��c (5)

is the color charge density of the gluons and

Fab
A ðx; yÞ ¼ hx; ajð�DrÞ�1ð�r2Þð�DrÞ�1jy; bi (6)

is the so-called Coulomb kernel. Its vacuum expectation
value hFab

A ðx; yÞi represents the static non-Abelian color
Coulomb potential.

The gauge fixed Hamiltonian Eq. (1) is highly nonlocal
due to Coulomb kernel FAðx; yÞ, Eq. (6), and due to the
Faddeev-Popov determinant J½A�, Eq. (3). In addition, the
latter also occurs in the functional integration measure of
the scalar product of the Coulomb gauge wave functionals

hc 1jOjc 2i ¼
Z

DAJ½A�c �
1½A�Oc 2½A�: (7)

In Ref. [40] the Yang-Mills Schrödinger equation was
solved by the variational principle using the following
ansatz for the vacuum wave functional:

hAj0i ¼ 1ffiffiffiffiffiffiffiffiffiffi
J½A�p hAj~0i;

hAj~0i ¼ N exp

�
� 1

2

Z
‘kAð�kÞ!ðkÞAðkÞ

�
;

(8)

where

‘k ¼ d3k

ð2�Þ3 : (9)

The preexponential factor removes the Faddev-Popov de-
terminant from the scalar product Eq. (7). The kernel!ðkÞ
was determined by minimizing the vacuum energy hHYMi,
which yields an !ðkÞ that can be well fitted by Gribov’s
formula

!ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM4

k2

s
; (10)

and which is in satisfactory agreement with the lattice data
[44], with M � 860 MeV.
The present paper is devoted to study Yang-Mills theory

at finite temperatures, which is defined by the density
operator

D ¼ Z�1 expð��HYMÞ; (11)

where � ¼ 1=T is the inverse temperature and

Z ¼ Tre��HYM (12)

is the partition function.
To calculate the trace in the thermal averages

hOi ¼ TrðODÞ; (13)

we need a suitable basis in the gluonic Fock space, which
we choose as follows: Let aai ðkÞ be the operator which

annihilates the vacuum state j~0i [Eq. (8)], i.e.,
aai ðkÞj~0i ¼ 0: (14)

Then a complete basis in the gluonic Fock space is given by

fj~nig ¼ fj~0i; aayi ðkÞj~0i; aayi ðkÞabyj ðqÞj~0i; . . .g: (15)

Following Ref. [40] we choose the basis states of the
gluonic Fock space in the form [cf. Eq. (8)]

fjnig ¼ fJ�1=2½A�j~nig: (16)

The thermal expectation value Eq. (13) can then be ex-
pressed as

hOi ¼ ~Trð ~D ~OÞ; (17)

where the operation ‘‘�’’ is defined by

~O ¼ J1=2½A�OJ�1=2½A�; (18)

and ~Tr means that the trace is evaluated in the basis of the
states fj~nig [Eq. (15)]. The transformed density operator
reads explicitly

~D ¼ Z�1 expð�� ~HYMÞ; Z ¼ ~Tre�� ~HYM : (19)

This operator is too difficult to handle in semianalytical
calculations. In analogy to the zero-temperature case,
where the Gaussian vacuum wave functional Eq. (8) was
assumed, we will replace the exact [transformed according
to Eq. (18)] Yang-Mills Hamiltonian ~HYM by a single-
particle operator

~h ¼
Z

‘k�ðkÞabyi ðkÞabi ðkÞ; (20)

where the kernel �ðkÞ will be determined by minimizing
the free energy

F ¼ hHYMi � TS: (21)

Here S is the entropy, which is defined by

S ¼ �~Tr ~D ln ~D: (22)
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By straightforward manipulations the expression for the
entropy Eq. (22) can be cast into the form

S ¼ lnZ� �
@ lnZ

@�
; (23)

which will be convenient in later calculations.

III. COLOR PROJECTION

A. Exact projection

By definition the trace in the thermal averages Eq. (17)
should be taken in the physical Hilbert space. Before gauge
fixing, the physical Hilbert space is given by all gauge
invariant states. After resolving Gauss’s law in Coulomb
gauge, the physical Hilbert space is defined by a complete
set of wave functionals of the transversal gauge field that
are invariant under global gauge transformations (the latter
is not fixed by the Coulomb gauge condition). These states
are annihilated by the total color charge operator,2

Qa ¼
Z

d3x�aðxÞ: (24)

However, an individual basis state of the set Eq. (15) will,
in general, carry a nonzero color charge, and the use of the
basis Eq. (16) will lead to a colored statistical ensemble.
Therefore, we project these states onto color-singlet states
using the projector

P ¼
Z

d�ð�Þ exp½i�aQa�; (25)

where d�ð�Þ denotes the Haar measure of the gauge group
parametrized in terms of the color angles �a. The thermal
average projected onto zero-color states reads

hOi ¼ ~Trð ~O ~DP Þ; (26)

where ~D is given by Eq. (19) with ~HYM replaced by ~h
[Eq. (20)]:

~D ¼ Z�1e��~h; Z ¼ ~Trðe��~hP Þ: (27)

The density operator ~D [Eq. (27)] is color singlet and
hence commutes with the total color charge operator Qa

[Eq. (24)], which in terms of the creation and annihilation
operators reads

Qa ¼ ifabc
Z

‘kabyi ðkÞaci ðkÞ: (28)

With the explicit form of the projector Eq. (25) we have

~DP ¼
Z

d�ð�ÞD�; (29)

where

D � ¼ ei��Q ~D ¼ e��~hþi��Q (30)

is the density operator in the presence of an external color
field (� i�aQ

a=�), i.e., for fixed color angle �a. Because
of the presence of the external color field (� i�aQ

a=�),
this density matrix is nondiagonal in color space. However,

since the total charge operator Qa is Hermitian and ~h is
color singlet, we can diagonalize D�. For simplicity, we
consider the gauge group SUð2Þ. Then we may write

D � ¼ Uyð�̂ÞD�Uð�̂Þ; (31)

where Uð�̂Þ lives in the coset SUð2Þ=Uð1Þ and
D � ¼ expð��~hþ i�Q3Þ (32)

lives in the Abelian subgroup. In a parametrization of the
gauge group SUð2Þ corresponding to the coset decompo-
sition Eq. (31), the Haar measure reads

Z
S3
d�ð�Þ ¼

Z
d�ð�Þ

Z
S2
d�ð�̂Þ;

Z
d�ð�Þ ¼ 1

�

Z �

��
d�sin2

�

2
;

(33)

where d�ð�̂Þ denotes the measure for the integration over
the coset’s SUð2Þ=Uð1Þ ’ S2 degrees of freedom.
In the thermal averages [Eq. (26)] of colorless operators

O the unitary matrix Uð�̂Þ drops out. Since the density
matrix D� does not depend on the coset degrees of free-

dom �̂, the corresponding integral can then be trivially
carried out

Z
S2
d�ð�̂Þ ¼ 4�; (34)

and we obtain for the projected thermal averages

hOi ¼ 1

Z

Z
d�ð�ÞZð�ÞhOi�; Z ¼

Z
d�ð�ÞZð�Þ;

(35)

where

hOi� ¼ 1

Zð�Þ
~TrðD�

~OÞ; Zð�Þ ¼ ~TrD� (36)

denotes the thermal expectation value for a fixed color
angle �.
Furthermore, it is also convenient to use the basis in

color space in which ðT̂3Þab ¼ "a3b is diagonal. In this
basis we have

Q3 ¼ X
	¼0;�1

	
Z

‘ka	yi ðkÞa	i ðkÞ; (37)

and the density operator D� [Eq. (32)] becomes

2Also in the functional integral formulation after fixing to
Coulomb gauge, a careful treatment of the zero modes of the
Faddeev-Popov operator related to the global gauge transforma-
tions constrains the ensemble of transversal gauge fields to those
with vanishing total color charge [45].
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D � ¼ exp

�
��

X
	;i

Z
‘k"	ðk; �Þa	yi ðkÞa	i ðkÞ

�
; (38)

where

�"	ðk; �Þ ¼ ��ðkÞ � i�	: (39)

Since D� is the (exponent of a) single-particle operator,
the thermal expectation values h. . .i� can be evaluated
using Wick’s theorem. In the standard fashion one finds
for the partition function

Zð�Þ ¼ exp

�
2V

X
	

Z
‘k ln½1þ n	ðk; �Þ�

�
; (40)

where V is the volume of ordinary space and 2 ¼ tiiðkÞ is
the number of independent polarization degrees of freedom
in three dimensions. Furthermore,

n	ðk; �Þ ¼ ðe�"	ðk;�Þ � 1Þ�1 (41)

are the finite-temperature Bose occupation numbers. The
basic contraction is obtained as

ha	yi ðkÞa�j ðqÞi� ¼ �	�tijðkÞð2�Þ3�ðk� qÞn	ðk; �Þ:
(42)

Expressing the gauge field in terms of the creation and
annihilation operators one finds from Eq. (42) for the gluon
propagator

hA	
i ðpÞA�

j ðqÞi� ¼ �	�tijðpÞð2�Þ3�ðpþ qÞ 1þ 2n	ðp; �Þ
2!ðpÞ :

(43)

With these relations it is straightforward to calculate the
thermal expectation value of the Hamiltonian using the
same approximation as at zero temperature in Ref. [40],
i.e., assuming a bare ghost-gluon vertex and calculating the
energy up to two loops.
To work out the effect of the color projection on the

energy, let us for the moment ignore the Faddeev-Popov
determinant in the Hamiltonian. We will later fully include
J½A�. Using the explicit form of the thermal gluon propa-
gator, Eq. (43), and the same approximation as in Ref. [40]
but putting J½A� ¼ 1, one finds for the various pieces of the
energy

hHKi� ¼ V

4

Z
‘q!ðqÞ½3þ 2

X
	

n	ðqÞ�; (44a)

hHBi� ¼ V

2

Z
‘q

q2

!ðqÞ
�
3þ 2

X
	

n	ðqÞ
�
þ V

g2Nc

16

Z
‘q‘p

3� ðq̂ � p̂Þ2
!ðqÞ!ðpÞ

	
�
3þ 2

X
	

ðn	ðpÞ þ n	ðqÞÞ þ 2
X
	;�

n	ðpÞn�ðqÞ �
X
	

n	ðpÞðn	ðqÞ þ n�	ðqÞÞ
�
; (44b)

hHCi� ¼ g2Nc

8
V
Z

‘q‘p½1þ ðq̂ � p̂Þ2�Fðq� pÞ
�
!ðqÞ
!ðpÞ

�
3þ 2

X
	

ðn	ðqÞ þ n	ðpÞÞ þ 2

�X
	

n	ðqÞ
��X

�

n�ðpÞ
�

�X
	

n	ðqÞðn	ðpÞ þ n�	ðpÞÞ
�
� 3þX

	

n	ðpÞðn	ðqÞ � n�	ðqÞÞ
�

þ g2Nc

8
V � 2 � Fð0Þ

Z
‘p‘q

X
	

n	ðpÞðn	ðqÞ � n�	ðqÞÞ: (44c)

To simplify the notation, we have omitted the � depen-
dence of the occupation numbers Eq. (41). In Eq. (44c)

Fðx; yÞ ¼ hFAðx; yÞi (45)

is the non-Abelian color Coulomb potential. This quantity
is known from the lattice and also from continuum studies
[37,38] to have the infrared behavior

Fðk ! 0Þ � 1=k4: (46)

Accordingly, the integrand in Eq. (44c) becomes divergent
for p ¼ q. Furthermore, the last term in Eq. (44c) is
manifestly divergent. However, one easily shows that these

divergent terms disappear after color projection. For this
purpose, we note that if one replaces in the Coulomb
Hamiltonian HC [Eq. (2)] the Coulomb kernel FA by

g2

2
Fab
A ðx; yÞ ! �ab�ðx� yÞ; (47)

the Coulomb Hamiltonian becomes the square of the total
charge

HC ! QaQa: (48)

This equivalence holds even when the Faddeev-Popov
determinant is included, since J½A�, being invariant under
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global color rotations, commutes with the total color
charge operator Qa. In momentum space the replacement
Eq. (47) corresponds to

g2

2
FðkÞ ! ð2�Þ3�ðkÞ: (49)

It follows that the singular p ¼ q contributions to the
double integral in hHCi� [Eq. (44c)] are proportional to
hQaQai�. However, this quantity has to vanish after color
projection

hQaQai ¼ 1

Z

Z
d�ð�ÞZð�ÞhQaQai� ¼ 0: (50)

Therefore, the singular contributions that occur from the
p ¼ q part of the integrand vanish after color projection.
We can explicitly eliminate these singularities by replacing
the Coulomb potential FðkÞ by

�FðkÞ ¼ FðkÞ � Fð0ÞV�1ð2�Þ3�ðkÞ
¼ FðkÞð1� V�1ð2�Þ3�ðkÞÞ: (51)

This replacement will, in particular, remove the last term of
Eq. (44c). The kernel �F and thus the color-projected
Coulomb energy hHCi� is invariant with respect to a shift
of the Coulomb kernel by a constant

Fðx; yÞ ! Fðx; yÞ þ C: (52)

This shift implies in momentum space

FðkÞ ! FðkÞ þ Cð2�Þ3�ðkÞ; (53)

which obviously leaves �FðkÞ [Eq. (51)] unchanged.

B. Color projection in the thermodynamic limit

The partition function Eq. (40) depends via the finite-
temperature occupation numbers n	ðkÞ [Eq. (41)] on the
color angle �. The � dependence can be explicitly sepa-
rated yielding

Zð�Þ ¼ Zð0Þ expð�Vfð�ÞÞ; (54)

where

Zð0Þ ¼ exp

�
2ðN2

c � 1ÞV
Z

‘k ln½1þ nðkÞ�
�

(55)

is the partition function for vanishing ‘‘external’’ color
field (� ¼ 0), with

nðkÞ ¼ n	ðkÞj�¼0 ¼ n	¼0ðkÞ ¼ ðe��ðkÞ � 1Þ�1 (56)

being the corresponding thermal occupation numbers.
The � dependence is entirely contained in the exponent
of Eq. (54), which is given by

fð�Þ ¼ 2
Z

‘k ln½1þ 2ð1� cos�ÞnðkÞð1þ nðkÞÞ�: (57)

Note that the partition function is an even function in �.
This property holds for the expectation value hOi� of any
color-singlet operator O.
Consider now the total partition function Z, Eq. (35). In

the integration domain � 2 ½��;�� the function fð�Þ
[Eq. (57)] takes its minimum at � ¼ 0, where it vanishes

fð� ¼ 0Þ ¼ 0: (58)

Because of the presence of the volume factor V, in the
thermodynamic limit V ! 1 only small � values contrib-
ute to the integral Eq. (57). Therefore it suffices to expand
the function fð�Þ to leading order in � yielding3

Zð�Þ ¼ Zð0Þe�ð1=2ÞC�2 ; (59)

where

C ¼ Vf00ð0Þ; f00ð0Þ ¼ 2
Z

‘knðkÞð1þ nðkÞÞ: (60)

With this representation for Zð�Þ, the thermal expectation
value Eq. (35) of an observable O becomes

hOi ¼ Zð0Þ
Z

Z
d�ð�ÞhOi�e�ð1=2ÞC�2 (61)

with

Z ¼ Zð0Þ
Z

�ð�Þe�ð1=2ÞC�2 : (62)

Because of the presence of the Gaussian, only small �
values contribute significantly to the integrals. Therefore
it suffices to expand hOi� up to leading order in �

hOi� ¼ hOi�¼0 þOð2Þ�2 þ � � � (63)

Defining

In ¼ 1

Zð0Þ
Z

d�ð�ÞZð�Þ�2ðn�1Þ (64)

and using

Z ¼ Zð0ÞI1; (65)

we obtain

hOi ¼ hOi�¼0 þ I2
I1
Oð2Þ: (66)

Along the same lines, we can also expand the integration
measure d�ð�Þ [Eq. (33)] to leading order in � and put the
upper integration limit to 1. This yields for the integrals
Eq. (64)

In ¼ 1

2�

Z 1

0
d��2ne�ð1=2ÞC�2 ¼ 1ffiffiffiffiffiffiffiffiffiffi

8�C
p ð2n� 1Þ!!

Cn : (67)

3The same expansion was used in Ref. [46] for the quark
partition function.
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Since I2=I1 � 1=V in the thermodynamic limit V ! 1, the
second term in Eq. (66) can be omitted and we find

hOi ¼ hOi�¼0: (68)

This shows that in leading order in the thermodynamic
limit the effect of the color projection can be ignored. In
the following we will skip the subscript � ¼ 0 and hOi
means hOi�¼0, which is the unprojected thermal average.

To include the Faddeev-Popov determinant we use the
representation [47]

J½A� ¼ exp

�
� 1

2

Z
‘kAð�kÞ
ðkÞAðkÞ

�
; (69)

where


ðpÞ ¼ Nc

4

Z
‘qð1� ðp̂ � q̂Þ2Þ dðp� qÞdðqÞ

ðp� qÞ2 (70)

is the ghost loop (curvature) and dðpÞ is the ghost form
factor defined by

hð�D@Þ�1i ¼ 1

g

dð��Þ
ð��Þ ; (71)

which satisfies the following Dyson-Schwinger equation:

d�1ðpÞ ¼ 1

g
� IdðpÞ;

IdðpÞ ¼ Nc

2

Z
‘q½1� ðp̂ � q̂Þ2�dðp� qÞ

ðp� qÞ2
1þ 2nðqÞ

!ðqÞ ;

(72)

where a bare ghost-gluon vertex has been assumed. This
equation differs from the zero-temperature case only by
the replacement of the gluon propagator by its finite-
temperature counterpart Eq. (43). The representation
Eq. (69) is valid up to two loops in the energy, which is
the order considered in the present paper.
With the inclusion of the Faddeev-Popov determinant,

the thermal expectation value of the Hamiltonian hHYMi
given by Eqs. (44) simplifies for � ¼ 0 to

hHYMi ¼ ðN2
c � 1Þ � 2 � Ve; e ¼ eK þ eB þ ec;

(73)

where

eK ¼ 1

4

Z
‘q

�
½!2ðqÞ þ 
2ðqÞ� 1þ 2nðqÞ

!ðqÞ � 2
ðqÞ
�
; (74a)

eB ¼ 1

4

Z
‘qq2 1þ 2nðqÞ

!ðqÞ þ g2Nc

32

Z
‘p‘q½3� ðp̂ � q̂Þ2� 1þ 2nðpÞ

!ðpÞ
1þ 2nðqÞ

!ðqÞ ; (74b)

eC ¼ g2Nc

16

Z
‘p‘q½1þ ðp̂ � q̂Þ2� �Fðp� qÞ

!ðpÞ!ðqÞ f½!
2ðpÞ þ 
2ðpÞ � 
ðpÞ
ðqÞ�ð1þ 2nðpÞÞð1þ 2nðqÞÞ �!ðpÞ!ðqÞ

þ 2
ðpÞ½!ðqÞð1þ 2nðpÞÞ �!ðpÞðð1þ 2nðqÞÞ�g (74c)

are the energy densities per degree of freedom.

IV. FINITE-TEMPERATURE
VARIATIONAL PRINCIPLE

Our ansatz for the density operator [Eqs. (20) and (27)]
contains a so-far arbitrary kernel �ðkÞ, which we deter-
mine now by minimizing the free energy F , Eq. (21).
Instead of varying F with respect to �ðkÞ, it is more
convenient to take the variation with respect to the finite-
temperature occupation number nðkÞ [Eq. (56)], which is a
monotonic function of �ðkÞ for�ðkÞ> 0. Variation of F
with respect to nðkÞ yields

�ðkÞ ¼ �e½n�
�nðkÞ ; (75)

which identifies �ðkÞ as the quasigluon energy.
So far, the kernel !ðkÞ, which defines the vacuum

wave functional Eq. (8) and thus our basis of the Fock
space, is completely arbitrary and, in principle, we could
use any positive-definite kernel !ðkÞ. As long as we in-
clude the complete set of states and do not introduce any

approximation, the thermal expectation values will be
independent of !ðkÞ. However, due to approximations
necessary as, for example, the restriction to two loops,
the thermal averages will depend on the !ðkÞ chosen and
the optimal choice is obtained by extremizing the free
energy Eq. (21) with respect to !ðkÞ

�F
�!ðkÞ ¼ 0; (76)

which yields the finite-temperature gap equation

!ðkÞ ¼ k2 þ 
2ðkÞ þ Ið0Þ þ IðkÞ; (77)

where

Ið0Þ ¼ g2Nc

4

Z
‘q

3� ðk̂ � q̂Þ2
!ðqÞ ½1þ 2nðqÞ�;

IðkÞ ¼ g2Nc

4

Z
‘q �Fðk� qÞ 1þ ðk̂ � q̂Þ2

!ðqÞ
	 f½1þ 2nðqÞ�½!2ðqÞ �!2ðkÞ
þ ð
ðqÞ � 
ðkÞÞ2� � 2!ðqÞ½
ðqÞ � 
ðkÞ�g: (78)
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These loop integrals, as well as the ones of the curvature
[Eq. (70)] and of the ghost Dyson-Schwinger equation
[Eq. (72)], are ultraviolet divergent and need to be regu-
larized and eventually renormalized.

Inserting the explicit expressions Eqs. (74) for the en-
ergy densities e into Eq. (75) and using the gap Eq. (71),
one finds

�ðkÞ ¼ !ðkÞ½1þ I�ðkÞ�;

I�ðkÞ ¼ g2Nc

4

Z
‘q �Fðk� qÞ 1þ ðk̂ � q̂Þ2

!ðqÞ ½1þ 2nðqÞ�:
(79)

To carry out the renormalization we will have to deal
with both finite- and zero-temperature solutions. To avoid
confusion, in the following we will explicitly indicate the
temperature dependence by writing !ðk; TÞ; dðk; TÞ; . . .
instead of !ðkÞ; dðkÞ; . . . .

At very large momenta jkj 
 T the temperature should
become irrelevant. Indeed, the temperature dependence of
the loop integrals (which is due to the finite-temperature
occupation numbers nðkÞ) does not give rise to additional
UV singularities. Therefore the zero-temperature counter-
terms are sufficient to eliminate all UV singularities.

Adding the zero-temperature counterterms, see
Ref. [41], and carrying out the renormalization as de-
scribed in Ref. [48], one arrives at the following renormal-
ized gap equation:

!2ðk; TÞ ¼ k2 þ �
2ðk; TÞ þ�Ið2Þðk; TÞ þ c0 þ �Ið0ÞðTÞ
þ 2 �
ðk; TÞ½�Ið1Þðk; TÞ þ c1� þ �Iðk; TÞ; (80)

where we have introduced the abbreviations

�
ðk; TÞ ¼ 
ðk; TÞ � 
ð�
; T ¼ 0Þ;
�Ið0ÞðTÞ ¼ Ið0ÞðTÞ � Ið0ÞðT ¼ 0Þ;

�IðlÞðk; TÞ ¼ IðlÞðk; TÞ � IðlÞð�!; T ¼ 0Þ;
(81)

and defined the following loop integrals:

IðlÞðk;TÞ¼g2Nc

4

Z
‘q �Fðk�q;TÞ1þðk̂ � q̂Þ2

!ðq;TÞ
	f½!ðq;TÞ� �
ðq;TÞ�l�½!ðk;TÞ� �
ðk;TÞ�lg;

(82)

�Iðk;TÞ¼g2Nc

4

Z
‘q �Fðk�q;TÞ1þðk̂ � q̂Þ2

!ðq;TÞ 2nðqÞ
	f!2ðq;TÞ�!2ðk;TÞþ½ �
ðq;TÞ� �
ðk;TÞ�2g:

(83)

In addition, the renormalized Eq. (72) for the ghost form
factor reads

1

dðk; TÞ ¼
�

1

dð�d; T ¼ 0Þ þ Idð�d; T ¼ 0Þ
�
� Idðk; TÞ:

(84)

The renormalized Dyson-Schwinger Eqs. (80) and (84)
contain the finite renormalization scales, �i ¼ �
, �!,

�d, and the renormalization constants gð�iÞ, 
ð�iÞ,
c0ð�iÞ, and c1ð�iÞ. The last two originate from the counter-
terms in the Hamiltonian and 
ð�iÞ from the renormaliza-
tion of the Faddeev-Popov determinant. In particular, in
Ref. [48] it was shown that for �! ¼ �d ¼ 0 the value
c1 ¼ 0 is required in order that the ’t Hooft loop obeys a
perimeter law and is also favored by the variational prin-
ciple. It was also found that the parameter c0 has no
influence on the IR or UV behavior of the resulting solu-
tions and influences only the midmomentum regime of
!ðkÞ. The choice of renormalization conditions for our
study at finite temperature will be discussed in Sec. V.
The Gribov-Zwanziger confinement scenario assumes

that d�1ð0; T ¼ 0Þ ¼ 0. For practical reasons, in the
present paper we will assume a small but finite d�1ð0; TÞ,
which results in a massive gluon propagator, referred to as
a subcritical solution in Ref. [41]. This solution does not
provide a confinig Coulomb potential but for phenomeno-
logical purposes may be as useful as the critical confining
solution d�1ð0Þ ¼ 0 (see Ref. [41] for further discussions).
One can give arguments that a d�1ð0Þ � 0 is the result of
an improper treatment of the Gribov problem [33,49]. In
fact, it was explicitly demonstrated in 1þ 1 dimensions
[50], and also arguments were given for 3þ 1 lattice gauge
theory in Landau gauge [49], that extending the functional
integral over the transverse gauge field to higher Gribov
regions reduces the infrared strength of the ghost form
factor, pushing d�1ð0Þ to higher values. Based on this
observation, it was argued in Refs. [33,49] that choosing
different values of d�1ð0Þ corresponds to different ‘‘gauge
fixings.’’ (After all, a complete gauge fixing implies also
the restriction to the fundamental modular region, which is
a subset of the first Gribov region.) Presumably, in more
than 1þ 1 dimensions the restriction to the fundamental
modular region requires d�1ð0Þ ¼ 0. In any case this value
is required for a linearly rising Coulomb potential, which is
a necessary condition for confinement in the Gribov-
Zwanziger confinement scenario [42,43]. Thus, if d�1ð0Þ
is kept finite for technical reasons, it has to be kept small to
stay close to the physical confining limit d�1ð0Þ ¼ 0.

V. NUMERICAL RESULTS

As shown in Sec. III A, the color projection removes the
zero mode from the Coulomb potential, see Eq. (51). In the
continuum it is replaced by

g2 �FðkÞ ¼ lim
�!0

d2ðkÞ
k2 þ �2

½1� expð�k2=�2Þ�; (85)

where we used the approximation [cf. Equation (6)] [40]
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hFab
A ðx; yÞi ¼ X

c

Z
d3zhhx; ajð�DrÞ�1jc; ziið�r 2Þz

	 hhz; cjð�DrÞ�1jy; bii; (86)

with the external h� � �i referring to the thermal average. In
the confining limit

g2FðkÞ ¼ d2ðkÞ
k2

!k!0 8��C

k4
; (87)

and the single, quasigluon energy in Eq. (79) is infinite at
all temperatures, which is certainly an artifact of our
approximation, since at least for large jkj the quasigluon
energy should be finite due to asymptotic freedom. For
infinite �ðkÞ the finite-temperature occupation numbers
nðkÞ [Eq. (56)] vanish at all temperatures and there is no
finite-temperature phase transition. Thus the presently used
approximations are inappropriate for the strictly confining
solution. As discussed in Ref. [41], without the approxi-
mation of Eq. (86) there are no strictly confining solutions
in the sense of Eq. (87) in the variational approximation,
and in this case the�ðkÞ are finite (for finite k) and at finite
temperature a nontrivial solution with nðkÞ � 0 is ex-
pected. In this case we solve the set of finite-temperature
Dyson-Schwinger equations numerically on a momentum
grid. The nonconfining solutions depend on the renormal-
ized coupling or, alternatively, the value of dðk ¼ 0; TÞ
[cf. Eq. (72)]. As discussed in Sec. IV, the Dyson-
Schwinger equations are renormalized by subtraction at
zero temperature to account for temperature-independent
counterterms. In the numerical computation, however, it is
very difficult to solve these equations at fixed T unless
subtracted at the same value of T. Thus, in the numerical
results that follow all subtractions will be done at finite T.
In particular, when solving for dðk; TÞ [see Eq. (72)] we
use

1

dðk; TÞ ¼
�

1

dð�d; TÞ þ Idð�d; TÞ
�
� Idðk; TÞ: (88)

Comparing this with Eq. (84) we have

d�1
0 � 1

dð�d; TÞ ¼
1

dð�d; 0Þ þ Idð�d; 0Þ � Idð�d; TÞ;
(89)

with �d chosen to be the lowest point on the momentum
grid, which corresponds to �d ¼ 0 in the infinite volume
limit. In other words, we fix d�1

0 with the temperature:

At each temperature we thus control the distance to the
confining limit of the color Coulomb potential. This
implies that the mass scale that enters Idð�d � 0; TÞ on
the right-hand side of Eq. (89) depends on T. Similarly, the
numerical stability of the solution of the gap equation for
!ðk; TÞ [Eq. (80)] requires that we use temperature-
dependent renormalization constants, i.e., in Eq. (81) in-
stead of subtracting at T ¼ 0 we subtract at finite T, so that
�
 ¼ �
ðTÞ and �! ¼ �!ðTÞ. In particular, we use a

single renormalization scale and set �ðTÞ ¼ �!ðTÞ ¼
�
ðTÞ. This implies that we renormalize the gap equation

at a finite momentum �! � 0. By renormalizing at
�! ¼ 0, one would be enforcing a particular IR limit of
the solution of the gap equation, which could turn out to be
incompatible with the finite-temperature equation. Instead,
by choosing �! away from the IR limit the value obtained
from solving numerically for !ð0Þ � !ðk ¼ 0; TÞ will
serve to illustrate the onset of a phase transition.
To search for the phase transition we proceed as

follows. We start with a small but finite IR regulator �
[see Eq. (85)], and at given, small T (large �) we choose a
solution close to a critical one. A typical case is shown in
Figs. 1 and 2. In all figures, physical, dimensional quanti-
ties are plotted in units of �ðTÞ. With fixed � and d0 we
increase T (decrease�) and study both! and d. A series of
computations of !ð0Þ as a function of � for � ¼ 0:01 and

 1
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 100

 0.01  0.1  1

ω
(k

)

k

β=0.5, ε=0.01, d-1
0 = 0.0005

β=0.5, ε=0.01, d
-1

0 = 0.0040

FIG. 1 (color online). Low momentum (IR) behavior for � ¼
0:5, � ¼ 0:01, and d�1

0 ¼ 0:0005, 0.0040 of solutions for gap

equation for !. In the limit � ! 0 and/or � ! 1 the solutions
do not change qualitatively. The critical solution corresponds to
d�1
0 ¼ 0, and the solution with d�1

0 ¼ 0:0005 is close to critical.

The IR limit is weakened as d�1
0 increases and the ghost

propagator becomes massive.

 0.001

 0.01

 0.1

 1
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(k

)

k

β=0.5, ε=0.01, d-1
0
 = 0.0005
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0 = 0.0040

FIG. 2 (color online). Same as Fig. 1 for the ghost form
factor d.
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d�1
0 in the range [0.0005–0.0060] is shown in Fig. 3. As d�1

0

increases, the solution becomes less critical, i.e., less IR
enhanced, and the Coulomb potential moves away from the
confining limit of Eq. (87). In this phase, as shown in
Fig. 3, there is an abrupt change in the gap function !ð0Þ
at a critical temperature which decreases as the solution
becomes weaker in the IR. Please note that the results
shown for different values of d�1ð0Þ correspond to differ-
ent physical scales. We also studied the dependence on �,
as the limit � ! 0 should be taken to approach the infinite
volume. Starting from a massive solution at zero tempera-
ture, e.g., with d�1

0 ¼ 0:060, we increase the temperature

and decrease �. In particular, we solve the equations for
� ¼ 0:0001 and � ¼ 0. The latter choice is possible, since
with an IR finite ghost dressing function (d�1

0 � 0) the

Coulomb potential in Eq. (87) does not lead to an IR
singularity in the integrals. The results are shown in
Figs. 4 and 5. Even though, in numerical simulations

with a finite momentum grid, one cannot reach the
exact critical limit of � ¼ 0, d�1

0 ¼ 0 [which implies

FðkÞ / 1=k4 at zero temperature], the numerical results
shown in these figures are consistent with the anticipated
(see Sec. I) disappearance of the phase transition in the
Coulomb phase. In particular, we observe that, as d�1

0

decreases, the gap function !ð0Þ grows and eventually
becomes infinite as it is the case in the zero-temperature
limit. In other words, the phase transition moves to infinite
temperature (� ! 0) as the gluon self-energy becomes
infinite. In Fig. 6 we show the evolution with temperature
of !ðkÞ as a function of gluon momentum. As expected,
the gap function becomes less IR enhanced as temperature
increases (� decreases).

VI. SUMMARYAND OUTLOOK

We studied the temperature dependence of QCD corre-
lation functions with a variational ansatz for the gluon
density matrix in the Coulomb gauge. The resulting one-
loop Dyson-Schwinger equations for the gluon propagator
and ghost form factor dðkÞ were solved numerically,
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FIG. 5 (color online). Same as in Fig. 4 for d�1
0 ¼ 0:0029.
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FIG. 6 (color online). Gap function !ðkÞ as a function of
temperature (d�1

0 ¼ 0:0029, � ¼ 0). As the temperature in-

creases !ðkÞ becomes less IR enhanced.
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FIG. 3 (color online). !ð0Þ as a function of temperature for � ¼
0:01 and d�1

0 ¼ f0:0060; 0:0040; 0:0029; 0:0015; 0:0005g. The

phase transition is clearly visible and becomes stronger andmoves
to lower temperatures as d�1

0 increases. For d�1
0 ! 0 the phase

transition disappears, i.e., moves to infinite temperatures.
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FIG. 4 (color online). !ð0Þ as a function of temperature for
d�1
0 ¼ 0:0060 massive solution for � ¼ 0:01 (as in Fig. 3)

compared with solutions for � ¼ 0:0001 and � ¼ 0.
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assuming a subcritical behavior, i.e., d�1ð0Þ � 0, which,
however, was chosen close to the critical one, d�1ð0Þ ¼ 0.

Strictly speaking, the variational Coulomb gauge model
which leads to d�1

0 � 0 is not confining and thus only

loosely related to QCD. The Gribov-Zwanzinger confine-
ment scenario is reached in the d�1

0 ! 0 (and � ! 0) limit.

We find it amusing, however, that the quasigluons, which
for d�1

0 � 0 are deconfined at all temperatures, behave

similar to the physical gluons both below and above Tc.
We have found that quasiparticle, gluonic excitations
built on top of such a subcritical vacuum lead to a sharp
transition in the above correlations functions. To solve
the Dyson-Schwinger equations we used temperature-
dependent renormalization conditions. This results in the
phase transition point in Fig. 3 moving with d�1

0 . By fixing

the critical temperature to a physical value, if known, this
variation could be used to determine the function �ðTÞ
and, ultimately, the temperature dependence of these cor-
relation functions. As one tunes the zero-temperature so-
lution to approach the critical limit, d�1

0 ! 0, the phase

transition moves to infinite temperatures. Even though
thermal excitations are restricted to color single states,

contribution to the partition function from two gluons is
Oð1=VÞ compared to that of a glueball. The former are thus
expected to make negligible contribution in the thermody-
namical limit, which explains why a confining Coulomb
potential at zero temperature remains confining at finite
temperatures [37]. However, the confining potential can
bind gluons into color-singlet glueballs and a phase tran-
sition could be observed, for example, in a change of the
radius of the glueball wave function. We will consider such
a mixed glueball/quasigluon phase in the forthcoming
work.
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