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We define the asymptotic flatness and discuss asymptotic symmetry at null infinity in arbitrary

dimensions using the Bondi coordinates. To define the asymptotic flatness, we solve the Einstein equations

and look at the asymptotic behavior of gravitational fields. Then we show the asymptotic symmetry and

the Bondi mass loss law with the well-defined definition.
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I. INTRODUCTION

Recently inspired by string theory, the systematic inves-
tigation of gravitational theory in higher dimensional space-
times becomes more important. Indeed there are many
things to be studied. Asymptotic structure of higher dimen-
sional spacetimes is one of them. Asymptotically flat space-
times have spatial and null infinities. While the asymptotic
structure at spatial infinity has been investigated in arbitrary
dimensions [1,2], the studies on null infinity have been done
only in even dimensions [3–9] and five dimensions [10,11].

In four dimensions, asymptotic structure at null infinity
was investigated in two ways. One is based on the Bondi
coordinates [4,5] and the another is based on the conformal
embedding [3,12]. In the latter, we introduce the conformal
factor �� 1=r and we can study the behavior of gravita-
tional fields near null infinity in the conformally trans-
formed spacetime. This method can be extended to higher
dimensions, but even dimensions only [7–9]. The reason
why even dimensions is as follows. In n-dimensional space-

times, gravitational fields behave like�1=rn=2�1 ��n=2�1

and thenwe cannot suppose the smoothness of gravitational
fields at null infinity due to the power of the half-integer in
odd dimensions. Thus the conformal embedding method
will not be useful for the investigation of the asymptotic
structure at null infinity in any dimensions.

Instead of the conformal embedding method, we could
safely define asymptotic flatness and study the asymptotic
structure at null infinity in five dimensions by using the
Bondi coordinates [10]. Therein one must solve the
Einstein equations and determines the asymptotic behavior
of gravitational fields which gives us a natural definition
of asymptotic flatness at null infinity. We can show the
asymptotic symmetry and the finiteness of the Bondi mass
in five dimensions. The purpose of this paper is the exten-
sion of this work to arbitrary dimensions. For simplicity,
we will consider the spacetimes satisfying the vacuum
Einstein equation in higher dimensions. But, it is easy to
extend our current work into nonvacuum cases that matters
rapidly decay near null infinity.

The remaining part of this paper is organized as follows.
In Sec. II, we introduce the Bondi coordinates in
n-dimensional spacetimes and write down the Einstein
equations in the language of the ADM formalism. In
Sec. III, the Einstein equations will be solved explicitly
and asymptotic flatness is defined by asymptotic behaviors
at null infinity. We also define the Bondi mass and show its
finiteness and the Bondi mass loss law. In Sec. IV, we shall
study the asymptotic symmetry. In Sec. V we will summa-
rize our work and discuss our future work. In Appendix A,
we give the formulas of the ADM decomposition which
will be used in Sec. III, and in Appendix B we show the
detail derivations of some equations.

II. BONDI COORDINATES AND
ADM DECOMPOSITION

We introduce the Bondi coordinates in n-dimensional
spacetimes. In the Bondi coordinates the metric can be
written as

ds2¼�AeBdu2�2eBdudrþ�IJðdxIþCIduÞðdxJþCJduÞ;
(1)

where xa ¼ ðu; r; xIÞ denote the retarded time, radial
coordinate and angular coordinates, respectively. We also
impose the gauge condition asffiffiffiffiffiffiffiffiffiffiffiffiffi

det�IJ

p ¼ rn�2!n�2; (2)

where !n�2 is the volume element on the unit (n� 2)-
dimensional sphere. In the Bondi coordinates, null infinity
is located at r ¼ 1.
We perform the ADM decomposition with respect to

the r-constant surfaces (see Appendix A). The metric is
rewritten as

d s2 ¼ N2dr2 þ q��ðdx� þ N�drÞðdx� þ N�drÞ; (3)

where

N2 ¼ eB

A
; (4)
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Nu ¼ 1

A
; (5)

NI ¼ �CI

A
; (6)

and the induced metric of the r-constant surface

q�� ¼ �AeB þ CICI CJ

CI �IJ

� �
: (7)

Note that the capital Latin indices I; J; � � � and the
Greek indices �; �; � � � are raised and lowered using �IJ

and q��, respectively. The unit normal vector to the

r-constant surface is given by na¼NðdrÞa and na¼
N�1ð@r�N�@�Þa. The extrinsic curvature of r-constant

surface is defined as usual

K�� ¼ 1

2
Lnq�� ¼ 1

2N
ð@rq�� �D�N� �D�N�Þ; (8)

whereD� denotes the covariant derivative associated with

q��.

The induced metric on the r-constant surface is rewritten
as

q��dx
�dx�¼��2du2þ�IJðdxIþ�IduÞðdxJþ�JduÞ;

(9)

where

�2 ¼ AeB; �I ¼ CI: (10)

The timelike unit normal vector to the u-constant surface
is written as ua ¼ ��ðduÞa 1 and ua ¼ ��1ð@u � �I@IÞa.
The extrinsic curvature of u-constant surface becomes

kIJ ¼ 1

2
Lu�IJ ¼ 1

2�
ð@u�IJ �DI�J �DJ�IÞ; (11)

where DI denotes the covariant derivative associated with
�IJ. We haveNa ¼ �A�1ua ¼ Nua from the definitions of
ua and Na. Also we have na ¼ N�1ð@rÞa � ua.

For later convenience we define the following projected
quantities on the (n� 2)-dimensional space as

� � K��u
�u� ¼ � 1

N
@rðlog�Þ þLu logN; (12)

�I � KI
�u

� ¼ 1

2N�
@r�

I þ 1

2
DI log

N

�
; (13)

�IJ � KKL�I
K�J

L ¼ 1

2N
@r�IJ � kIJ; (14)

where ��u
�¼���u

�¼0. Using of them, K�� is ex-

pressed by

K�� ¼ �u�u� � 2�ð�u�Þ þ ���: (15)

Decomposition of Ricci tensor

The vacuum Einstein equation is R̂ab ¼ 0. Let us de-

compose the n-dimensional Ricci tensor R̂ab into the
quantities on the (n� 2)-dimensional space:

R̂abn
anb ¼ 1

N
ð�� �Þ0 �Luð�� �Þ � �2 þ 2�I�I

� �IJ�
IJ þ 1

N
LuLuN þ kLu logN

� 1

N
D2N �DI log�D

I logN; (16)

R̂ abn
aub¼�Lu���k�kIJ�

IJþDI�
Iþ2�IDI log�;

(17)

R̂abu
aub ¼ � 1

N
�0 þ �2 � ��� 2�I�I þ 2�IDI log

N

�

þDI logNDI log�þ 1

�
D2��Luk� kIJk

IJ

þLu�� 1

N
LuLuN; (18)

R̂abn
a�bI¼�DI log��2�JkJ

I��Ikþ�IJDJ log�þDJ�
IJ

�DI�þDI�� 1

�
½ _ð�IÞ�L��

I�; (19)

R̂abu
a�bI¼DJðkIJ��IJkÞ���I�2�J�

IJ� 1

N
DILuN

þkIJDJ logN� 1

N
ð�IÞ0þ�DI log

N

�

þ�IJDJ log
N

�
þ 1

�
½ _ð�IÞ�L��

I�; (20)

R̂ab�
ab ¼ � 1

N
�0 þLu�þ ��� �2 � 2�I�I

þ 2�IDI log
N

�
þLukþ k2 � 1

�
D2�

� 1

N
D2N þ kLu logN þð�Þ R (21)

and

R̂ab�
a
I �

b
J ¼� 1

N
�0

IJþ
1

�
_�IJ� 1

�
L��IJþ�IDJ log

N

�

þ�JDI log
N

�
þð���Þ�IJ�2�I�J

þ2�IK�J
K� 1

N
DIDJN� 1

�
DIDJ�þLukIJ

þkkIJ�2kIKkJ
KþkIJLu logNþð�ÞRIJ; (22)

where the prime and the dot, respectively, denote @r and

@u, and
ð�ÞRIJ denotes the Ricci tensors with respect to �IJ.

In the aboves, we have used the following equations

1This expression is valid on the induced manifold determined
by the r-constant surface. For the whole spacetime manifold we
should write it as ua ¼ ��ðduÞa � NðdrÞa
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���LnK��¼Ln�þ2�IJ�IJ�2�ID
I log

N

�
;

u�u�LnK��¼ 1

N
�0 �Lu��2�2þ4�I�I�2�IDI log

N

�
;

q��LnK��¼ 1

N
ð��þ�Þ0�Luð��þ�Þþ2�2

�4�I�Iþ2�IJ�
IJ;

�I
��J

�LnK��¼ 1

N
�0

IJ�
1

�
_�IJþ 1

�
L��IJ��IDJ log

N

�

��JDI log
N

�
: (23)

III. ASYMPTOTIC FLATNESS AT NULL INFINITY
AND BONDI MASS

In this section, we first solve the Einstein equations near
null infinity and examine the asymptotic behaviors of the
gravitational fields. Then these considerations give us the
natural definition of the asymptotic flatness at null infinity.
We also give the definition of the Bondi mass and momenta
and then show its finiteness. In the following, we write �IJ

as �IJ ¼ r2hIJ and the indices I, J are raised and lowered
by hIJ.

A. Constraint equations

Components of the vacuum Einstein equations R̂ra ¼ 0

and R̂ab�
ab ¼ 0 are the constraint equations which do not

contain u-derivative terms in the current coordinate sys-

tem. Then, once we solve the equations R̂ra ¼ 0 on the

initial u-constant surface, R̂ra ¼ 0 always hold in any
u-constant surfaces.

After direct calculations R̂rr ¼ 0 becomes

B0 ¼ r

4ðn� 2Þ h
0
IJh

0
KLh

IKhJL; (24)

where the prime stands for the r-derivative. From

R̂ab�
ab ¼ 0 we have

ðn�2Þðr
n�3AÞ0
rn�2

¼�rIC
I0�2ðn�2Þ

r
rIC

I

�r2e�B

2
hIJC

I0CJ0� eB

2r2
hIJrIBrJB

�eB

r2
rIðhIJrJBÞþeB

r2
ðhÞR; (25)

and from R̂rJ�
IJ ¼ 0 we have

1

rn�2
ðrne�BhIJC

J0Þ0¼�rIB
0þn�2

r
rIBþðhÞrJh0IJ; (26)

where rI and ðhÞrI denote the covariant derivative with
respect to the metric of the unit (n� 2)-sphere!IJ and hIJ,

respectively. ðhÞR is the Ricci scalar with respect to hIJ.

Once hIJ are given on the initial u-constant surface, the
other metric functions A, B, CI are automatically deter-
mined through the above equations on the initial u-constant
surface. As seen later, it turns out that hIJ contains the
degree of freedom of gravitational waves in n-dimensional
spacetimes.
We would suppose that hIJ behaves near null infinity as

follows

hIJ¼!IJþ
X
k�0

hðkþ1Þ
IJ r�ðn=2þk�1Þ ¼!IJþOðr�ðn=2�1ÞÞ;

(27)

where the summation is taken over k 2 Z for even dimen-
sions and 2k 2 Z for odd dimensions. This comes from the
fact that hIJ corresponds to gravitational waves. By the

gauge conditions of Eq. (2), hðkþ1Þ
IJ should be traceless for

k < n=2� 1. Notice that we required the fall-off condition
which is expected through the asymptotic behaviors of
linear perturbations around the Minkowski spacetime. If
the fall-off of hIJ would be OðrkÞ for k >�ðn=2� 1Þ, the
nonlinear feature would appear in the leading orders and
then the Bondi mass will diverge. As shown later, the
condition Eq. (27) corresponds to the outgoing boundary
condition at null infinity.
By Eqs. (24) and (27), we can see that B behaves near

null infinity as

B ¼ Bð1Þr�ðn�2Þ þOðr�ðn�3=2ÞÞ; (28)

where

Bð1Þ ¼ � 1

16
!IK!JLhð1ÞIJ h

ð1Þ
KL: (29)

Substituting Eq. (26) into Eq. (27), we find that CI

should behave

CI¼ Xk<n=2�1

k¼0

Cðkþ1ÞIr�ðn=2þkÞþJIðu;xIÞr�ðn�1ÞþOðr�ðn�1=2ÞÞ;

(30)

where

Cðkþ1ÞI ¼ 2ðnþ 2k� 2Þ
ðnþ 2kÞðn� 2k� 2Þ rJh

ðkþ1ÞIJ: (31)

JIðu; xJÞ is the integration function in the r-integration.
It corresponds to the angular momentum at null infinity.

From the terms of the order ofOðr�ðn�1ÞÞ terms in Eq. (26),

we obtain the constraint conditions on hðn=2ÞIJ as

rJhðn=2ÞIJ ¼ 2rIB
ð1Þ: (32)

Substituting Eq. (25) into Eq. (27), we find that A should
behave as

A ¼ 1þ Xk<n=2�2

k¼0

Aðkþ1Þr�ðn=2þk�1Þ �mðu; xIÞr�ðn�3Þ

þOðr�ðn�5=2ÞÞ; (33)
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where

Aðkþ1Þ ¼ � 2ðnþ 2k� 4Þ
ðn� 2k� 4Þðnþ 2k� 2Þ r

ICðkþ1Þ
I

¼ � 4ðnþ 2k� 4Þ
ðnþ 2kÞðn� 2k� 2Þðn� 2k� 4Þ r

IrJhðkþ1Þ
IJ :

(34)

mðu; xIÞ is the integration function in the r-integration. It
corresponds to the energy and momentum at null infinity.

From the terms of the order of Oðr�ðn�1ÞÞ in Eq. (25), we

obtain the constraint conditions on hðn=2�1Þ
IJ as

rICðn=2�1Þ
I ¼ rIrJhðn=2�1Þ

IJ ¼ 0: (35)

To be summarized, if we impose the boundary condition
on hIJ as Eq. (27), the behavior of other metric functions A,
B and CI near null infinity are determined. We will regard
asymptotic behaviors as the definition of asymptotic flat-
ness at null infinity in n-dimensional spacetimes as

hIJ¼!IJþOðr�ðn=2�1ÞÞ; A¼1þOðr�ðn=2�1ÞÞ;
B¼Oðr�ðn�2ÞÞ; CI¼Oðr�ðn=2ÞÞ:

(36)

B. Bondi mass

Next we define the Bondi mass at null infinity in
n-dimensional spacetimes. Since guu is expanded near
null infinity as

guu¼�1� Xk<n=2�2

k¼0

Aðkþ1Þ

rn=2þk�1
þmðu;xIÞ

rn�3
þOðr�ðn�5=2ÞÞ; (37)

we define the Bondi mass MBondiðuÞ and momentum
Mi

BondiðuÞ as
MBondiðuÞ � n� 2

16	

Z
Sn�2

md�; (38)

Mi
BondiðuÞ �

n� 2

16	

Z
Sn�2

mx̂id�; (39)

respectively. x̂i is the unit normal vector to the (n� 2)-
dimensional sphere which satisfies rIrJx̂

i þ!IJx̂
i ¼ 0.

Thus each component of x̂i is described by linear combi-
nation of the l ¼ 1modes of the scalar harmonics on Sn�2.
The Bondi energy-momentum is defined as Ma

Bondi ¼ðMBondi;M
i
BondiÞ.

In the conformal method [7–9], the Bondi mass is de-

fined as MBondi�
R
Sn�2 rn�1Ĉururd��R

Sn�2 rn�1@2rguud�,

where Ĉabcd is the n-dimensional Weyl tensor. At first
glance it seems to diverge at null infinity because

rn�1@2rguu�rn=2�2Að1Þ (it is shown that the Bondi mass is
finite via an indirect argument in the conformal method

[9].). However, since Aðkþ1Þ can be written as Aðkþ1Þ /
rIrJhðkþ1Þ

IJ (see Eq. (34)), Aðkþ1Þ has no contribution to
the mass and momentum at null infinity for k < n=2� 2 as

Z
Sn�2

Aðkþ1Þd� ¼
Z
Sn�2

x̂iAðkþ1Þd� ¼ 0: (40)

Thus the Einstein equations guarantee the finiteness of the
Bondi mass and momentum regardless of the dimension.

C. Evolution equations

The remaining components of the Einstein equation
describe the evolution equations of gravitational fields.

The equation R̂ab�
a
I�

b
J ¼ 0 represents the evolutions of

hIJ. Indeed near null infinity we can obtain for 0 � k <
n=2� 1,

ðkþ1Þ _hðkþ2Þ
IJ ¼�1

2
ðn�2k�4ÞAðkþ1Þ!IJþ1

8
½n2�6n

�ð4k2þ4k�16Þ�hðkþ1Þ
IJ þ1

2
ð�r2hðkþ1Þ

IJ

þ2rðIrKhðkþ1Þ
JÞK Þ�1

2
ðn�2k�4ÞrðIC

ðkþ1Þ
JÞ

�rKCðkþ1Þ
K !IJ; (41)

where the dot denotes the u-derivative. Note that the evo-

lutions of hð1ÞIJ cannot be determined from the above equa-

tion. _hð1ÞIJ are free functions on the initial u-constant surface.
Contracting Eq. (41) with rIrJ and using Eq. (34), we can

obtain the evolution equations of Aðkþ1Þ as

_Aðkþ2Þ ¼ � nþ 2k� 2

2ðkþ 1Þðnþ 2kþ 2Þ r
2Aðkþ1Þ

þ ðnþ 2k� 2Þ2ðn� 2k� 4Þ
8ðkþ 1Þðnþ 2kþ 2Þ Aðkþ1Þ: (42)

From R̂abu
aub ¼ 0, we can obtain the evolution equa-

tion of mðu; xIÞ as

_m ¼ � 1

2ðn� 2Þ
_hð1ÞIJ

_hð1ÞIJ þ n� 5

n� 2
rICðn=2�2Þ

I

þ 1

n� 2
r2Aðn=2�2Þ: (43)

Integrating this equation over the unit (n� 2)-sphere,
we can obtain the Bondi mass loss law as

d

du
MBondi ¼ � 1

32	

Z
Sn�2

_hð1ÞIJ
_hð1ÞIJd� � 0: (44)

Thus, the Bondi mass always decreases by gravitational
waves and this justifies that our boundary conditions of
Eq. (27) correspond to the outgoing boundary condition at
null infinity.

VI. ASYMPTOTIC SYMMETRY

In this section we discuss the asymptotic symmetry at
null infinity. We also confirm the Poincaré covariance of
the Bondi mass and momentum.
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A. Asymptotic symmetry

Asymptotic symmetry is defined to be the transforma-
tion group which preserves the asymptotic structure at null
infinity. The variations of asymptotic form of metric at null
infinity are given by


grr ¼ 0; 
grI ¼ 0; gIJ
gIJ ¼ 0 (45)


guu ¼ Oðr�ðn=2�1ÞÞ; 
guI ¼ Oðr�ðn=2�2ÞÞ;

gur ¼ Oðr�ðn�2ÞÞ; 
gIJ ¼ Oðr�ðn=2�3ÞÞ;

(46)

where 
gab � L�gab ¼ 2r̂ða�bÞ and � is the generator of

asymptotic symmetry. In the following we consider the
asymptotic symmetry in n > 4 dimensional spacetimes.

The condition of Eq. (45) comes from the definition of
the Bondi coordinates and the explicit forms are


grr ¼ L�grr ¼ �2eBð�uÞ0 ¼ 0; (47)


grI ¼ L�grI ¼ �eBDI�
u þ �IJC

Jð�uÞ0 þ �IJð�JÞ0 ¼ 0;

(48)

�IJ
gIJ ¼ �IJL�gIJ

¼ �rðlog�Þ0 þ �u _ðlog�Þ þ 2DI�
I þ 2CIDI�

u

¼ 0; (49)

where � � det�IJ. Then, using �IJ ¼ r2hIJ and the gauge
condition of Eq. (2), we can obtain �a satisfying the above
equations as

�u ¼ fðu; xIÞ; (50)

�I ¼ fIðu; xIÞ þ
Z

dr
eB

r2
hIJrJfðu; xIÞ; (51)

�r ¼ � r

n� 2
ðCIrIfþrI�

IÞ: (52)

For later convenience, we write down the asymptotic
behavior of � near null infinity as

�r ¼ �fðu; xIÞ þOðr�ðn�2ÞÞ; (53)

�I ¼ r2!IJf
Jðu; xKÞ � rrIfðu; xKÞ þ

Xk<n=2�2

k¼0

�
rhðkþ1Þ

IJ fJ

þ fCðkþ1Þ
I � nþ 2k� 2

nþ 2k
hðkþ1ÞJ
I rJf

�
r�ðn=2þk�2Þ

þOðr�ðn�3ÞÞ; (54)

�u ¼ r

n� 2

�
rIf

I � 1

r
ðr2fþ ðn� 2ÞfÞ þ ðn� 2Þ

� Xk<n=2�2

k¼0

�
fICðkþ1Þ

I � fAðkþ1Þ

r
� nþ 2k� 4

nþ 2k� 2

� Cðkþ1Þ
I rIf

r
þ 2

nþ 2k

hðkþ1Þ
IJ rIrJf

ðn� 2Þr
�
r�ðn=2þk�1Þ

�

þOðr�ðn�3ÞÞ: (55)

Next let us consider the boundary conditions of Eq. (46).
The each components of metric variations are


guu ¼ 2r

n� 2

@

@u
rIf

I � 2

n� 2

@

@u
ðr2fþ ðn� 2ÞfÞ

þ 2Cð1Þ
I @uf

Ir�ðn=2�2Þ þOðr�ðn=2�1ÞÞ; (56)


gur ¼ 1

n� 2
½rIf

I � ðn� 2Þ@uf�

� Xk<n=2�2

k¼0

nþ 2k� 2

ðn� 2Þðnþ 2kÞ h
ðkþ1Þ
IJ rIrJfr�ðn=2þkÞ

þOðr�ðn�2ÞÞ; (57)


guI ¼ r2@ufI þ r

n� 2
@I½rJf

J � ðn� 2Þ@uf�

� 1

n� 2
@I½r2fþ ðn� 2Þf� þ hð1ÞIJ @uf

Jr�ðn=2�3Þ

þOðr�ðn=2�2ÞÞ; (58)


gIJ¼2r2
�
rðIfJÞ �rKf

K

n�2
!IJ

�
�2r

�
rIrJf� r2f

n�2
!IJ

�

þOðr�ðn=2�3ÞÞ: (59)

To satisfy the boundary conditions of Eq. (46) for these
equations, we will find that f and fI should satisfy

@uf
I ¼ 0; (60)

rIfJþrJfI¼2rKf
K

n�2
!IJ; rIf

I ¼ðn�2Þ@f
@u

; (61)

rIrJf ¼ r2f

n� 2
!IJ: (62)

Integrating the trace part of Eq. (61), we can obtain

f ¼ FðxIÞ
n� 2

uþ �ðxIÞ; (63)

where F � rIf
I and �ðxIÞ is an integration function on

Sn�2. Here we can show from Eqs. (62) and (63) that F
satisfies

rIrJF ¼ 1

n� 2
!IJr2F; (64)
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and also contracting Eq. (61) with rIrJ we have

r2Fþ ðn� 2ÞF ¼ 0: (65)

The general solutions to these equations for F are the l ¼ 1
modes of the scalar harmonics on Sn�2. Next from
Eqs. (62) and (63) we can see that

rIrJ� ¼ 1

n� 2
!IJr2� (66)

should hold in n > 4 dimensions. The general solutions to
this equations are l ¼ 0 and l ¼ 1 modes of the scalar
harmonics on Sn�2.

To be summarized, f can be written as

f ¼ f0 þ f1ðu; xIÞ; (67)

where f0 is a constant and corresponds to the l ¼ 0 mode
in �. f1ðu; xIÞ contains the l ¼ 1 modes in F and � for
n > 4 dimensions. Thus we can show that f satisfies the
following equations:

rIðr2fþðn�2ÞfÞ¼0; @uðr2fþðn�2ÞfÞ¼0; (68)

in n > 4 dimensions. In addition, since rIrJf / !IJ and

hðkþ1Þ
IJ are traceless for k < n=2� 1, the gauge condition of

Eq. (2) implies that hðkþ1Þ
IJ rIrJf vanishes for k < n=2� 2

in Eq. (57). As a consequence, we could confirm that the
transformations satisfying Eqs. (60)–(62) keep the bound-
ary conditions (46).

It is worth noting that Eq. (61) gives another condition

for fðtraÞI which is the transverse part of fI, namely, sat-

isfying rIf
ðtraÞI ¼ 0. We find that Eq. (61) corresponds to

the Killing equation rIf
ðtraÞ
J þrJf

ðtraÞ
I ¼ 0 on Sn�2 be-

cause of the transverse condition. This means that fðtraÞI
is the Killing vector on Sn�2. Therefore, the transforma-
tions generated by the transverse part of fI are trivial and
we could focus on only the longitudinal part of fI which
generates nontrivial transformations.

Here we give the short summary. We could show that the
asymptotic symmetry is generated by f and fI satisfying
Eqs. (60)–(62). The parts of f, which are not proportional
to u, generates a translation group. fI generates the Lorentz
group. Then the asymptotic symmetry at null infinity is the
Poincaré group.

Before closing this subsection, we have a comment
on four-dimensional cases for the comparison. In four-
dimensional cases, the boundary conditions to be held are


guu ¼ Oðr�1Þ; 
gur ¼ Oðr�2Þ;

guI ¼ Oð1Þ; 
gIJ ¼ OðrÞ: (69)

Then, if f and fI satisfy Eqs. (60) and (61), the trans-
formations keep the above boundary conditions. Note that
the condition (62) is not required because the second term
in the right-hand side in Eq. (59) already satisfies the
boundary conditions and has no additional restriction to
f in four dimensions. Therefore there is no restriction on �

where f ¼ FðxIÞu=2þ �. Hence � is an arbitrary function
on S2 in four dimensions while in n > 4 dimensions �
should be l ¼ 0 or l ¼ 1 mode. The former condition
rIðr2fþ ðn� 2ÞfÞ ¼ 0 in Eq. (68), which comes from
Eq. (58), does not hold in four dimensions because � can
have l > 1 modes. However since the third term in the
right-hand side in Eq. (58) already satisfies the boundary
conditions (69) in four dimensions, that condition is not
required. The l > 1 modes of � correspond to the gener-
ators of the so-called supertranslation group. Thus the
asymptotic symmetry is the semidirect group of super-
translation and Lorentz group in four dimensions rather
than the Poincaré group.

B. Poincaré covariance

Next we shall confirm the Poincaré covariance of the
Bondi mass and momentum. Since the asymptotic symme-
try is the Poincaré group, we expected that the Bondi mass
and momentum should be transformed covariantly under
the action of its Poincaré group. In practice, under the
translation of f ¼ �ðxIÞ and fI ¼ 0, the Bondi energy-
momentum is invariant, that is,

Ma
Bondi ! Ma

Bondi: (70)

However, since we consider dynamical spacetimes, it is
easy to expect the contribution from gravitational waves
under translation u ! u� �. Thus the Bondi energy-
momentum Ma

Bondi should be transformed under the trans-

lation as

Ma
BondiðuÞ ! Ma

BondiðuÞ þL�M
a
Bondi

¼ Ma
BondiðuÞ þ �

d

du
Ma

BondiðuÞ; (71)

where the second term in the right-hand side represents the
effect of gravitational radiations. Let us look at the details.
For the translations, the generator �a becomes

�r ¼ ��þOðr�ðn�2ÞÞ; (72)

�I ¼�rrI�þ Xk<n=2�2

k¼0

�
�Cðkþ1Þ

I �nþ2k�2

nþ2k
hðkþ1Þ
IJ rJ�

�

�r�ðn=2þk�2ÞþOðr�ðn�3ÞÞ; (73)

�u ¼ � Xk<n=2�2

k¼0

�
nþ 2k� 4

nþ 2k� 2
Cðkþ1Þ
I rI�þ �Aðkþ1Þ

�

� r�ðn=2þk�1Þ þOðr�ðn�3ÞÞ: (74)


guu can be computed as


guu ¼ 2r̂u�u

¼ Xk¼n=2�2

k¼0


gðkþ1Þ
uu r�ðn=2þk�1Þ þOðr�ðn�5=2ÞÞ; (75)
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where


gðkþ1Þ
uu ¼ 4

nþ 2k� 2
@uC

ðkþ1Þ
I rI�� �@uA

ðkþ1Þ

� nþ 2k� 4

2
�AðkÞ þ rI�rIA

ðkÞ: (76)

In particular, for k ¼ n=2� 2


gðn=2�1Þ
uu ¼ 
m

¼ �@umþ 2

n� 3
rI�@uC

ðn=2�1Þ
I

� �ðn� 4ÞAðn=2�2Þ þ rI�rIA
ðn=2�2Þ: (77)

By using Eqs. (34), (42), and (35), we can rewrite 
gðkþ1Þ
uu

as


gðkþ1Þ
uu ¼ 2

nþ 2k
½r2ð�AðkÞÞ þ ðn� 2Þ�AðkÞ�

þ 4

ðnþ 2kÞðn� 2k� 2Þ r
IrJð�@uhðkþ1Þ

IJ Þ

� 2ðnþ 2k� 6Þ
ðnþ 2kÞðn� 2k� 2Þ ½r

IrJðrI�C
ðkÞ
J Þ

þ CðkÞ
I rI��; (78)

for 0 � k < n=2� 2 and


m¼�@umþ 2

n�3
rI�@uC

ðn=2�1Þ
I �ðn�4Þ�Aðn=2�2Þ

þrI�rIA
ðn=2�2Þ

¼� �

2ðn�2Þ
_hð1ÞIJ

_hð1ÞIJþ 2

n�2
rIrJð�@uhðn=2�1Þ

IJ Þ

þ 1

n�2
½r2ð�Aðn=2�2ÞÞþðn�2Þ�Aðn=2�2Þ�

�n�5

n�2
½rIrJðrI�C

ðn=2�2Þ
J ÞþCðn=2�2Þ

I rI��; (79)

for k ¼ n=2� 2. We can show that

Z
Sn�2


gðkþ1Þd�¼0; and
Z
Sn�2

x̂i
gðkþ1Þ
uu d�¼0; (80)

for k < n=2� 2 and

Z
Sn�2


md� ¼ � 1

2ðn� 2Þ
Z
Sn�2

� _hð1ÞIJ
_hð1ÞIJd�; (81)

for k ¼ n=2� 2. See Appendix B for the details of the
calculations.

Equation (80) implies that translations u ! u� � pre-
serve the finiteness of the Bondi energy-momentum.
Equation (81) can be rewritten as

Ma
Bondi ! Ma

Bondi þ �
d

du
Ma

Bondi; (82)

where dMBondi=du is given by Eq. (44). Thus the Bondi
mass in our definition has the Poincaré covariance under
the asymptotic symmetry.

V. SUMMARYAND OUTLOOK

In this paper, we have investigated the asymptotic struc-
ture at null infinity in n-dimensional spacetimes using the
Bondi coordinates. Asymptotic flatness is defined by the
asymptotic behavior of gravitational fields at null infinity.
These boundary conditions are determined by solving the
Einstein equations. Although the Bondi mass seems to
diverge in the conformal method, we can show its finite-
ness from the Einstein equations in the Bondi coordinates.
And we can show that asymptotic symmetry at null infinity
should be the Poincaré group and the Bondi energy-
momentum is transformed covariantly under the Poincaré
group by using the Einstein equations. These results are the
same with those in [7,8] for even dimensions. Note that
the conditions for asymptotic flatness in [7,8] come from
the stability of weak asymptotic simplicity [13]. On the
other hands, our definition of asymptotic flatness comes
from the behavior of perturbations around the Minkowski
spacetime. In general, these two definitions may differ. The
Bondi mass will diverge unless our boundary conditions at
null infinity are not satisfied. In this sense we would expect
that our definition guarantees the stability of weak asymp-
totic simplicity at null infinity. Nevertheless, it is nice to
show that our definition is generic enough regardless of the
Minkowski spacetime as Refs. [7,8].
As our future work we will be able to consider angular

momentum at null infinity in n-dimensional spacetimes.
Since asymptotic symmetry at null infinity is the Poincaré
group without supertranslations in higher dimensions, we
can define the angular momentum. Indeed, we can define
the angular momentum and show its Poincaré covariance
in five dimensions [11].
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APPENDIX A: ððn� 1Þ þ 1Þ-DECOMPOSITION

The n-dimensional metric can be written as

gab ¼ �nanb þ �ab; (A1)
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where �ab is the (n� 1)-dimensional induced metric and
na is the unit normal vector, which is normalized by
nan

a ¼ �. Note that � takes þ1 or �1 which means the
normal vector is spacelike or timelike, respectively.

We define the extrinsic curvature as

Kab ¼ 1

2
Ln�ab: (A2)

Because na is the normal vector to the (n� 1)-
dimensional hypersurface, it can be written as na¼
�Nra� where � is a function which describes the hyper-
surface by � ¼ const and N is so-called lapse function.
Then, the Riemann tensor becomes

Refgh�a
e�b

f�c
g�d

gh¼ð�ÞRabcd��KacKbdþ�KadKbc;

(A3)

Refgd�a
e�b

f�c
gnd ¼ DaKbc �DbKac; (A4)

Racbdn
cnd ¼ �LnKab þ KacKb

c � �
1

N
DaDbN; (A5)

where Da denotes the covariant derivative with respect
to �ab. Note that we have used naranb ¼ ��Db logN.

The Ricci tensor becomes

Rabn
anb ¼ �LnK � KabK

ab � �
1

N
D2N; (A6)

Racn
a�c

b ¼ DaKab �DbK; (A7)

Rcd�a
c�b

d ¼ ð�ÞRab � �LnKab � �KKab þ 2�KacKb
c

� 1

N
DaDbN: (A8)

The Ricci scalar becomes

R¼ð�ÞR�2�LnK��K2��KabK
ab� 2

N
D2N

¼ð�ÞRþ�K2��KabK
ab� 2

N
D2N�2�raðKnaÞ: (A9)

The each components of the Einstein tensor are given by

Gabn
anb ¼ 1

2
ð��ð�ÞRþ K2 � KabK

abÞ; (A10)

Gacn
a�b

c ¼ DaKab �DbK; (A11)

Gcd�a
c�b

d¼ð�ÞGab��KKabþ2�KacKb
c

þ�

2
�abðKcdK

cdþK2Þ��LnKabþ��abLnK

� 1

N
DaDbNþ 1

N
�abD

2N: (A12)

APPENDIX B: DERIVATIONS OF (80) AND (81)

We will show Eqs. (80) and (81). At first we show the
former equation in Eq. (80). Since the integrations of the
total derivative terms vanish, we can obtain

Z
Sn�2


gðkþ1Þ
uu d�x¼

Z
Sn�2

�
2ðn�2Þ
nþ2k

�AðkÞ

� 2ðnþ2k�6Þ
ðnþ2kÞðn�2k�2Þr

I�CðkÞ
I

�
d�:

(B1)

Using Eqs. (31) and (34), we can see that

Z
Sn�2

CðkÞIrI�d� ¼ 2ðnþ 2k� 4Þ
ðnþ 2k� 2Þðn� 2kÞ
�

Z
Sn�2

rJh
ðkÞIJrI�d�

¼ � 2ðnþ 2k� 4Þ
ðnþ 2k� 2Þðn� 2kÞ

�
Z
Sn�2

hðkÞIJrIrJ�d�

¼ 0; (B2)

and

Z
Sn�2

�AðkÞd� ¼ � 4ðnþ 2k� 6Þ
ðnþ 2k� 2Þðn� 2kÞðn� 2k� 2Þ

�
Z
Sn�2

�rIrJhðkÞIJ d�

¼ � 4ðnþ 2k� 6Þ
ðnþ 2k� 2Þðn� 2kÞðn� 2k� 2Þ

�
Z
Sn�2

hðkÞIJ rIrJ�d�

¼ 0; (B3)

where we used the fact that hðkÞIJ are traceless for k < n=2.
Then we can show

Z
Sn�2


gðkþ1Þ
uu d� ¼ 0: (B4)

This is the former one in Eq. (80).
Next we show the latter one in Eq. (80). For this we can

see

Z
Sn�2

x̂i½r2ð�AðkÞÞ þ ðn� 2Þ�AðkÞ�d�

¼
Z
Sn�2

�AðkÞ½r2x̂i þ ðn� 2Þx̂i�d�
¼ 0; (B5)

Z
Sn�2

x̂irIrJð�hðkÞIJ Þd�¼
Z
Sn�2

�hðkÞIJ rIrJx̂id�¼0; (B6)
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and

Z
Sn�2

x̂i½rIrJðrI�C
ðkÞ
J Þ þ rI�CðkÞ

I �d�

¼
Z
Sn�2

rI�C
ðkÞ
J ½rIrJx̂i þ!IJx̂i�d�

¼ 0 (B7)

hold. In the above we used the tracelessness of hðkÞIJ . Using
of them, we can show

Z
Sn�2

x̂i
gðkþ1Þ
uu d� ¼ 0: (B8)

This is the latter one in Eq. (80).

Finally we show Eq. (81). Since the integrations on Sn�2

of the total derivative terms vanish,

Z
Sn�2


md�¼� 1

2ðn�2Þ
Z
Sn�2

� _hð1ÞIJ
_hð1ÞIJd�

þ
Z
Sn�2

�
�Aðn=2�2Þ�n�5

n�2
Cðn=2�2ÞIrI�

�
d�

¼� 1

2ðn�2Þ
Z
Sn�2

� _hð1ÞIJ
_hð1ÞIJd�; (B9)

where we used Eqs. (B2) and (B3) from the first to second
line. This is Eq. (81).
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