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We consider a real massless scalar field in 1þ 1 dimensions satisfying time-dependent Robin boundary

condition at a static mirror. This condition can simulate moving reflecting mirrors whose motions are

determined by the time dependence of the Robin parameter. We show that particles can be created from

vacuum, characterizing in this way a dynamical Casimir effect.
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I. INTRODUCTION

The phenomenon of particle creation from quantum
vacuum by moving boundaries or due to time-dependent
properties of materials, commonly referred to as the dy-
namical Casimir effect (DCE) [1,2], has been investigated
since the pioneering works of Moore [3] and DeWitt [4]
(see also the subsequent works carried out in Refs. [5]) in a
wide variety of situations and with the aid of quite different
approaches (see Refs. [6] for excellent reviews on the
subject). Particularly, perturbative and numerical ap-
proaches were applied for single mirrors [7–10] and cav-
ities [11]. Initial field states different from vacuum were
also considered for single mirrors [12,13] and cavities as
well [14]. The first experimental observation of this phe-
nomenon was recently announced in Ref. [15].

Taking into account the difficulties in generating appre-
ciable mechanical oscillation frequencies (of the order of
GHz) to obtain a detectable number of photons, recent
experimental schemes focus on simulating moving
boundaries by considering material bodies with time-
dependent electromagnetic properties. These possibilities
were first proposed by Yablonovitch [1] and have been
further developed in theoretical works that considered
materials with time-dependent permittivities and time-
dependent surface conductivities [16–18] (see the nice
compilation done in Ref. [17]). For instance, in Ref. [18]
the DCE for a massless scalar field within a cavity con-
taining a thin semiconducting film with time-dependent
conductivity and centered at the middle of the cavity was
studied. The coupling of such a film to the quantum scalar
field was modeled by a delta potential with time-dependent
strength. A generalization to the case of an electromagnetic
field was carried out in [17]. Very promising and ingenious
experimental setups to simulate nonstationary boundaries
include the changing of the reflectivity of a semiconductor
by the incidence of a periodic sequence of short laser

pulses [19,20] or by using a coplanar waveguide termi-
nated by a superconducting quantum interference device
(SQUID). Applying a variable magnetic flux on the
SQUID, a single moving mirror can be simulated
[23,24]. A first step toward the experimental verification
of the DCE was recently made in [25] using this approach.
Moreover, the same group recently claimed to have ob-
served the DCE [15]. Considering moving mirrors it is
expected that the created photons can be indirectly de-
tected through the phenomenon of superradiance [26,27].
Key ingredients in the predictions of the DCE are the

boundary conditions (BCs) under consideration and natu-
rally the quantum field submitted to those BCs. Quite
general BCs are the so-called Robin ones which, for the
case of a scalar field in 1þ 1 dimensions and a single
mirror fixed at x ¼ a, are defined by �ðt; x ¼ aÞ ¼
�½@x�ðt; xÞ�x¼a, where � is a real parameter (called here-
after as Robin parameter). For the case of a moving bound-
ary, the previous relation is imposed in the comoving frame
and the corresponding BC in the laboratory frame is ob-
tained after an appropriate Lorentz transformation.
This BC has the nice feature of interpolating continu-

ously Dirichlet (� ! 0) and Neumann (� ! 1) ones and
occurs in several areas of physics and mathematics. For
instance, in classical mechanics they will appear if one
considers a vibrating string coupled to a spring that sat-
isfies Hooke’s law and is localized at one of its edges
[9,10,28]. In nonrelativistic quantum mechanics, Robin
BCs occur as the most general BCs imposed by a wall
ensuring the Hermiticity of the Hamiltonian as well as a
null probability flux through it [29]. Regarding the static
Casimir effect [30], it was shown that the Casimir force
between two parallel plates that impose Robin BCs on a
real scalar field may have its sign changed if appropriate
choices are made for the corresponding Robin parameters
of each mirror [31]. Such kind of repulsive Casimir force
was also predicted, in the case of parallel plates, by Boyer
in the 1970s, who considered a pair of perfectly conducting
and infinitely permeable plates [32]. Further investigations
on the influence of Robin BCs in the static Casimir effect,
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including thermal corrections and the case of Casimir
piston setups, were carried, for instance, in Refs. [33].
See also Refs. [34] for the influence of this BC on the
structure of quantum vacuum.

Only recently Robin BCs were considered in the context
of the DCE. For a massless scalar field in 1þ 1 dimensions
submitted to a Robin BC at a single moving mirror the
radiation reaction force on the moving mirror and the
particle creation rate were computed in Refs. [9,10].
Interestingly, for Robin BCs, the radiation reaction force
acquires a dispersive component, in sharp contrast with
Dirichlet and Neumann cases where the force is purely
dissipative. It was also shown that, for a given Robin
parameter, there exists a mechanical frequency of motion
that dramatically reduces the particle creation effect [10].
Finally, and of crucial importance for the present work,
RobinBCs can also be useful to describe phenomenological
models for penetrable surfaces and under certain conditions
they simulate the plasmamodel for realmetals [35]. In these
situations, for frequencies!much smaller than the plasma
frequency !P, the Robin parameter � can be identified as
the plasma wavelength �P (see the Appendix). In other
words, the Robin parameter � gives us an estimate of the
penetration length of the mirror under consideration [36].

Since to simulate a motion of a reflecting mirror is
equivalent to simulate a real metal with time-dependent
plasma wavelength, the above interpretation of � leads
naturally to the consideration of time-dependent Robin
parameters. Specifically speaking, it is quite natural to
simulate the motion of a reflecting mirror by considering
the quantum field submitted to a Robin BC at a static
mirror but with a time-dependent Robin parameter �ðtÞ.
The kind of boundary motion that is being simulated is
determined by the kind of time dependence of �ðtÞ. The
purpose of this paper is precisely to analyze this situation
for a massless scalar field in 1þ 1 dimensions.
Particularly, we shall compute explicitly the particle crea-
tion rate for a natural choice of time dependence for �ðtÞ
that is directly related to recent experimental proposals.
This paper in organized as follows: In Sec. II the
Bogoliubov transformation between the in and out crea-
tion/annihilation operators are obtained, allowing us to find
the spectral distribution of the created particles and the
particle creation rate in Secs. III and IV, respectively.
Finally, in Sec. V we present our conclusions and final
remarks. Throughout this work we consider ℏ ¼ c ¼ 1.

II. THE BOGOLIUBOV TRANSFORMATION

We start considering a realmassless scalar field� in 1þ1
dimensions that satisfies theKlein-Gordon equation, @2� ¼
0, and is submitted to a time-dependentRobinBCat amirror
fixed at the origin, namely, �ðtÞ@�=@xjx¼0 ��ð0; tÞ ¼ 0.
For simplicity, we assume that �ðtÞ departs only slightly
from a positive constant �0, so that we can write �ðtÞ ¼
�0 þ ��ðtÞ, where ��ðtÞ is a smooth time-dependent

function satisfying the condition maxj��ðtÞj � �0, for
every t. Under these assumptions in the limit �0 ! 1 we
recover the Neumann BC. On the other hand, to reobtain the
Dirichlet BC (�0 ! 0), because of conditionmaxj��ðtÞj �
�0, we must also take ��ðtÞ ! 0. If we consider only
��ðtÞ ¼ 0 we reobtain the usual time-independent Robin
BCs. Moreover, we shall also impose that ��ðtÞ ! 0 for
t ! �1. The BC satisfied by ��ðtÞ then reads

�0

�
@�ðx;tÞ

@x

�
x¼0

��ð0;tÞþ��ðtÞ
�
@�ðx;tÞ

@x

�
x¼0

¼0: (1)

Also for the field, a perturbative approach will be adopted.
Following Ford and Vilenkin [37] we write

�ðx; tÞ ¼ �0ðx; tÞ þ ��ðx; tÞ; (2)

where, by assumption, �0 satisfies the Klein-Gordon equa-
tion, @2�0 ¼ 0, and the time-independent Robin BCs,

�0

�
@�0ðx; tÞ

@x

�
x¼0

��0ð0; tÞ ¼ 0: (3)

The small perturbation �� takes into account the contribu-
tion to the total field� caused by the time dependence of the
Robin parameter, described by the function ��ðtÞ. Since
both � and �0 satisfy the Klein-Gordon equation, so does
��, namely,@2�� ¼ 0. TheBC satisfied by�� is obtained,
up to first order terms, by substituting (2) into Eq. (1), which
leads to

�0

�
@��ðx;tÞ

@x

�
x¼0
���ð0;tÞ¼���ðtÞ

�
@�0ðx;tÞ

@x

�
x¼0

; (4)

where Eq. (3) was used. Hereafter it will be convenient to
work in the Fourier domain, such that

�ðx;!Þ¼
Z
dt�ðx;tÞei!t; �0ðx;!Þ¼

Z
dt�0ðx;tÞei!t;

��ðx;!Þ¼
Z
dt��ðx;tÞei!t; ��ð!Þ¼

Z
dt��ðtÞei!t:

(5)

It is worth emphasizing at this moment that, by assumption,
�� is a prescribed function of t, so that ��ð!Þ is known,
in principle. Since �0ðx; tÞ is the solution with time-
independent Robin BCs, this field is already known,
and as is its Fourier transform, which is given by (for the
region x > 0),

�0ðx;!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�

j!jð1þ �2
0!

2Þ

s
½sinð!xÞ þ �0! cosð!xÞ�

� ½�ð!Það!Þ ��ð�!Þayð�!Þ�; (6)

where �ð!Þ is the Heaviside step function. The operators
að!Þ and ayð!Þ satisfy the usual bosonic commutation
relation ½að!Þ; ayð!0Þ� ¼ 2��ð!�!0Þ.
In order to obtain �ðx:!Þ ¼ �0ðx;!Þ þ ��ðx;!Þ we

need to compute ��ðx;!Þ, which satisfies the Helmholtz
equation,

HECTOR O. SILVA AND C. FARINA PHYSICAL REVIEW D 84, 045003 (2011)

045003-2



ð@2x þ!2Þ��ðx;!Þ ¼ 0; (7)

and is submitted to the BC below, obtained by Fourier
transforming Eq. (4),

�0

�
@��ðx;!Þ

@x

�
x¼0

� ��ð0; !Þ

¼ �
Z d!0

2�

�
@�0ðx;!0Þ

@x

�
x¼0

��ð!�!0Þ: (8)

A further condition that must be imposed to the solution of
Eq. (7) for x > 0 is that it will lead to a solution for �ðx; tÞ
that must travel to the right, since ��ðx; tÞ must describe a
contribution coming from the mirror, and not going to-
wards the mirror. The desired solution can be written in
terms of Green functions. Following the procedure given in
[10] it can be shown that the in and out fields, denoted,
respectively, as �in and �out, are related to each other
according to

�outðx;!Þ¼�inðx;!Þþ 1

�0

½Gret
R ð0;x;!Þ�Gadv

R ð0;x;!Þ�

�
�
�0

�
@��ðx;!Þ

@x

�
x¼0

���ð0;!Þ
�
; (9)

whereGret
R ð0; x; !Þ (Gadv

R ð0;x;!Þ) is the retarded (advanced)
Robin Green function, satisfying the time-independent
Robin BC at x ¼ 0. These Green functions are given, re-
spectively, by

Gret
R ð0; x; !Þ ¼

�
�0

1� i�0!

�
ei!x; (10)

and

Gadv
R ð0; x; !Þ ¼

�
�0

1þ i�0!

�
e�i!x: (11)

Inserting Eqs. (6) (appropriately relabeled as�out and�in),
(8), (10), and (11), into Eq. (9), we can readily obtain the
Bogoliubov transformation between aout and ain and its
Hermitian conjugates:

aoutð!Þ ¼ ainð!Þ � 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!

1þ �2
0!

2

s

�
Z þ1

�1
d!0

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!0

1þ �2
0!

02

s
½�ð!0Þainð!0Þ

��ð�!0Þayinð�!0Þ���ð!�!0Þ: (12)

Noting that the annihilation operator aoutð!Þ is given in
terms of the annihilation and creation operators ainð!Þ and
ayinð!Þ, respectively, we conclude that the state j0ini is not
annihilated by the aoutð!Þ operators. Consequently, we can
state that particles were created from an initial vacuum state
due only to the time dependence of ��ðtÞ in the BC (1)
imposed on the field by the static mirror. In fact, for
��ðtÞ¼0 for all times, which corresponds to a static mirror
imposing the standard time-independent Robin BC on the
field, we have aoutð!Þ ¼ ainð!Þ and no particles will be

created, as expected. The particle creation effect will be
further investigated in the next sections, where we will
choose a specific time-dependent expression for �ðtÞ in
order to compute explicitly the corresponding spectral dis-
tribution of the created particles as well as the respective
particle creation rate.

III. SPECTRAL DISTRIBUTION OF THE
CREATED PARTICLES

We start by writing the spectral distribution of the cre-
ated particles as

dNð!Þ
d!

d! ¼ 1

2�
h0injayoutð!Þaoutð!Þj0inid!; (13)

where dNð!Þ=d! is the number of created particles with
frequency between ! and !þ d! (! � 0) per unit fre-
quency. From the previous definition for dNð!Þ=d!, it
follows immediately that the total number of created par-
ticles from t ¼ �1 to t ¼ þ1 is given by

N ¼
Z 1

0

dNð!Þ
d!

d!: (14)

From Eq. (12) and its Hermitian conjugate ayout, it is
straightforward to show that

dNð!Þ
d!

¼ 2

�

�
!

1þ�2
0!

2

�

�
Z 1

�1
d!0

2�

!0

1þ�2
0!

02 j��ð!�!0Þj2�ð!0Þ: (15)

In what follows we will obtain the spectral distribution for
a particular case of ��ð!Þ. With this purpose in mind, let
us consider the following expression for ��ðtÞ,

��ðtÞ ¼ �0 cosð!0tÞe�jtj=T; (16)

with !0T � 1. This choice of ��ðtÞ may simulate, for
instance, the changing magnetic flux through a SQUID
fixed at the extreme of a unidimensional transmission
line, as in Ref. [23], where a Robin-like BC arises naturally
from quantum network theory applied to the system under
consideration.
The expression of ��ð!Þ, obtained by Fourier trans-

forming Eq. (16), contains, in the limit of !0T � 1, two
sharped peaks around ! ¼ �!0, which can be approxi-
mated by Dirac delta functions, leading to the result

j��ð!Þj2 � �

2
�20T½�ð!�!0Þ þ �ð!þ!0Þ�: (17)

Substituting the above result into Eq. (15), we finally
obtain the desired spectral distribution,

dNð!Þ
d!

¼
�
�20T

2�

�
!ð!0�!Þ

ð1þ�2
0!

2Þ½1þ�2
0ð!0�!Þ2��ð!0�!Þ;

(18)

for this particular situation.
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A few comments are in order. First, observe [see Fig. 1
and Eq. (18)] that dNð!Þ=d! vanishes for !>!0, which
means that no particles are created with frequencies larger
than !0—the characteristic frequency of the time-
dependent BC. We also notice that the spectrum is left
invariant under the replacement ! ! !0 �!. This is a
signature of the fact that particles are created in pairs: for
each particle created with frequency ! there is a twin
particle created with frequency !0 �!. Second, note
that for �0 ! 0, where a Robin BC with a time-
independent parameter �0 is reobtained, the spectrum of
created particles vanishes, as expected (recall that the
mirror that imposes the BC on the field is at rest).
Further, for a fixed (finite) value of !0, the limit �0 ! 1
(Neumann BC imposed on the field at a static mirror) also
leads to a vanishing spectrum of created particles. Finally,
since we assumed �0 � �0, the limit �0 ! 0 (Dirichlet BC
imposed on the field by a static mirror) necessarily leads to
a vanishing spectrum as well.

IV. PARTICLE CREATION RATE

The total number of created particles is obtained by
substituting Eq. (18) in (14), namely,

N ¼
�
�20T

2�

�Z 1

0

!ð!0 �!Þ�ð!0 �!Þ
ð1þ �2

0!
2Þ½1þ �2

0ð!0 �!Þ2�d!

¼
�
�20!

3
0T

2�

�
Fð�Þ; (19)

where � ¼ �0!0 and the function Fð�Þ is given by

Fð�Þ ¼ ð2þ �2Þ lnð1þ �2Þ � 2� arctanð�Þ
�4ð4þ �2Þ : (20)

As N is proportional to T—as expected for an open
cavity—the physical meaningful quantity is the particle
creation rate defined as R ¼ N=T, that is

R ¼
�
�20!

3
0

2�

�
Fð�Þ: (21)

In the limits �0!0 � 1 and �0!0 � 1, the particle crea-
tion rate is approximately given by

R �
�
�20!

3
0

12�

�
for �0!0 � 1; (22)

R �
�
�20!

3
0

2�

�
2 lnð�Þ
�4

for �0!0 � 1: (23)

For the sake of comparison with Eq. (21), we recall the
total particle creation rates for moving mirrors with
Dirichlet [8] (or equivalently for Neumann BCs as proved
in [13])

RD=N ¼ �q20!
3
0

12�
; (24)

and for time-independent Robin BCs [10]

Rti-R ¼
�
�q20!

3
0

2�

�
Gð�0!0Þ; (25)

where

Gð�Þ¼�½4�þ�3þ12arctanð�Þ��6ð2þ�2Þ lnð1þ�2Þ
6�2ð4þ�2Þ :

(26)

The formulas above were obtained assuming a nonrelativ-
istically small amplitude oscillatory law of motion for the
mirror. For both cases �q0 is the amplitude and !0 is
the frequency of oscillation. We remark that for �0!0�1
the particle creation rate in our model is exactly the
same as that for a moving mirror [8] with Dirichlet BCs
where �0 plays the role of the amplitude of oscillation of the
motion. This reinforces the possibility of simulatingmoving
boundaries through a static mirror with time-dependent
Robin BC. The three particle creation rates are compared
in Fig. 2.
It is worth noting that the particle creation rate shown in

Fig. 3 starts growing with !0 until it achieves a maximum
value for a given value of !0 and then it approaches
monotonically to zero as !0 goes to infinity. This behavior
should be compared with that obtained for a moving mirror
that imposes on the field a Robin BC with a time-
independent parameter, where the particle creation rate
after passing through one maximum and one minimum
grows indefinitely as !0 goes to infinity (see Ref. [10]).
Naively, we could expect similar behaviors for these two

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

S
pe

ct
ra

l D
is

tr
ib

ut
io

n

ω / ω0

γ0=1
γ0=5

γ0=10

FIG. 1 (color online). The spectral distribution of the created
particles ½ð2�Þ=ð�20TÞ�dN=d! as a function of !=!0 for several

values of �0. Notice the reflection symmetry around !=!0 ¼
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problems, after all, a time-dependent Robin parameter
should simulate, in principle, a moving mirror so that a
high frequency oscillating �ðtÞ should mean a high
frequency oscillating mirror. However, the interpretation
of the Robin parameter � as an estimate of the penetration
depth of the material boundary is rigorously proved only
for static mirrors. Even in this case, this identification is
valid only for the field modes whose frequencies are much
smaller than the plasma frequency (but this condition is
easily achieved since the plasma frequency is much higher
than the mechanical frequencies we want to simulate). It is
plausible that such an interpretation remains valid for

slowly time-varying �ðtÞ, but not for high-frequency oscil-
lating �ðtÞ. In fact, our results show that this interpretation
for �ðtÞ fails for high values of !0.

V. CONCLUSIONS AND FINAL REMARKS

Exploring the peculiar properties of Robin BCs, particu-
larly, the interpretation of the Robin parameter, we pre-
sented a simple and yet instructive theoretical model where
a single static mirror with time-dependent properties de-
scribed by a time-dependent Robin parameter simulates a
moving boundary. We used this model to study analytically
the dynamical Casimir effect of a system that may be of
some value for further understanding of an ongoing ex-
periment based on a one-dimensional transmission line
terminated by a SQUID. In this setup a time-dependent
magnetic flux through the SQUID gives rise to a particle
creation phenomenon. Employing a perturbative approach,
we showed that particles can be created due to the time
dependence of the Robin parameter �. We obtained ex-
plicitly the spectrum of the created particles as well as the
total particle creation rate for a particular choice of �ðtÞ
that has a practical interest concerning the experiment just
described. Our model can also be used as a theoretical
model to investigate other experimental setups suggested
for measuring the dynamical Casimir effect, as, for ex-
ample, the promising experimental proposal of the Padua
group [19]. All we have to do is to choose appropriately the
time dependence of �ðtÞ to simulate correctly the physical
situation under consideration.
We emphasize that the particle creation phenomena due

to a time-dependent Robin BC imposed on the field at a
static mirror has similarities and differences with the case
where a time-independent Robin BC is imposed on the
field at a moving mirror, as discussed by Mintz et al. [10].
The main difference being the respective behaviors of the
total particle creation rate for high values of !0 [in the
former case, where !0 means the mechanical frequency of
the moving mirror, this rate grows indefinitely as!0 ! 1,
while in the latter case, where !0 gives a measure of how
quick the time-dependent Robin parameter �ðtÞ varies, this
rate goes to zero, as !0 ! 1]. In the appropriate limits of
the usual time-independent Dirichlet (�0 ! 0), Neumann
(�0 ! 0) and Robin (��ðtÞ ¼ 0) BCs no particles are
created, as expected.
The generalization of the present work for 3þ 1

dimensions and cavities are also expected to have induced
photon creation. The latter case is particularly relevant
since it is known that the particle creation can be
parametrically amplified in this situation. Considering a
1þ 1-dimensional cavity with time-dependent Robin
BCs at x ¼ 0 and Dirichlet BCs at x ¼ L we can expect
that the particle production can be intensified for an ade-
quate choice on how �ðtÞ varies. We can also conjecture
that it is possible to generate squeezed states of light in
such configuration. For cavities with moving mirrors,
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considering Dirichlet BCs, this was first predicted in [38].
These problems are under investigation and will be dis-
cussed elsewhere.
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APPENDIX: CONNECTION BETWEEN
THE ROBIN PARAMETER AND THE

PLASMAWAVELENGTH

For the sake of completeness, here we briefly review
how the interpretation of the Robin parameter � as the
plasma wavelength arises in 1þ 1 dimensions. Let us
consider a monochromatic wave, with frequency ! and
wave number k, propagating in negative direction of the x -
axis towards a mirror imposing Robin BC at x ¼ 0. For
x > 0, the superposition of the incident and reflected waves
reads

�ðt; xÞ ¼ Ae�iðkxþ!tÞ þ Beiðkx�!tÞ: (A1)

Using the time-independent Robin BC, we can find the
following reflection coefficient rR ¼ B=A for this BC:

rR ¼ � 1þ i�!

1� i�!
¼ ei�ð!Þ; (A2)

where �ð!Þ ¼ 2 arctanð�!Þ is a phase shift between the
reflected and the incident waves. Notice that for frequen-
cies such that ! � 1=� we obtain

rR � �e2i�! þOð�2!2Þ: (A3)

Now let us consider the plasma model for a real metal.
The reflection coefficient rP in this case is given by

rP ¼ n� 1

nþ 1
¼

ffiffiffiffiffiffiffiffiffiffi
�ð!Þp � 1ffiffiffiffiffiffiffiffiffiffi
�ð!Þp þ 1

; (A4)

where �ð!Þ ¼ 1� ð!P=!Þ2 is the plasma permittivity and
!P denotes the plasma frequency. Consequently, for an
incident wave with frequency !<!P we have

rP ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!P=!Þ2 � 1

p � 1

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!P=!Þ2 � 1

p þ 1
; (A5)

which for ! � !P results in

rP � �e2i!=!P þOð!2=!2
PÞ: (A6)

Comparing Eqs. (A3) and (A6), we conclude that for
frequencies ! � !P, the Robin parameter � is equivalent
to the plasma wavelength �P ¼ 1=!P. Therefore, in this
situation, a real metal described by the plasma model can
effectively be emulated using Robin BCs.
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