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The Aharonov-Bohm effect including spin-noncommutative effects is considered. At linear order in �,

the magnetic field is gauge invariant although spatially strongly anisotropic. Despite this anisotropy, the

Schrödinger-Pauli equation is separable through successive unitary transformations and the exact solution

is found. The scattering amplitude is calculated and compared with the usual case. In the noncommutative

Aharonov-Bohm case the differential cross section is independent of �.
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I. INTRODUCTION

The discovery of noncommutative geometry has allowed
the exploration of new directions in theoretical physics [1].
For example, the noncommutative constructions of quan-
tum field theory [2], extensions beyond the relativistic
symmetry [3], and implications on condensed matter phys-
ics have been widely discussed [4]. This research has also
stimulated the construction of new models in quantum
mechanics [5], which have a very natural transcription
and—at the same time—has opened new windows and
roads to explore (for example superconductivity [6]).

In this context the algebra [7] (we set ℏ ¼ 1)

½x̂i; x̂j� ¼ i�2�ijkŝk; ½x̂i; p̂j� ¼ i�ij; ½p̂i; p̂j� ¼ 0;

½x̂i; ŝj� ¼ i��ijkŝk; ½ŝi; ŝj� ¼ i�ijkŝk; (1)

where i, j, k ¼ 1; 2; 3 and � is a parameter with dimension
of length, corresponds just to a deformation of the
Heisenberg � spin algebra, which naturally induces spin-
dipolar and higher order interactions as a result of long-
range spin interactions. The algebra (1) is a nonrelativistic
version of the Snyder algebra [8], which is rich enough to
explore interesting consequences or simplifications in real
physical systems.

Remarkably, the operators ðx̂i; p̂iÞ in (1) can be realized
in terms of the conventional dynamical variables satisfying
the Heisenberg algebra of the usual coordinate and mo-
mentum operators ðxi; piÞ through the relations

x̂ i ¼ xi þ �si; p̂i ¼ pi :¼ �{@i; ŝi ¼ si; (2)

with

½xi; xj� ¼ 0 ¼ ½pi; pj�; ½xi; pj� ¼ i�ij; (3)

where the matrices si, which commute with ðxi; piÞ, pro-
vide a (2sþ 1)-dimensional irreducible representation
(with s integer or half-integer) of the suð2Þ Lie algebra,

½si; sj� ¼ i�ijksk:

Therefore, with the realization in (2), the Schrödinger
equation associated with the Hamiltonian Hðp̂; x̂Þ can be
written as

{@tc ðx; tÞ ¼ Hðp;xþ �sÞc ðx; tÞ; (4)

where c ðx; tÞ is a spinor with (2sþ 1) components.
This simple observation, however, has nontrivial and

unexpected consequences as can be seen by studying, for
example, the isotropic harmonic oscillator in this noncom-

mutative space, given by the potential Vðx̂Þ ¼ !2

2 x̂2.

Expressed in the basis of the normal Heisenberg algebra
(2), it turns into

V ¼ !2

2
ðxþ �sÞ2 ¼ 1

2
!2x2 þ 1

2
!2�2s2 þ!2�x � s; (5)

where the term x � s becomes responsible—at least for
particles with spin 1=2—of the infinite degeneracy of the
ground state and the spontaneous breaking of rotational
symmetry, as shown in [7].
From these considerations as well as from the study of

the effects induced by the algebra (1) on other physical
systems one can speculate about the order of magnitude of
�. For example, the present approach could be connected to
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recent experiments carried out using 52Cr condensates
[9–11], where one uses the fact that, at large distances,
the spins interact via the potential

V ¼ �

�
s1 � s2 � 3ðs1 � r̂Þðs2 � r̂Þ

r3

�
; (6)

where r is the relative position vector, r̂ ¼ r=r,
and � is the interaction strength (see e.g. [12]). This
potential can, in fact, be completely rederived from the
present approach to noncommutative quantum mechanics
with [13]

� ¼ �2: (7)

Following Ref. [11], one can relate � with the parame-
ters of the experiment involving a gas of 52Cr with total
spin 3 to find

�2 ¼ Cdd

4�
¼ 48a0ℏ2

m
;

where a0 represents Bohr’s radius while m is the mass of
the 52Cr isotope. This leads to the value [13]

�� 10�11 cm; (8)

which would not change significantly for spin 1=2 atoms,
even though the experiments involving these kinds of
particles are, in principle, much more complicated.

Taking into account these results, a natural question
arises about the implications of algebra (1) on the topo-
logical nature of systems of physical interest. This is a
nontrivial question since the spin degrees of freedom now
appear in the commutation relations (1) of the coordinates.
The Aharonov-Bohm effect turns out to be the paradigm in
the study of such issues. Here one considers a charged
particle in a magnetic field which is zero everywhere
except inside an infinitely long and impenetrable solenoid
of essentially zero radius. The dynamics, in this case,
reduces to the motion in a plane perpendicular to the
external magnetic field.

The goal of this paper is to generalize the study of such a
system to a particle moving in a noncommutative space
defined by (1). We determine the Schödinger-Pauli equa-
tion of a particle moving under the action of an external
magnetic field, study its properties, and evaluate the scat-
tering amplitude. For simplicity, we will restrict ourselves
to a plane orthogonal to the magnetic field and consider the
motion of a charged spin 1=2 particle. The calculations will
be done to the leading order in � in perturbation theory
because of the mathematical difficulties posed by this
problem. The paper is organized as follows. In Sec. II,
the gauge potential in the noncommutative space is dis-
cussed and, in Sec. III, the Schrödinger-Pauli equation is
determined. In Sec. IV, the scattering amplitude is eval-
uated and, in Sec. V, we discuss briefly the physical im-
plications of these results.

II. THE AHARONOV-BOHM POTENTIAL IN THE
NONCOMMUTATIVE PLANE

In the context of the approach outlined above, in this
section we calculate the vector potential for the Aharonov-
Bohm effect when the realization (2) is taken into account.
Let us start with the commutative case where we assume
that a charged spin 1=2 particle is interacting with a
background magnetic field along the x3-axis. The coordi-
nates of the plane normal to the magnetic field are denoted
by xi, i ¼ 1; 2 with r2 ¼ x21 þ x22. The problem has cylin-
drical symmetry and the vector potential, which gives rise
to a zero magnetic field everywhere except at the origin
r ¼ 0 with a finite flux, is given by

Ai ¼ ��

2
�ij@jðlnr2Þ ¼ ���ij

xj

r2
; A3 ¼ 0; (9)

where � is a constant proportional to the magnetic flux
�B ¼ 2��. The potential (9) is defined in the Coulomb
gauge satisfying @iAi ¼ 0, and the magnetic field along the
z-axis has the form

B3ðrÞ ¼ �ij@iAj ¼ ���ij@i�jk@kðlnrÞ ¼ �r2ðlnrÞ
¼ 2���ðrÞ ¼ �B�

2ðxÞ: (10)

In the following we consider the corresponding potential
in the noncommutative plane,

ANC
i ¼ ��

2
�ij@jðlnr̂2Þ; i; j ¼ 1; 2; ANC

3 ¼ 0;

(11)

and consequently the two component vector potential
(for a magnetic field along the 3-axis) is independent
of the noncommutative coordinate x̂3, namely ANC

i ¼
ANC
i ðx̂1; x̂2Þ.
Note that the underlying noncommutative algebra is a

deformation of the standard Heisenberg and spin algebras
(spin is an independent variable) and it follows from (1)
that

½x̂1; x̂2� ¼ i�2ŝ3 ¼ i�2

2
�3: (12)

It is worth recognizing that �3 is an element of the under-
lying noncommutative algebra independent of the non-
commutative coordinate x̂3. Once this is recognized, one
can work with the commutative basis (Bopp shift), where
the realization of the deformed algebra in (2) leads to the
replacement

r̂ 2 ¼ r2 þ �x � � þ 1

2
�2; (13)

where for spin 1=2 we have identified s ¼ 1
2� with �i,

i ¼ 1; 2 denoting the two Pauli matrices. Therefore the
Cartesian components of the gauge potential in the non-
commutative plane are defined as (matrices)
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ANC
i ¼ ��

2
�ij@jðlnr̂2Þ

¼ ��

2
�ij@j

�
ln

�
r2 þ �2

2

�
12 þ ln

�
12 þ 2�x � �

2r2 þ �2

��
:

(14)

It is possible to factor out all the spin dependence in the
previous expression by defining

�r ¼ x � �
jxj ¼ ûr � � ¼ 0 e�i�

ei� 0

� �
; (15)

and its derivative

�� :¼ @�r

@�
¼ û� � � ¼ i

0 �e�i�

ei� 0

� �
; (16)

with � denoting the polar angle. Here ur, u� denote,

respectively, the unit vectors along the radial and the
azimuthal angle directions. These matrices obviously
satisfy

�2
r ¼ 12; �2

� ¼ 12; �r�� ¼ i�3 ¼ ����r:

(17)

Using the Taylor series expansion for the logarithm, a
straightforward calculation leads to

ANC
i ¼ AiðrÞfðx; �Þ � �

4

xi
r2

ln

�
r2 þ ðrþ �Þ2
r2 þ ðr� �Þ2

�
��; (18)

where AiðrÞ is the vector potential in the commutative
plane defined in Eq. (9), and the function fðx; �Þ is
given by

fðx; �Þ ¼ r

�� ð2rþ �Þ
r2 þ ðrþ �Þ2

��
12 þ �r

2

�

þ
� ð2r� �Þ
r2 þ ðr� �Þ2

��
12 � �r

2

��

¼ 4r4

4r4 þ �4
12 � r�

2r2 � �2

4r4 þ �4
�r ���!�!0

12; (19)

so that ANC
i reduces to Ai (as a diagonal matrix) when

� ¼ 0. On the other hand, for � � 0, fðx; �Þ is a continu-
ous function of x vanishing at the origin.

We see from (18) that the vector potential in the non-
commutative plane has a component in the radial direction
(ur), which is not present in the standard case. In fact, in
polar coordinates we can write

ANC ¼ �

�
4r312 � �ð2r2 � �2Þ�r

4r4 þ �4

�
û�

� �

4r
ln

�
2r2 þ 2r�þ �2

2r2 � 2r�þ �2

�
��ûr: (20)

For large r with a finite �, this vector potential vanishes as

ANC ! �

r

��
12 � �

2r
�r

�
u� � �

2r
��ur þO

��
�

r

�
3
��
; (21)

while near the origin we find a significant departure from
Eq. (9),

ANC ���!r!0�

�

��
1�2r2

�2

�
�ru��

�
1� 2r2

3�2

�
��urþO

��
r

�

�
3
��
:

(22)

Some comments are in order here. First we note from its
definition in Eq. (14) that this vector potential satisfies the
Coulomb gauge condition, @iA

NC
i ¼ 0 (to all orders in �).

In the noncommutative case, the magnetic field is defined
as the (gauge covariant) commutator of the covariant
derivatives [2]

BNC ¼ FNC
12 ¼ {

e
½@1 � {eANC

1 ; @2 � {eANC
2 �

¼ @1A
NC
2 � @2A

NC
1 � {e½ANC

1 ; ANC
2 �: (23)

The independent component of the magnetic field FNC
12

does not depend on the x̂3 coordinate because of the
assumption (11). It is the commutator in the definition of
the field strength tensor (23), which brings in the depen-
dence on the other element �3 of the noncommutative
algebra through (12) and leads to an Oð�2Þ contribution.
In fact, a straightforward calculation leads to

BNC
ð1Þ ðxÞ ¼ r�ANC

¼ �

�
16r2�4

ð4r4 þ �4Þ2
�
12

þ �

�
�
ð2r2 þ �2Þð4r4 � 8r2�2 þ �4Þ

rð4r4 þ �4Þ2

þ 1

4r2
ln

�
r2 þ ðrþ �Þ2
r2 þ ðr� �Þ2

��
�r; (24)

while for the commutator in Eq. (23)

BNC
ð2Þ ðxÞ ¼ �{e½ANC

1 ; ANC
2 �

¼
�
e

c

�
�2

16r
@rln

2

�
r2 þ ðrþ �Þ2
r2 þ ðr� �Þ2

�
�3 ¼ Oð�2Þ: (25)

It can be checked in a straightforward manner that the
magnetic field BNCðr;�Þ ¼ BNC

ð1Þ þ BNC
ð2Þ is invariant under

rotations along the z-axis generated by

Uð	Þ :¼ e{	J ¼ e{	ðLþð�3=2ÞÞ; (26)

where J is the total angular momentum along the z-axis on
the noncommutative plane while L ¼ x� ð�{rÞ corre-
sponds to the orbital angular momentum.
We note that to leading order in � the magnetic field has

been smeared out by the noncommutativity of coordinates,
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resulting in a well behaved function near the origin (for
� � 0),

BNCðr; �Þ ¼ 2e�

�2
�3 � 16�

3�3
r�r þ 16�

3�4
r2ð312 � e�3Þ

þOðr3Þ: (27)

The flux of the magnetic field through a circle of radius r
can be easily evaluated. To first order in the noncommuta-
tivity parameter �, the vector potential in Eq. (20) gives
rise to a magnetic field vanishing everywhere except at the
origin, with a magnetic flux as in the conventional case,Z 2�

0
rd�u� �ANC ¼

Z 2�

0
rd�u� � �

r

��
12 � �

2r
�r

�
u�

� �

2r
��ur

�
¼ 2��12; (28)

where we have used the fact that the integral of �r over the
angular coordinate� vanishes. This suggests that, to linear
order in the noncommutative parameter �, one should not
expect any significant departure in the interference pattern
from that of the usual Aharonov-Bohm effect in the normal
plane.

In the following section we will analyze the equation of
motion of the electron in the aforementioned magnetic
field, retaining modifications due to noncommutativity up
to first order in the parameter �.

III. THE SCHRÖDINGER-PAULI EQUATION

In this section we write down the explicit form of the
Schrödinger-Pauli equation in the presence of the gauge
field (20). Let us consider the Hamiltonian

H ¼ 1

2
ðp̂� eANCÞ2 ¼ 1

2
ð�{r� eANCÞ2; (29)

corresponding to a nonrelativistic spinorial particle
(m ¼ 1). The Hamiltonian H is invariant under a rotation
by an angle 	 around the z-axis under which the vector
potential transforms as

A ðNCÞ ! Uð	ÞAðNCÞUyð	Þ; (30)

withUð	Þ :¼ e{	J defined in (26). As a result,H commutes
with J :¼ Lþ �3=2 and it leaves invariant the subspaces
of the form

H l :¼
�

eil�c lðrÞ
eiðlþ1Þ�
lðrÞ

� �
: c lðrÞ; 
lðrÞ 2 L2ðRþ; rdrÞ

�
;

(31)

for all l 2 Z. The eigenvalue equation for H in this sub-
space gives rise to a system of coupled differential equa-
tions which, in the leading order in the perturbation
parameter �, gives a good description of our system at
large r. As we will show, it is possible to get an exact
expression for this first-order correction.

For small �, eigenvalue equation for H reduces to

� c 00
l ðrÞ �

1

r
c 0

lðrÞ þ
�ðl� �Þ2

r2
� E

�
c lðrÞ

¼ ���

�
� 1

r2

0
lðrÞ þ

�
lþ 1� �

r3

�

lðrÞ

�
þOð�2Þ;

� 
00
l ðrÞ �

1

r

0
lðrÞ þ

�ðlþ 1� �Þ2
r2

� E

�

lðrÞ

¼ ���

�
1

r2
c 0

lðrÞ þ
l� �

r3
c lðrÞ

�
þOð�2Þ; (32)

with � :¼ e�. Let us note that, although for small r the
coefficients in the eigenvalue equation are all regular, the
small-� expansion introduces singular terms (at r ¼ 0)
which we here treat as perturbations on the solutions of
the usual Aharonov-Bohm problem.
It is worthwhile to point out that the first-order perturbed

Hamiltonian can be constructed through successive unitary
transformations from that of the standard Aharonov-Bohm
Hamiltonian, inheriting therefore the spectrum and topo-
logical properties of the last one. The noncommutative
effects in the present approach include anisotropic ones
that could—n principle—be measured in experiments.
Indeed, up to first order in �, the Hamiltonian in Eq. (29)

can be written as

H ¼ � 1

2

���
@

@r
þ 1

2r

�
2 þ 1

4r2
þ 1

r2

�
@

@�
� i�

�
2
�
12

þ i��

r2

�
��

@

@r
þ �r

r

�
@

@�
� i�

���
; (33)

and using the identities

r�1=2 @

@r
½r1=2� ¼ @

@r
þ 1

2r
;

e{��
@

@�
½e�{��� ¼ @

@�
� {�;

(34)

it can also be factorized as

H ¼ � 1

2
r�1=2e{��

��
@2

@r2
þ 1

4r2
þ 1

r2
@2

@�2

�
12

þ {��

r2

�
��

�
@

@r
� 1

2r

�
þ �r

1

r

@

@�

��
r1=2e�{��

� ðr�1=2e{��Þ ~Hðr1=2e�{��Þ: (35)

Here ~H is

~H ¼ ~H0 � �
{�

2r2

�
��

�
@

@r
� 1

2r

�
þ �r

1

r

@

@�

�
; (36)

with

~H 0 ¼ � 1

2

�
@2

@r2
þ 1

4r2
þ 1

r2
@2

@�2

�
12: (37)

The Hamiltonian ~H can be factorized again by using the
following identity:
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�
~H0;

i��

2r
��

�
¼ i��

2r2

�
��

�
@

@r
� 1

2r

�
þ �r

1

r

@

@�

�
; (38)

the relation between ~H and ~H0 becomes now

~H ¼ ~H0 �
�
~H0;

i��

2r
��

�

¼
�
1þ i��

2r
��

�
~H0

�
1� i��

2r
��

�
¼ U ~H0U

y; (39)

up to first order in �.

Observe that the multiplicative unitary operator U ¼
ð1þ i��

2r ��Þ (which encloses all the dependence on �)

factorizes out the nontrivial matrix dependence due to
spin, leaving ~H0 which is diagonal. Moreover, it commutes

with the factor r1=2e�ie�� in the similarity transformation

in (35) so that up to first order in �, the Hamiltonian Ĥ
describing the modified Aharonov-Bohm effect can be
written as

H ¼ U½ðr�1=2e{��Þ ~H0ðr1=2e�{��Þ�Uy; (40)

where the term in parentheses is just the standard
Aharonov-Bohm Hamiltonian, which acts as a diagonal
operator on the spinor components.

Having achieved this result, it is easy to relate the
eigenfunctions c Eðr;�Þ of the perturbed Hamiltonian in
Eq. (33),

Hc Eðr;�Þ ¼ Ec Eðr;�Þ; (41)

with the corresponding eigenfunction of the usual
Aharonov-Bohm scalar particle on the usual commutative
plane, through the above discussed unitary transformation.
In particular, notice that the spectrum of the Hamiltonian in

the noncommutative case is the same as that of the standard
Aharonov-Bohm effect.
Indeed, if

~H 0 ~

ð0Þ
E ðr; �Þ ¼ E~
ð0Þ

E ðr; �Þ; (42)

then from Eq. (40) we get

c Eðr; �Þ ¼ r�1=2e{��U~
ð0Þ
E ðr;�Þ: (43)

Notice that the separability of variables in each component
of the solution is ensured by the previously discussed
rotational symmetry of the Hamiltonian.
It is straightforward to find solutions of (42): each

component of the spinor ~
ð0Þ
E ðr; �Þ (which is not coupled)

can be expressed as

~
 jðr;�Þ ¼ ei��
�
j ðrÞ; j ¼ 1; 2;

where the parameters � are not necessarily integers, since it
is the function c Eðr;�Þ in Eq. (43) which must be single-
valued. The radial functions 
�

j ðrÞ satisfy the equation

� 1

2

�
d2

dr2
þ 1� 4�2

4r2

�

�
j ðrÞ ¼ E
�

j ðrÞ; (44)

whose solutions are expressed in terms of Bessel functions
as


�
j ðrÞ ¼

ffiffiffi
r

p ½AjJj�jðkrÞ þ BjYj�jðkrÞ�; (45)

where k ¼ ffiffiffiffiffiffi
2E

p
and Aj, Bj (j 2 f1; 2g) are integration

constants which must be determined according to the
boundary condition the function c Eðr;�Þ must satisfy.
Comparison with Eq. (31) shows that the parameter �

must be chosen so as

c ‘
Eðr;�Þ ¼

�
1þ {

��

2r
��

� ei‘�½A‘
1Jjl��jðkrÞ þ B‘

1Yj‘��jðkrÞ�
eið‘þ1Þ�½A‘

2Jj‘þ1��jðkrÞ þ B‘
2Yj‘þ1��jðkrÞ�

 !
: (46)

The coefficients in Eq. (46) must be determined by imposing suitable boundary conditions. In particular, this first-order
correction in perturbation theory must be square-integrable in a neighborhood of the origin. It can be straightforwardly
seen that this condition requires that B‘

j ¼ 0, j ¼ 1; 2, 8 ‘ 2 Z.

Employing the recurrence relation for Bessel functions,

Znþ1ðxÞ þ Zn�1ðxÞ ¼ 2n

x
ZnðxÞ; (47)

the solution in Eq. (46) can also be written as

c ‘
Eðr; �Þ ¼

ei‘�
�
A‘
1Jj‘��jðkrÞ þ ��kA‘

2

4j‘��þ1j ½Jj‘��þ1j�1ðkrÞ þ Jj‘��þ1jþ1ðkrÞ�
�

eið‘þ1Þ�
�
A‘
2Jj‘��þ1jðkrÞ � ��kA‘

1

4j‘��j ½Jj‘��j�1ðkrÞ þ Jj‘��jþ1ðkrÞ�
�

0
BBB@

1
CCCA: (48)
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The general solution of the Schrödinger-Pauli equation
in the noncommutative plane, up to first order in �, is then
constructed as the combination1

c Eðr;�Þ ¼ X1
‘¼�1

c ‘
Eðr; �Þ; (49)

with c ‘
Eðr; �Þ given in Eq. (46) or (48).

With this solution, our aim is now to evaluate the scat-
tering amplitude, which could be of interest for an experi-
mental test of this kind of system. This will be done in the
next section.

IV. SCATTERING AMPLITUDE

We are now interested in a situation in which an incident
particle reaches the center at r ¼ 0 and is scattered out by
the Aharonov-Bohm flux in the noncommutative plane we
are considering. In this case, the wave function constructed
in Eq. (49) equals the sum of the plane wave and a spherical
outgoing wave.
The asymptotic form of the solution (49), for kr � 1,

turns out to be

c Eðr;�Þ 	
P1

‘¼�1 ei‘�A‘
1

ffiffiffiffiffiffi
2

�kr

q
cos

�
kr� �

2 j‘� �j � �=4

�
P1

‘¼�1 eið‘þ1Þ�A‘
2

ffiffiffiffiffiffi
2

�kr

q
cos

�
kr� �

2 j‘� �þ 1j � �=4

�
0
BBB@

1
CCCA; (50)

and we observe that there are no terms proportional to �.
This is completely different than in conventional noncom-
mutative quantum mechanics, where the differential cross
section [15] may depend on theta in the case of a small
angle.

Therefore, the differential cross section for our problem
is the same as in the Aharonov-Bohm effect for spin 1=2
particles. As a check, consider a polarized beam with
A‘
2 ¼ 0. It is direct to check that the previous expression

has the shape

c Eðr; �Þ ¼ eikr cosð�Þ
0

 !
þ F1ð�Þ eikrffiffiffi

ir
p

0

 !
;

by choosing

A‘
1 ¼ eði�=2Þð2‘�j‘��jÞ; (51)

and then

F1 ¼ 1ffiffiffiffiffiffiffiffiffi
2k�

p X1
‘¼�1

ei‘�ðei�ð‘�j‘��jÞ � 1Þ; (52)

which is the standard result for the Aharonov-Bohm effect
(see for example [15]). Therefore, the differential cross
section, for a beam polarized parallel to the solenoid
direction, turns out to be

d�

d�
¼ sin2ð��Þ

2k�sin2ð�=2Þ : (53)

Opposite polarization, namely A‘
1 ¼ 0, gives same re-

sult, as is expected from the general result [16,17]

d�

d�
¼ ð1� ðn̂� ẑÞ2sin2ð�=2ÞÞ

�
d�

d�

�
unpol

; (54)

where n̂ is the polarization direction and ẑ, the direction
defined by the solenoid.
Anyway, a comment is in order. As previously stated, we

are employing perturbation theory, which introduces po-
tentials which are singular at the origin, even though the
noncommutativity of this plane smears out the field inten-
sity as discussed in Sec. II, leading to smooth coefficients
in the Hamiltonian.

V. CONCLUSIONS

In this paper we have studied the Aharonov-Bohm effect
with spin-noncommutativity, namely, for the case when the
noncommutative coordinates involve spin. Although the
Aharonov-Bohm effect, in this case, retains some impor-
tant properties of the conventional case, such as topologi-
cal properties, spin induces a strong anisotropy which is
completely different from the conventional Aharonov-
Bohm effect. From the analysis of the scattering problem
one sees that the anisotropy is an effect that occurs close to
�� ffiffiffi

r
p

so that long-range scattering effects may not be
affected.
However, this anisotropy opens also the interesting pos-

sibility of studying other systems that behave very simi-
larly to the problem studied here. Indeed, in the case of
cold atoms with nonzero total spin using suitable magnetic
traps it is possible to confine the atoms to a plane and,
therefore, such as in the case of an anyon gas, one could
have a gas of cold atoms, where each atom would have an

1Strictly speaking, we should consider also linearly indepen-
dent (order �) square-integrable solutions in the ‘ ¼ �1; 0; 1
invariant subspaces, which have a nonregular behavior at the
origin and are related to the existence of nontrivial self-adjoint
extensions of the Aharonov-Bohm Hamiltonian [14] (see the
Appendix). For simplicity, we impose a regularity condition at
the origin on the solutions of the Aharonov-Bohm problem from
which we construct the eigenfunctions we consider in the
following.
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attached magnetic flux as in the conventional anyon gas
[18]. The experiments measuring spin effects of cold atoms
in gases have so far been done only for the case of total
spin 3. More accurate measurements in other systems are
likely to come in the near future, where predictions of spin-
noncommutativity can possibly be checked.
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APPENDIX: SOLUTIONS IN THE
CRITICAL SUBSPACE

In the critical ‘ ¼ �1; 0; 1 invariant subspaces, we can
find linearly independentOð�Þ solutions (eigenfunctions of

the Aharonov-Bohm Hamiltonian), whose existence is re-
lated to the existence of nontrivial self-adjoint extensions
of this Hamiltonian [14]. Indeed, the functions


�1
E ¼ 0

�B�1
2 Y�ðkrÞ

 !
;


0E ¼ �B0
1Y�ðkrÞ

�B0
2e

i�Y1��ðkrÞ

 !
;


1E ¼ �B�1
2 ei�Y1��ðkrÞ

0

 !
(A1)

are square-integrable near the origin (with respect to the
measure rdrd�) and satisfy (up to order �) the eigenvalue
equation (41) with 2E ¼ k2. Then, in these critical sub-
spaces, one should take those linear combinations of func-
tions in Eqs. (48) and (A1) which belong to the domain of
the selected Hamiltonian self-adjoint extension. They are
of the form

c�1
E ðr;�Þ ¼

e�i�

�
A�1
1 J1þ�ðkrÞ þ ��kA�1

2

4� ½J��1ðkrÞ þ J�þ1ðkrÞ�
�

�
A�1
2 J�ðkrÞ � ��kA�1

1

4ð1þ�Þ ½J�ðkrÞ þ J2þ�ðkrÞ� þ �B�1
2 Y�ðkrÞ

�
0
BBB@

1
CCCA

’
r��1

�
�

2���1A�1
2

k�

�ð�Þ þOðr2Þ
�

r��

�
��

2�k���B�1
2

�ð�Þ
� þOðr2Þ

�
þOðr�Þ

0
BBB@

1
CCCA; (A2)

c 0
Eðr;�Þ ¼

�
A0
1J�ðkrÞþ ��kA0

2

4ð1��Þ ½J��ðkrÞþ J�þ1ðkrÞ�þ�B0
1Y�ðkrÞ

�

ei�
�
A0
2J1��ðkrÞ� ��kA0

1

4� ½J��1ðkrÞþ J�þ1ðkrÞ�þ �B0
2Y1��ðkrÞ

�
0
BBB@

1
CCCA

’
r��

�
�2�k��

�
k�A0

2

ð4�4�Þ�ð1��Þ �
B0
1
�ð�Þ
�

�
þOðr2Þ

�
þOðr�Þ

r1��

�
2��1k1��ð�A0

2
þ�B0

2
cosð��Þ�ð2��Þ�ð��1ÞÞ

��ð2��Þ þOðr2Þ
�
þ r��1

�
� 2���1k��1�ðk�A0

1
þ4B0

2
�ð1��Þ�ð�ÞÞ

��ð�Þ þOðr2Þ
�

0
BBB@

1
CCCA; (A3)

c 1
Eðr;�Þ ¼

ei�
�
A1
1J1��ðkrÞ þ ��kA1

2

4ð2��Þ ½J1��ðkrÞ þ J3��ðkrÞ
��

ei2�
�
A1
2J2��ðkrÞ � ��kA1

1

4ð1��Þ ½J��ðkrÞ þ J��ðkrÞ
��

0
BBB@

1
CCCA

’
r��1

�
��

21��B1
1
k��1�ð1��Þ
� þOðr2Þ

�
þOðr1��Þ

r��

�
�

2��2�A1
1
k1��

ð��1Þ�ð1��Þ þOðr2Þ
�

0
BBB@

1
CCCA; (A4)
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where the coefficients are to be fixed by imposing the
conditions the functions in the domain of the operator
satisfy near the origin.

As previously mentioned, in the present article we dis-
card such contributions and impose just regularity at the

origin on the solutions of the Aharonov-Bohm problem
from which we construct the eigenfunctions of the present
one. But it is worth mentioning that these additional con-
tributions open the possibility of a spin-flip in the critical
subspaces. This will be considered elsewhere.
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