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In many strongly coupled systems, the infrared dynamics is described by different degrees of freedom

from the ultraviolet. It is then natural to ask how operators written in terms of the microscopic variables

are mapped to operators composed of the macroscopic ones. Certain types of operators, like conserved

currents, are simple to map, and in supersymmetric theories one can also follow the chiral ring. In this

paper, we consider supersymmetric theories and extend the mapping to anomalous currents (and gaugino

bilinears). Our technique is completely independent of subtleties associated with the renormalization

group, thereby shedding new light on previous approaches to the problem. We demonstrate the UV/IR

mapping in several examples with different types of dynamics, emphasizing the uniformity and simplicity

of the approach. Natural applications of these ideas include the effects of soft breaking on the dynamics of

various theories and new models of electroweak symmetry breaking.
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I. INTRODUCTION

At low energies, many strongly coupled field theories can
be described in terms of emergent degrees of freedom—
often markedly different from those used to define the
theory at short distances. The most well-known example
where this phenomenon occurs is QCD, which, in the chiral
limit, flows from a theory described purely in terms of
fermions and gauge fields to a free theory ofmassless pions.

Given this picture, an important question that arises is
how to express long-distance correlation functions, written
in terms of the fundamental quarks and color gauge fields,
as correlation functions written in terms of mesons. (Of
course, in order for this question to be well defined, one
must only consider gauge-invariant correlation functions in
the UV.)

For instance, one may consider correlation functions of
conserved currents, which in QCD are associated with the
symmetries SUðNfÞL � SUðNfÞR �Uð1ÞB, and attempt to

rewrite the corresponding conserved currents in terms of the
pions. This procedure is fairly straightforward for the non-
Abelian currents, but some interesting complications arise
for the baryonic current (for a general treatment see [1]).

Another interesting set of quark bilinears in QCD are the

c ~c operators. In this case, one can use an SUðNfÞL �
SUðNfÞR spurion analysis and find that they map to U ¼
ei�

aTa
. Unfortunately, the coefficient in this mapping is

incalculable. One can also consider the quark bilinear
corresponding to the anomalous axial current, Uð1ÞA.
However, we are not aware of any systematic procedure
of mapping this operator to the IR.1

In this paper we will discuss related questions in the
context of supersymmetric (SUSY) theories. In SUSY
theories it is relatively straightforward to follow the flows
of two broad classes of operators—elements of the chiral
ring and the (nonchiral) conserved current multiplets. The
mapping of the conserved currents follows the same rules
as in non-SUSY theories. We use either ’t Hooft anomaly
matching or Goldstone’s theorem to realize various con-
served currents in the IR.2 The mapping of the chiral ring
is, of course, possible due to the strong constraints imposed
by holomorphy.
Generalizing the above ideas to nonconserved currents

(and objects that vanish in the chiral ring) is more difficult.
However, understanding their flow is crucial for many
applications, such as the mapping of soft nonholomorphic
mass terms, which, at weak coupling, can be thought of as
the lowest components of (non)conserved current multip-
lets. Studying these questions is the chief goal of this paper.
The main utility of supersymmetry in this context is as

follows. Consider a current broken explicitly by an anom-
aly. It satisfies the Adler-Bardeen equation (it is actually
not important for us to work in a scheme where the anom-
aly is one-loop exact)

@�j� � F ~F: (1.1)

However, supersymmetry relates F ~F with F2 since they
together form the complex �2 component of W2

�. The final
crucial ingredient is that F2 is related to the stress tensor
via the usual trace anomaly

1The situation might be better in the large N limit of QCD;
there one can imagine including the light �0 particle [2].

2Complications, as for baryon number in QCD, can arise too,
although they do not arise in the simplest examples. See [3] for
interesting discussions of closely related matters.
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T�
� � F2: (1.2)

Even if the theory goes through strong coupling, the con-
served energy-momentum tensor is known at the end
points of the flow (as long as there is a description in terms
of weakly coupled degrees of freedom there). From this
discussion, we see that we can follow F ~F and learn some-
thing about the flow of anomalous currents.

The problem can be simplified even further if there is a
conserved R symmetry. Indeed, the corresponding R cur-
rent is related to the energy-momentum tensor by SUSY.
Being a conserved current, the R current is easily followed
along the flow. Therefore, in a heuristic sense, supersym-
metry extends the simplicity of the flow of the conserved R
current to the flow of the anomalous (non-R) current.

The question of following nonholomorphic operators, at
least in the guise of soft-SUSY-breakingmasses, to the IR is
not new. Indeed, there is significant literature on the subject;
see e.g. [4–12] and references therein. While our paper has
many new concrete results, its main purpose is to advocate
several new points of view on the subject. These perspec-
tives allow us to solve the problem while completely
avoiding discussions of subtleties associated with renor-
malization group (RG)-invariant versus RG-noninvariant
(i.e. scheme-independent versus scheme-dependent) quan-
tities. Most importantly, our tools provide us with general
results that are valid uniformly in all theories considered,
including ones that have not been addressed before.

The plan of this paper is as follows. In Sec. II we
describe in detail the procedure outlined above. In
Secs. III, IV, and V we discuss three examples in which
one can map some nonchiral operators to a weakly coupled
dual description. These examples demonstrate slightly dif-
ferent aspects and nuances of the general procedure. In
Sec. VI we consider theories that flow to an interacting
superconformal field theory (SCFT) at long distances. In
Sec. VII we discuss the remaining open questions, most
importantly, emphasizing possible applications to electro-
weak symmetry breaking (EWSB), and conclude.

II. THE AXIAL ANOMALYAND THE
ENERGY-MOMENTUM TENSOR

In this section we review the well-known connection
between the axial anomaly, the energy-momentum tensor,
and the R-symmetry current (if the latter exists). To that
end, we first note that the anticommutation relations
fQ; �Qg � P imply that the supercurrent and the energy-
momentum tensor sit in the same multiplet. The question
then becomes how to write an irreducible representation
of SUSY containing the supercurrent and the energy-
momentum tensor. The simplest solution is the Ferrara-
Zumino (FZ) multiplet [13]3

�D _�J � _� ¼ D�X; (2.1)

where X is chiral and J � is real. In some cases, which are

not relevant to this paper, the FZ multiplet does not exist
[14,15].
Writing out the solution to (2.1), we find that the �2

component of X contains the trace of the energy-
momentum tensor as well as the divergence of the bottom
component of J �. In pure super Yang-Mills theory, X is

proportional to W2
�. The trace of the energy-momentum

tensor is proportional to F��F
��, while the Adler-Bell-

Jackiw (ABJ) equation relates the divergence of the bottom
component of J � to F ~F.4

Intuitively, it is this connection between the anomaly
and the energy-momentum tensor that allows one to say
more than usual about the flow of the anomalous current. It
is relatively easy to identify the energy-momentum tensor
in the IR of a complicated flow (as long as we know what
the, possibly emergent, degrees of freedom are there). This
discussion also suggests that coupling the rigid theory to
supergravity, as in [10], might shed some light on the
mapping of anomalous currents. We will not consider
supergravity in this paper.
When the theory under consideration has an exact R

symmetry, there is a more natural representation of the
supercurrent which, as wewill see below, leads to a simpler
description of the physics. In such a case, the conserved R
current transforms as the bottom component of a super-
current multiplet that is defined by

�D _�R� _� ¼ ��: (2.2)

Here �� is chiral and satisfies the usual Bianchi identity
D� ¼ �D �� , andR� is real. In the systems of interest to us,

both the FZ multiplet (2.1) and theR multiplet (2.2) exist.
From this statement, it follows that the Bianchi identity for
�� can be solved in terms of a well-defined real superfield
U, and so

�D _�R� _� ¼ �D2D�U: (2.3)

The general picture of what happens toU along a flow is
simple to understand. In the asymptotically free theories
we will study below, R and U start out in the UV as
bilinears in the various weakly coupled superfields (with
appropriate contributions of � 1

g2
W�

�W _� to R and appro-

priate factors of eV to renderR and U gauge invariant; we
neglect these terms for simplicity—a more detailed recent
discussion of many of the issues discussed here can be

3We adopt the following conventions: ‘� _� ¼ �2�
�
� _�‘�, ‘� ¼

1
4 �� _��

� ‘� _�.

4Incidentally, this relation leads to the famous ‘‘anomaly
puzzle’’ (see [16–19], and many references therein, for a more
detailed discussion of this puzzle) since one would expect the
anomaly to naturally be one-loop exact while the beta function
has contributions from all loop orders. This apparent paradox
will not affect our discussion below in any way.
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found in [15,20–26]). Indeed, solving (2.3), one finds that
for the matter superfields �i, with R charges ri, the ex-
pressions for R� _� and U take the form

R � _� ¼ X
i

ð2D��i
�D _�

��i � ri½D�; �D _���i
��iÞ; (2.4)

U ¼ X
i

�
1� 3ri

2

�
��i�i: (2.5)

Note that the contributions to U of fields with ri ¼ 2=3
vanish because this is the superconformal R charge for
fields at the Gaussian UV fixed point.

We should elaborate on what it means to solve for U.
Equation (2.3) does not fix U uniquely, but only fixes
�D2D�U. This leads to the usual supergauge ambiguity,

U ! Uþ�þ ��, where � is chiral. In writing (2.5) we
have discarded all such holomorphic terms. Indeed, in most
cases they can be completely ignored by symmetry argu-
ments. However, we will see cases where even if such
terms are not included in the UV, adding such terms in
the IR is forced on us by consistency.

It is also due to such ambiguities in solving superspace
equations that we opt to use theRmultiplet rather than the
FZ multiplet. Indeed, in the latter case one can show that
ambiguities arise not only from purely holomorphic terms,
but also from conserved currents (which generically exist
and render the analysis harder).

Now, as we flow to the IR, we can use theRmultiplet to
followU. The IR is described by some SCFT, andU can be
described as U��2�dO, for some real operator O of
dimension d � 2, and some scale �. We can assume the
dimension of the real operatorO is� 2 by unitarity and by
the fact that we can remove holomorphic plus antiholo-
morphic contributions.

In the case that d > 2, U formally vanishes at the IR
fixed point (i.e. deep in the IR). This means that the bottom
component of R� _� becomes the superconformal R sym-
metry.5 In other words, the R symmetry we have chosen in
the UV becomes the superconformal one in the infrared.
But we know this is not always the case. There could be
multiple choices for the R symmetry in the UV, and there
can also be accidental symmetries in the IR. When the R
current we follow does not flow to the IR superconformal
one, then U is nonzero in the IR and it flows to a certain
current of dimension 2,

U ! 3
2J: (2.6)

This conserved current, J, may be a conserved current of
the full theory, or it may correspond to an accidental
symmetry of the IR fixed point.6

Formally, J has a simple description. It is just the
conserved current which parametrizes the difference be-
tween the superconformal R symmetry and the one in the
multiplet we are following along the flow. This can be
shown by recalling that the IR superconformal theory
admits the superconformal multiplet RCFT

� (i.e., the mul-

tiplet for which �D _�RCFT
� _� ¼ 0 at the IR fixed point). We

can write this multiplet in terms of the IR limit of (2.3) and
the (perhaps accidentally) conserved current multiplet J as
follows

RCFT
� _� ¼RIR

� _��½D�; �D _��J; UCFT¼UIR� 3
2J¼0: (2.7)

HereUIR is the deep IR limit ofU, and J is the multiplet for
the symmetry that mixes with the R charge corresponding
to R� _� to create the superconformal R symmetry.RIR

� _� and
RCFT

� _� are related via improvement transformations for the
supercurrent and stress tensor.7

We see that being able to follow the axial current relies
crucially on being able to identify the superconformal R
symmetry. In many examples this is fixed by duality.
Additionally, we have the powerful tools of [33].
In many theories, there are free magnetic phases, where

the IR is a Gaussian fixed point. Then the abstract discus-
sion above takes a very simple form, since the supercon-
formal R charge is 2=3 for all the chiral fields. UIR is then
fixed by the IR analog of (2.5), namely,

UIR ¼ X
i

�
1� 3ri

2

�
�	i	i; (2.8)

where the 	i are the ‘‘emergent’’ chiral superfields at low
energies and ri are their R charges. The simplest example
of such a theory is SQCD in the free magnetic phase, which
we will now discuss in much greater detail.

III. THE ANOMALOUS CURRENT OF SQCD

In this section we will consider SUðNcÞN ¼ 1 SQCD
with Nf in the free magnetic range, i.e. Nc þ 1<Nf �
3Nc=2. Recall the matter content of the electric UV theory,

5A special case which is slightly more subtle is when the IR
SCFT is approached by a marginally irrelevant operator. This
can be represented by U ¼ 
J, where J is some dimension-2
operator in the IR SCFT and 
 is an anomalous dimension that
goes to zero in the deep IR, as required. The general construction
of this J and the calculation of 
 are presented in the framework
of [27]. We thank D. Green and N. Seiberg for helpful con-
versations on the matter.

6The above discussion relies on the assumption that the fixed
points are conformal in addition to being scale invariant.
Whether this is always true is an open question (see [28,29]
for some aspects of the problem). However, in many cases of
interest, like supersymmetric QCD (SQCD) and various simple
generalizations, conformality is strongly suggested by the dis-
cussion in [30] and various related works. This picture has been
given further reenforcement recently in [31].

7More general studies of improvements of supercurrent mul-
tiplets can be found in [15,32].
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SUðNcÞ SUðNfÞ�SUðNfÞ Uð1ÞR Uð1ÞB
Q Nc Nf�1 1� Nc

Nf
1

~Q �Nc 1� �Nf 1� Nc

Nf
�1

(3.1)

A particularly interesting set of operators to try and follow
is given by all the possible nonholomorphic bilinears

cjiQ
iQy

j þ ~cji
~Qi ~Qy

j ; (3.2)

where cji , ~c
j
i represent some arbitrary real numbers, and

i; j ¼ 1; . . . ; Nf.

The theory (3.1) is understood in the IR via Seiberg
duality [30]. The low energy degrees of freedom consist
of a dual IR-free SUðNf � NcÞ gauge group,Nf dual quark

superfields q, ~q in the fundamental-antifundamental repre-
sentations of SUðNf � NcÞ, and a gauge singlet meson

Nf � Nf matrix, M. We summarize this matter content in

the following table:

SUðNf �NcÞ SUðNfÞ�SUðNfÞ Uð1ÞR Uð1ÞB
q Nf �Nc

�Nf� 1 Nc

Nf

Nc

Nf�Nc

~q �Nf� �Nc 1�Nf
Nc

Nf
� Nc

Nf�Nc

M 1 Nf�Nf 2� 2Nc

Nf
0

(3.3)

Since the theory is IR free, the natural normalization of
these dual fields is to choose their kinetic terms to be
canonical.

Given this picture, we would like to know how the
operators in (3.2) are realized in the dual theory of (3.3). It
is difficult to answer this question exactly, since the result
depends on incalculable corrections to the Kähler potential
of the IR degrees of freedom. However, here we are only
interested in knowing what the operators in (3.2) flow to in
the deep IR, where all such corrections are irrelevant.

As mentioned in the Introduction, it is extremely easy to
follow to the IR operators of the form (3.2) that correspond

to conserved currents. For example, consider QiQy
i �

~Qi ~Qy
i . This operator can be identified with the bottom

component of the conserved baryon superfield

�D 2ðQiQy
i � ~Qi ~Qy

i Þ ¼ 0: (3.4)

We can immediately conclude that in the deep IR it should
be matched to the baryon number current of the magnetic
theory. In other words,

QQy � ~Q ~Q ! Nc

Nf � Nc

ðjqj2 � j~qj2Þ: (3.5)

The numerical factor on the right-hand side of this equation
follows from the well-known baryon charge of the mag-
netic quarks (see Eq. (3.3)].

It is just as easy to follow some other special bilinears in
the squark superfields. Indeed, all the bilinears given by

linear combinations ofQTaQy and ~QTa ~Qy (with traceless,
Hermitian, Ta) can be thought of as the bottom compo-
nents of the non-Abelian currents associated with
SUðNfÞL � SUðNfÞR and can thus be directly mapped to

the IR [this is done via the action of these symmetries on
the magnetic degrees of freedom (3.3)].
In the space of all bilinears (3.2) there is, however, one

linearly independent combination which is nontrivial to
map to the IR. Without loss of generality, this linear
combination can be chosen to be

JA ¼ QQy þ ~Q ~Qy: (3.6)

This is not the bottom component of any conserved current.
In fact, it is the bottom component of the anomalous axial
current

�D 2JA �W2
�: (3.7)

As we have explained in the previous sections, following
anomalous currents is nontrivial. We will now see that
supersymmetry helps us bypass this problem in a simple
manner.
We note that the theory (3.1) has a nonanomalous R

symmetry, and so we can associate anRmultiplet to this R
symmetry along the flow. Using the formula (2.5) and the
table in Eq. (3.1), we can identify U in the far UV in terms
of the electric quarks as

UUV ¼
�
� 1

2
þ 3Nc

2Nf

�
ðQQy þ ~Q ~QyÞ; (3.8)

and in the IR we can express U in terms of the magnetic
degrees of freedom using (2.8) and the R charges in
Eq. (3.3),

UIR ¼
�
1� 3Nc

2Nf

�
ðqqy þ ~q~qyÞ �

�
2� 3Nc

Nf

�
MMy: (3.9)

This shows that the operator (3.6) undergoes the following
flow:

QQyþ ~Q ~Qy!2Nf�3Nc

3Nc�Nf

ðqqyþ ~q~qy�2MMyÞ: (3.10)

This is an exact result. In this formula (3.10) we have
chosen the mesons and magnetic quarks to be canonically
normalized.8

One interesting consequence of the above discussion is
that, upon acting with �D2 on both sides of the mapping in
(3.10), we find the physical relation between the electric
and magnetic field strengths,

8Note that if one interprets (3.10) as the action of the anoma-
lous axial current on the IR degrees of freedom, we find that the
cubic superpotential of the magnetic theory, Wmag ¼ qM~q, is
invariant.
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W2
�;el !

2Nf � 3Nc

3Nc � Nf

W2
�;mag: (3.11)

This is again an exact result.9

Soft-SUSY breaking

We can immediately apply the results in (3.10) and
(3.11) to study the mapping of soft terms in the electric
theory to soft terms in the magnetic theory. To that end,
consider deforming the UV Lagrangian by adding the
bottom components of the current in (3.6) and the electric
field-strength bilinear in (3.11) so that we give small squark
and gaugino soft masses to the electric fields,

�Lel ¼ �m2JAj �m�ðW2
�;el þ c:c:Þj

¼ �m2ðQQy þ ~Q ~QyÞ þm�ð�2
el þ c:c:Þ; (3.12)

where we take m2 and m� positive with m, m� � �el;mag,

and �el;mag are the dynamical scales of the electric and

magnetic theories, respectively.
Since the soft deformations in (3.12) are small (com-

pared to �el;mag), we can treat the underlying dynamics of

the theory as supersymmetric and work in the ‘‘probe
approximation,’’ where the subleading Oðm=�Þ and
Oðm�=�Þ corrections to the IR soft masses are neglected.10

For simplicity, we also neglect possible contributions to
scalar masses squared scaling like m2

�. These may be
important for phenomenological applications, but we will
not discuss them here.

In this approximation, we see from (3.10) and (3.11) that
the magnetic deformation corresponding to (3.12) is

�Lmag ¼ �m2 � 2Nf � 3Nc

3Nc � Nf

ðqqy þ ~q~qy � 2MMyÞ

þm� �
2Nf � 3Nc

3Nc � Nf

ð�2
mag þ c:c:Þ: (3.13)

These results agree with [7,8,10]. Our derivation shows
that the ability to map soft terms follows from the simple
mapping of the electric and magnetic R symmetry.
Note that if all the masses in the UVare positive, then, in

the IR, the magnetic squarks are tachyonic (we are in the
free magnetic phase and so 2Nf � 3Nc < 0). It turns out

that even the magnetic D terms and superpotential do not
help to stabilize the magnetic squarks; for example, there is
an instability along the direction q� 1, ~q ¼ 0, M ¼ 0.11

Our approximation does not allow one to know where the
theory settles.
However, it is interesting to note that we can stabilize the

dynamics by considering a simple deformation of SQCD.
To see this, consider weakly gauging baryon number with
some small gauge coupling, gB. Then, it is easy to prove
that there are no instabilities which take us out of the
calculable regime (as long as gB is not too small).
Indeed, one finds a vacuum with q� m

gB
I, ~q ¼ 0, M ¼ 0

and of course a similar vacuum with q interchanged with ~q.
Therefore, all we need for calculability is that gB is much
larger than m=� but sufficiently smaller than all the other
couplings in the theory. This vacuum breaks the magnetic
gauge symmetry and Higgses baryon number, too. The
remaining non-Abelian flavor symmetry is SUðNf �
NcÞ � SUðNcÞ � SUðNfÞ. (Note the color-flavor locking

phenomenon. Ideas along these lines thus present an op-
portunity for extending various recent studies such as
[35–38] into the nonsupersymmetric domain.) If, on the
other hand, the gauge coupling gB is sufficiently large
compared to the gauge and Yukawa couplings of the the-
ory, a different stable vacuum appears, where q� ~q�m
and M ¼ 0. Both of these vacua will be mentioned again
briefly in the last section, motivated by some possible
phenomenological applications.
Finally, from our discussion above it is clear that we can

consider the most general set of nonholomorphic soft terms
in the UV by adding (3.2) and decomposing it into the soft
terms associated with the conserved currents and the
anomalous current we have discussed at length.

IV. THE DEFORMED MODULI SPACE

When some of the symmetries of the short-distance
theory are broken spontaneously, there are interesting
subtleties in the flow of the U operator (2.5). In particular,

9The reader may wonder how this relates to the claim W2
�;el !�W2

�;mag made in [34] and elsewhere. The main point is that this
mapping is derived by using the holomorphic scale matching
relation, which means that W2

�;el ! �W2
�;mag is only valid mod-

ulo trivial elements of the chiral ring. By the ABJ equation, the
squares of the field strengths are themselves trivial in the chiral
ring of the undeformed theory, and so the mapping W2

�;el !�W2
�;mag carries the same information as 0 ¼ 0. (The relation

W2
�;el ! �W2

�;mag has nontrivial content if the theory is de-
formed.) On the other hand, our result in (3.11) gives the
physical normalization which can be measured, for instance,
by studying correlation functions at long distances. Note that the
exact result also has a sign flip in the free magnetic phase, so the
interpretation of one coupling growing while the other decreases
remains.
10In QCD this is what one does to follow quark masses in the
chiral Lagrangian. In the chiral Lagrangian, however, there is an
incalculable overall coefficient in the mapping. This incalculable
coefficient can be expressed in terms of the mass of the physical
pion, and the probe approximation amounts to expanding in m�

f�
j.

In our case, since we solved for the mapping exactly, no
incalculable coefficients arise.

11By the equation q� I, we mean that we choose the upper left
ðNf � NcÞ � ðNf � NcÞ block to be proportional to the unit
matrix, and the rest of the entries to be zero. The same comment
applies everywhere below.
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the holomorphic plus antiholomorphic pieces of the type
discussed in Sec. II appear.

The deformed moduli space of Nf ¼ Nc SQCD [39] is a

simple arena in which to study these ideas. Indeed, the
quantum dynamics of SQCD with Nf ¼ Nc > 2 deforms

the moduli space so that it is parametrized by baryons and
mesons subject to

detM� B ~B ¼ �2Nc: (4.1)

Hence, some of the UV symmetries are necessarily sponta-
neously broken.

Wewill see below thatU receives contributions from the
corresponding Goldstone multiplets and that requiring in-
variance of U under the resulting nonlinearly realized
symmetries both necessitates the inclusion of holomorphic
plus antiholomorphic corrections to U that are quadratic in
the Goldstone multiplets and, simultaneously, fixes their
mixing withU exactly. We will also see a vacuum in which
this ambiguity is not fixed by symmetries.

Even though the global symmetries are spontaneously
broken, it is still straightforward to follow conserved cur-
rents to the IR.12

The anomalous current, is, of course, harder to follow.
To proceed, we consider the following highly symmetric
vacuum satisfying (4.1),

M ¼ 0; B ¼ ~B ¼ �Nc : (4.2)

This vacuum breaks the symmetry according to
SUðNfÞL � SUðNfÞR � Uð1ÞB � Uð1ÞR ,! SUðNfÞL �
SUðNfÞR � Uð1ÞR. The massless fluctuations in this vac-

uum are the meson matrix �M and the Goldstone super-
field �b associated with Uð1ÞB breaking.

We are interested in finding the low energy limit of the

axial current, JA ¼ QQy þ ~Q ~Qy. Noting that all the chiral
fields have vanishing R charge, we use (2.8), and immedi-
ately find that, up to holomorphic plus antiholomorphic
pieces, U ¼ �M�My þ �b�by. Note, however, that this
operator is not invariant under the nonlinear imaginary
shift symmetry of �b. Therefore, we must replace
�b�by ! 1

2 ð�bþ �byÞ2, and we conclude that

QQy þ ~Q ~Qy ! Trð�M�MyÞ þ 1
2ð�bþ �byÞ2: (4.3)

We see that the addition of a purely holomorphic and
antiholomorphic piece quadratic in the Goldstone multiplet
is forced on us. The answer (4.3) is exact in the deep IR; in
particular, there are no further holomorphic ambiguities.13

Unlike the discussion of the previous section, just adding

a soft deformation in the UV, �L ¼ �m2ðQQy þ ~Q ~QyÞ,
is enough to end up with a stable vacuum in the IR.
Equation (4.3) shows that all the meson fluctuations are
massive, the real part of the baryon is massive as well, and
the imaginary part is the ordinary Goldstone boson for
Uð1ÞB breaking in this non-SUSY vacuum.
One can also consider adding a soft gaugino mass in the

UV. Even though there are no gauge fields in the IR, this
affects the infrared in a nontrivial way at leading order in
the gaugino mass. We can hit (4.3) from both sides with �D2.
On the left-hand side we get the usual field strength
squared operator from the ABJ equation, while on the
right-hand side most terms vanish by the free equations
of motion (neglecting irrelevant corrections from the
Kähler potential). However, when we hit ð�byÞ2, we get
� �c b

�c b. In other words, up to an order one coefficient,
1

8�2 W
2
� ! �D _�b

y �D _�by. As a result, a gaugino mass in the

UV manifests itself in the IR via a mass term for the
fermionic partner of the Goldstone boson.14

The deformed moduli space has another vacuum with an
enhanced symmetry,

M ¼ �I; B ¼ ~B ¼ 0: (4.4)

The symmetry breaking here is SUðNfÞL � SUðNfÞR �
Uð1ÞB �Uð1ÞR ,! SUðNfÞV �Uð1ÞB �Uð1ÞR. In this

vacuum, the massless fluctuations are the traceless mesons
�M in the Adjð0;0Þ representation, and the baryons �B and

� ~B in the 0ð	Nc;0Þ representation.
Repeating the mapping of the axial current, we again

find that some holomorphic terms in the mesons are nec-
essarily induced with known coefficients. However, we
now have an ambiguous chiral singlet operator of the
form �B� ~B, whose mixing with U we cannot fix. We
therefore add it with an unknown coefficient c,

QQy þ ~Q ~Qy ! 1
2 Trð�Mþ �MyÞ2 þ �B�By

þ � ~B� ~By þ cð�B� ~Bþ c:c:Þ: (4.5)

This ambiguity prevents us from making exact statements
about the nature of this vacuum when we softly deform the
theory in the UV.
The case ofNf ¼ Nc ¼ 2might be interesting for model

building, so we comment on it, too. In the most symmetric
vacuum, one finds the symmetry breaking pattern
SOð6Þ ,! SOð5Þ. The fluctuations are in two five-
dimensional representations of SOð5Þ. This symmetry pre-
cludes any linear terms in the fluctuations from appearing
in the map and so the symmetric point remains an

12There could, however, be some complications. In addition to
the one already mentioned, analogous to the complication in
following the baryon current in QCD, there are also exotic cases
when the ordinary linear multiplets are not globally well defined;
see [24] and references therein.
13The Z2 interchange symmetry acting on the UV degrees of
freedom as Q $ ~Q, with an appropriate action on the vector
superfield, rules out the appearance of the linear term �bþ �by.
The remaining linearly realized symmetries also force holomor-
phic contributions in �M to vanish.

14Note that this fermionic mass term is enhanced by a loop
factor compared to the gaugino mass. This could have some
interesting phenomenological applications, because it is usually
hard to generate large fermionic masses compared to scalars in
the same multiplet. One possible connection to phenomenology
could thus be through the problems revolving around the� term.
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extremum upon softly deforming the theory in the UV by
the bottom component of the axial current. With tools
identical to those we have used above, one also finds that
all the partners of the Goldstone bosons are stabilized and
hence the most symmetric point is a local minimum. There
is no ambiguity in quadratic holomorphic terms, and all the
masses are calculable, as in all the examples we have
studied besides (4.4).

V. KUTASOV DUALITY

In the above sections we considered theories with only
one nonconserved current in the UV—the current corre-
sponding to the anomalous symmetry. In this section, we
will analyze theories with more nonconserved currents in
the UV. A simple example is given by adjoint SQCDwith a
superpotential for the adjoint, X. In such a case there are
two independent nonconserved currents in the UV—the
one corresponding toU, which sits in the same multiplet as
the (unique) nonanomalous R symmetry, and a nonanom-
alous current which is explicitly broken by the
superpotential.

The theories we will discuss in this section were studied
in [40–42] and have the following particle content and
symmetries:

SUðNcÞ SUðNfÞ � SUðNfÞ Uð1ÞR Uð1ÞB
Q Nc Nf � 1 1� 2

kþ1
Nc

Nf
1

~Q �Nc 1� �Nf 1� 2
kþ1

Nc

Nf
�1

X N2
c � 1 1� 1 2

kþ1 0

(5.1)

The superpotential for the adjoint has the form W ¼
s0TrðXkþ1Þ and breaks the symmetry associated with the
nonanomalous current

JX ¼ Nc

Nf

ðQQy þ ~Q ~QyÞ � XXy; (5.2)

where �D2JX � s0TrðXkþ1Þ. The other nonconserved cur-
rent is just the anomalous (and, for k > 2, broken by the
superpotential) current U associated with the R multiplet,

UUV¼
�
�1

2
þ 3

kþ1

Nc

Nf

�
ðQQyþ ~Q ~QyÞþ

�
1� 3

kþ1

�
XXy: (5.3)

In what follows, we will focus mostly on the free magnetic phase ( Nc

k < Nf <
2Nc

2k�1 ), where the dual description is a

weakly coupled theory with the following massless fields:

SUðkNf � NcÞ SUðNfÞ � SUðNfÞ Uð1ÞR Uð1ÞB
q kNf �Nc

�Nf � 1 1� 2
kþ1

kNf�Nc

Nf

Nc

kNf�Nc

~q kNf �Nc 1�Nf 1� 2
kþ1

kNf�Nc

Nf
� Nc

kNf�Nc

Y ðkNf �NcÞ2 � 1 1� 1 2
kþ1 0

Mj 1 Nf � �Nf 2� 4
kþ1

Nc

Nf
þ 2

kþ1 ðj� 1Þ 0

(5.4)

and the following superpotential:

Wmag ¼ � s0
kþ 1

TrYkþ1 þ s0
�2

Xk

j¼1

Mj~qY
k�jq: (5.5)

Let us now consider the mapping of the currents of the
theory to the IR. The mapping of the conserved currents
proceeds trivially as before. The mapping of theU operator
follows from our general discussion above with the non-
trivial result that

UIR ¼
�
� 1

2
þ 3

kþ 1

kNf � Nc

Nf

�
ðqqy þ ~q~qyÞ

þ
�
1� 3

kþ 1

�
YYy

þX
j

�
�2þ 6

kþ 1

Nc

Nf

� 3ðj� 1Þ
kþ 1

�
MjM

y
j : (5.6)

While we are able to use our methods to map all the
conserved currents and the nonconserved operator (5.3),
there is one current whose mapping we cannot fix—
namely, that of JX. Being able to follow such an operator
would amount, via �D2JX � s0TrðXkþ1Þ, to following
s0TrðXkþ1Þ, but since the latter vanishes in the chiral ring
this is not straightforward (any formula obtained from
chiral ring relations cannot be trusted since it contains
the same information as 0 ¼ 0).15

VI. CONFORMALTHEORIES

In Sec. II we described the flow of U when the IR is
given by some general SCFT, but so far we have focused
mostly on theories with a free IR description. In this

15By matching chiral primaries, we can, however, show that the
charge of Y under JX is the same as that of X.
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section we will briefly consider theories with an interacting
IR fixed point.

Let us start from SQCD in the conformal window
3Nc=2 � Nf < 3Nc. Now, the nonanomalous R symmetry

of the ultraviolet (3.1) becomes the superconformal one in

the IR, and so in the deep IR QQy þ ~Q ~Qy flows to zero.
But we would like to say a little more. At the onset of the
conformal window Nf ¼ 3Nc=2, the free fixed point in the

IR is approached logarithmically, due to a marginally

irrelevant operator. This means that QQy þ ~Q ~Qy flows
to zero in the deep IR logarithmically, too. [Indeed, the
right-hand side of (3.10) vanishes upon substituting Nf ¼
3Nc=2.] However, in the bulk of the conformal window, the
fixed points are approached by strictly irrelevant opera-

tors,16 and so QQy þ ~Q ~Qy flows to some operator of
dimension >2 in the IR SCFT, divided by an appropriate
power of the strong scale, �.

Let us see what this implies for soft deformations of the
theory. Suppose we softly deform the theory in the ultra-

violet by �L ¼ �m2ðQQy þ ~Q ~QyÞ. Then, in the bulk of
the conformal window, all the effects of this deformation in
the infrared (say, at energy scales of orderm) are suppressed
by powers of �, which can be thought of as an ultraviolet
cutoff at low energies. Therefore, unlike the examples we
have studied in the free magnetic phase, here the effects of a
deformation at the scalem in theUVmay become important
only at much lower energy scales. For instance, this scale
would be m2=� if the first term appearing in U is a real
operator in the SCFT of dimension 3 divided by �. This
scenario can be thought of as a very close relative of the
phenomenon that non-BPS operators obtain positive
anomalous dimensions in SCFTs, which then lead to sup-
pressed effects of non-SUSY deformations.17

A more interesting example to consider is adjoint SQCD
without a superpotential. Some of the fields in the IR
decouple and allow us to write an explicit expression for
their contribution to UIR. The matter content and represen-
tations of this theory are

SUðNcÞ SUðNfÞ � SUðNfÞ Uð1ÞR Uð1Þ0 Uð1ÞB
Q Nc Nf � 1 1� 2Nc

3Nf
1 1

~Q �Nc 1� �Nf 1� 2Nc

3Nf
1 �1

X N2
c � 1 1� 1 2=3 �1 0

(6.1)

Associated with the R symmetry in (6.1), one finds the

axial anomaly operator in the UV, UUV ¼ ð� 1
2 þ Nc

Nf
Þ�

ðQQy þ ~Q ~QyÞ. We would like to find the IR end point of
the flow for this operator.
The procedure summarized in (2.6) and (2.7) instructs us

to identify the superconformal R symmetry in the IR, and,

once this is done, the end point of the flow of ð� 1
2 þ Nc

Nf
Þ�

ðQQy þ ~Q ~QyÞ is determined: up to an overall factor of
3=2, it is simply the global symmetry current operator that
makes up for the difference between the R symmetry in
(6.1) and the superconformal one (which can be deter-
mined from a-maximization in this case).
As has been discussed in great detail in [45,46], for small

enough values ofNf=Nc there are also free fields in the low

energy SCFT. For instance (at large Nc), if Nf=Nc < ð3þffiffiffi
7

p Þ�1, then M0 ¼ Q ~Q becomes free. Upon lowering

Nf=Nc further, more and more mesons of the form Mi ¼
QXi ~Q become free. Their superconformal R charge is
therefore corrected to be 2=3, and we can immediately use
(2.6) to determine how they appear in the low energy

expression of the operator ð� 1
2 þ Nc

Nf
ÞðQQy þ ~Q ~QyÞ,

�
� 1

2
þ Nc

Nf

�
ðQQy þ ~Q ~QyÞ

! XPðNf=NcÞ

j¼0

�
1� 3RðMjÞ

2

�
MjM

y
j þ � � �

¼ � XPðNf=NcÞ

i¼0

�
jþ 2� 2

Nc

Nf

�
MjM

y
j þ � � � : (6.2)

Here the ‘‘. . .’’ stand for an operator [which is also a global
current according to (2.6)] in the interacting SCFT module.
We have only displayed the contributions from the free
fields, because these are the ones that can be represented
explicitly in terms of some well-defined degrees of free-
dom. Also, PðNf=NcÞ is defined to be the number of free

fields for the given value of Nf=Nc. This function can be

deduced from a-maximization.
Note that (6.2) implies that if we softly deform the UV

theory by adding a mass squared for the electric scalars of

the form �L ¼ �m2
UVðQQy þ ~Q ~QyÞ, the free fields in the

infrared acquire a leading-order mass squared of the form

m2
j ¼ ð Nf

Nc�Nf=2
Þð2Nc=Nf � 2� jÞm2

UV. For instance, when

M0 becomes free, Nf=Nc � ð3þ ffiffiffi
7

p Þ�1, such a soft de-

formation in the UV would stabilize it at the origin.

VII. DISCUSSION AND OPEN QUESTIONS

In this paper, we have described a simple way to follow
anomalous currents along the RG flow. In the context of
Seiberg duality, this extends the map of operators to
anomalous (nonchiral) current multiplets. We have also
seen that there are some simple results for theories whose

16One can argue that this is true as follows. The conventional
wisdom about the conformal window of SQCD is that, in the
bulk of it, there are no accidental symmetries in the infrared.
However, marginally irrelevant operators must violate some of
the symmetries of the SCFT [27,43]. But since the RG flow
preserves all the symmetries, we conclude that the conformal
point is not approached via marginally irrelevant operators.
17Such a setup may even lead to accidental SUSY and may be
of phenomenological interest. See the nice recent discussion in
[44] and references therein.
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low energy description is given in terms of an interacting
SCFT. Beyond the general interest in understanding the
maps of different operators under complicated RG flows,
our study could be of phenomenological relevance in
supersymmetric models of compositeness, and most obvi-
ously in models of composite electroweak symmetry
breaking.

SUðNcÞ SUð2ÞL Uð1ÞY
H Nc 2 1

2
~H �Nc 2 � 1

2

�i¼1...Nc�1 Nc 1 1
2

~�i¼1...Nc�1
�Nc 1 � 1

2

(7.1)

It is worth presenting a simple example that illustrates
how these results might be applied. Consider the model for
a composite Higgs sector shown in Eq. (7.1), which con-
sists of an SQCD theory with Nf ¼ Nc þ 1 and Nc � 3,

and Uð1ÞB being identified with hypercharge.
The confined phase of this theory has Nf ¼ Nc þ 1

baryon/antibaryon pairs, B, ~B 
 ðh; ~h;	i¼1...Nc�1;
~	i¼1...Nc�1Þ, and also mesons M of zero hypercharge,

which can be identified as follows:

M 


8>>>>>><
>>>>>>:

hi¼1...Nc�1 ¼ ðH ~�iÞ
~hi¼1...Nc�1 ¼ ð ~H�iÞ
T þ � ¼ ðH ~HÞ
�ij ¼ ð�~�Þ

(7.2)

One also adds the usual tree-level superpotential

WðconfÞ ¼ ~BMB��3�Nf detM; (7.3)

where we suppress flavor indices.
The nice feature of this model is that the hypercharge is

identified with Uð1ÞB, which is therefore gauged. As we
mentioned in Sec. III, when gY is of order unity and
sufficiently large with respect to the Yukawa coupling,
one obtains a minimum in which the baryons and anti-
baryons get vacuum expectation values (VEVs) of orderm,
but the mesons’ VEVs are zero. This can naturally break
SUð2ÞL �Uð1ÞY ,! Uð1ÞQED. Note that the SUð2ÞL triplet

does not obtain a VEV. This is phenomenologically
desirable.

An obvious technical issue that needs to be taken care of
is vacuum alignment, namely, forcing the theory to break
the global symmetries in the required fashion, and avoiding
other points on the Goldstone manifold. For this it is
promising to consider explicit breaking of flavor in the
SUSY-breaking operators. Then only the baryon/

antibaryon pair with the most negative mass squared in
the IR gets a VEV, while the remaining modes are all
massive. In particular, all the erstwhile Goldstone modes
associated with the broken global flavor symmetries are
stabilized (except for the R axion, which can be lifted by
other means).
This kind of setup seems very advantageous. The scale

of electroweak symmetry breaking is naturally of order the
SUSY-breaking parameters. The stable EWSB minimum
appears automatically, perhaps without some of the com-
plications conventional minimal supersymmetric standard
model electroweak symmetry breaking entails.
Note that there are many alternative possibilities:

for example, by taking the minima with B � 0 and ~B ¼
M ¼ 0 that appear when gB is smaller than the Yukawa
coupling (up to some numerical constant), and embedding

both h and ~h in the baryons B (and of course dropping the
Y 
 B identification), one can easily construct models
without triplets. Development of these and similar ideas
will be the subject of future work [47].
Our results may also have applications in the context of

gauge mediation and more general supersymmetric techni-
color model building as well. (See [48], and for some more
modern work on the subject see [49–51] and references
therein.) These mappings of operators could also be rele-
vant in attempts to interpret the minimal supersymmetric
standard model as the magnetic, low energy, theory of
some completely different degrees of freedom. (This idea
is due to [30], and a relation to coupling constant unifica-
tion was pointed out recently in [52].) Perhaps, some of the
applications for particle physics would require one to
understand the map beyond the ‘‘probe approximation.’’
Moving beyond this approximation would also be an in-
teresting theoretical question to investigate.
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