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Asymptotic flatness at null infinity in arbitrary dimensions
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We define the asymptotic flatness and discuss asymptotic symmetry at null infinity in arbitrary
dimensions using the Bondi coordinates. To define the asymptotic flatness, we solve the Einstein equations
and look at the asymptotic behavior of gravitational fields. Then we show the asymptotic symmetry and
the Bondi mass loss law with the well-defined definition.

DOI: 10.1103/PhysRevD.84.044055

I. INTRODUCTION

Recently inspired by string theory, the systematic inves-
tigation of gravitational theory in higher dimensional space-
times becomes more important. Indeed there are many
things to be studied. Asymptotic structure of higher dimen-
sional spacetimes is one of them. Asymptotically flat space-
times have spatial and null infinities. While the asymptotic
structure at spatial infinity has been investigated in arbitrary
dimensions [1,2], the studies on null infinity have been done
only in even dimensions [3-9] and five dimensions [10,11].

In four dimensions, asymptotic structure at null infinity
was investigated in two ways. One is based on the Bondi
coordinates [4,5] and the another is based on the conformal
embedding [3,12]. In the latter, we introduce the conformal
factor Q) ~ 1/r and we can study the behavior of gravita-
tional fields near null infinity in the conformally trans-
formed spacetime. This method can be extended to higher
dimensions, but even dimensions only [7-9]. The reason
why even dimensions is as follows. In n-dimensional space-
times, gravitational fields behave like ~1/7/271 ~ Qn/2~1
and then we cannot suppose the smoothness of gravitational
fields at null infinity due to the power of the half-integer in
odd dimensions. Thus the conformal embedding method
will not be useful for the investigation of the asymptotic
structure at null infinity in any dimensions.

Instead of the conformal embedding method, we could
safely define asymptotic flatness and study the asymptotic
structure at null infinity in five dimensions by using the
Bondi coordinates [10]. Therein one must solve the
Einstein equations and determines the asymptotic behavior
of gravitational fields which gives us a natural definition
of asymptotic flatness at null infinity. We can show the
asymptotic symmetry and the finiteness of the Bondi mass
in five dimensions. The purpose of this paper is the exten-
sion of this work to arbitrary dimensions. For simplicity,
we will consider the spacetimes satisfying the vacuum
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The remaining part of this paper is organized as follows.
In Sec. II, we introduce the Bondi coordinates in
n-dimensional spacetimes and write down the Einstein
equations in the language of the ADM formalism. In
Sec. III, the Einstein equations will be solved explicitly
and asymptotic flatness is defined by asymptotic behaviors
at null infinity. We also define the Bondi mass and show its
finiteness and the Bondi mass loss law. In Sec. IV, we shall
study the asymptotic symmetry. In Sec. V we will summa-
rize our work and discuss our future work. In Appendix A,
we give the formulas of the ADM decomposition which
will be used in Sec. III, and in Appendix B we show the
detail derivations of some equations.

I1. BONDI COORDINATES AND
ADM DECOMPOSITION

We introduce the Bondi coordinates in n-dimensional
spacetimes. In the Bondi coordinates the metric can be
written as

ds?=—AePdu? — 2ePdudr + y;,(dx! + C'du)(dx’ + C’/du),
(D

where x* = (u, r, x') denote the retarded time, radial
coordinate and angular coordinates, respectively. We also
impose the gauge condition as

Vdet’YIJ = rn*an_z’ (2)

where w,_, is the volume element on the unit (n — 2)-
dimensional sphere. In the Bondi coordinates, null infinity
is located at r = oo.

We perform the ADM decomposition with respect to
the r-constant surfaces (see Appendix A). The metric is
rewritten as

ds? = N*dr* + g, (dx* + N#dr)(dx” + N*dr), (3)

Einstein equation in higher dimensions. But, it is easy to where R

extend our current work into nonvacuum cases that matters N2 =& (4)
rapidly decay near null infinity. A’
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1
N" = 1 (%)
CI
NI = _X, (6)

and the induced metric of the r-constant surface

_AeB + CIC[ CJ )
= . (7
Dur < C; Y
Note that the capital Latin indices I,J,--- and the

Greek indices u, v, - - - are raised and lowered using y;;
and q,,, respectively. The unit normal vector to the
r-constant surface is given by n,=N(dr), and n%=
N~ '(9,—N*o ). The extrinsic curvature of r-constant
surface is defined as usual

1

1
Ky = Eﬁnqlw - ﬁ(arqiw — DuN, = D,N,), 8)

where D u denotes the covariant derivative associated with

q s
The induced metric on the r-constant surface is rewritten
as

g, dxtdx? = —a?du? + vy, (dx! + Bldu)(dx’ + B/ du),
9)
where
a’? = Aeb, Bl =Cl (10)

The timelike unit normal vector to the u-constant surface
is written as u, = —a(du), ' and u® = a~'(9, — B'9,)".
The extrinsic curvature of u-constant surface becomes
1
2
where D; denotes the covariant derivative associated with
¥1;- We have N = oA~ 'u® = Nu® from the definitions of
u® and N¢. Also we have n® = N~'(9,)* — u“.

For later convenience we define the following projected
quantities on the (n — 2)-dimensional space as

1
kyy==L,y,; = ﬁ(aﬂu - DB, —D,B), (11

1
0 =K, u'u" = —Nar(loga) + L, logN, (12)

1 1 N
=K u*=—29,B8 += D’l — 13
P uht = o 0P og_» (13

1
N a,Y1r — ki, (14)

=0 ,,u"*=0. Using of them, K,, is ex-

— Kn L
oy =Kgryr vy;m =

where p,ut
pressed by

K,, = 0u

nv

qu,, - 2,0(#14,,) + O-,uv- (15)

"This expression is valid on the induced manifold determined
by the r-constant surface. For the whole spacetime manifold we
should write it as u, = —a(du), — N(dr),
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Decomposition of Ricci tensor

The vacuum Einstein equation is R,, = 0. Let us de-
compose the n-dimensional Ricci tensor R,, into the
quantities on the (n — 2)-dimensional space:

R ,nnt = (0 —0) —L,0—-0)—6>+2pp,

1
- O'IJO'IJ + N.EuﬁuN + k£u IOgN
1
- NDZN — D;logaD"logN, (16)

R ynu®=—L,0—0k—k; ;0" +D,;p' +2p'D,loga,
(17)

A 1 N
R, uub = Nﬁl + 6> — 0o — 2p'p; + 2p'D;log—
(64

1
+ D'1ogND;loga + —D*a — Lk — k; k"
a

1
+ L0 =5 L LN, (18)

R yny"' =0D"loga —2p’k,! — p'k+ o' D, loga + D,V

~ Do+ D'~ [(5)~ Lpp'], (19)

1
R bua,ybI_Dj(kIJ_ ,yIJk)_o.pI_szUIJ_NDILMN

1 N
+ kD, logN ——(p') + D" log—
N a

N 1_ -
+o''D, log;-l-a[(p’) —Lgp'] (20)

N 1
R,y = —NU’—F Lo+ 00— a>—2p'p,

N 1
+2p'D;log— + L,k + k* — —D*«a
a a

1
— NDzN + kL, logN +% R (1)

and

1.

A 1 N
RuYivh=——=0l, "‘EUU _Eﬁﬁffu + PIDJIOg;

N
N
+ pJDllogE +(0—0)ay—2pip,

1 1

+ ZU'IKO'JK _ND[DJN_;DIDJO‘ + .Euk]J

+kk[]_2k1KkJK+k]]£u10gN+<7)R1J, (22)

where the prime and the dot, respectively, denote d, and
a,,and VR ;7 denotes the Ricci tensors with respect to ;.
In the aboves, we have used the following equations

044055-2



ASYMPTOTIC FLATNESS AT NULL INFINITY IN ...

N
')/MV.EHKMV = £n0'+ 20'"’0'[] - 2p1D110g—,
o

1 N
utu’L,K,, =N0’ —L,0—-20>+4p'p, —2p'D;log—,
@

1
g’ L,K,, =N(—0 +0)—L,(-0+0)+26°

—4p'p;+ 200",
1 1 1

) N
Yy,  LuK zﬁffb L ou +E£ﬁo'lj —P1D110gg

N

III. ASYMPTOTIC FLATNESS AT NULL INFINITY
AND BONDI MASS

In this section, we first solve the Einstein equations near
null infinity and examine the asymptotic behaviors of the
gravitational fields. Then these considerations give us the
natural definition of the asymptotic flatness at null infinity.
We also give the definition of the Bondi mass and momenta
and then show its finiteness. In the following, we write y;;
as y;; = r*h;; and the indices I, J are raised and lowered
by h 1J-

A. Constraint equations

Components of the vacuum Einstein equations R,, = 0
and R, y?? = 0 are the constraint equations which do not
contain u-derivative terms in the current coordinate sys-
tem. Then, once we solve the equations R,, = 0 on the
initial u-constant surface, R,, = 0 always hold in any
u-constant surfaces.

After direct calculations R,, = 0 becomes

,
B' = ooy stk h (24)

where the prime stands for the r-derivative. From
R,,v* = 0 we have

(r—3A) _ 2(n—2)

(n—2) ——v,c -2y
r

rn72
2,—B B
_r ez h]jCI/CJl_%hIJVIBVJB

e eB
—7V,(h”V,B) +7(")R, (25)

1 _

and from R,y 0 we have

-2
" SV, B+ OV Ry, (26)

r”_z (r”e_Bh”CJ')’ = _VIB/ +
where V; and "V, denote the covariant derivative with
respect to the metric of the unit (n — 2)-sphere w;; and h;;,
respectively. )R is the Ricci scalar with respect to ;.
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Once h;; are given on the initial #-constant surface, the
other metric functions A, B, C! are automatically deter-
mined through the above equations on the initial #-constant
surface. As seen later, it turns out that /;; contains the
degree of freedom of gravitational waves in n-dimensional
spacetimes.

We would suppose that /;; behaves near null infinity as
follows

hiyy=wy+ Zhy}+l)”_("/2+k_l) =w+ 0> "),
=0
27)

where the summation is taken over k € Z for even dimen-
sions and 2k € Z for odd dimensions. This comes from the
fact that h;; corresponds to gravitational waves. By the
gauge conditions of Eq. (2), hg’jﬂ) should be traceless for
k < n/2 — 1. Notice that we required the fall-off condition
which is expected through the asymptotic behaviors of
linear perturbations around the Minkowski spacetime. If
the fall-off of /;; would be O(r¥) for k > —(n/2 — 1), the
nonlinear feature would appear in the leading orders and
then the Bondi mass will diverge. As shown later, the
condition Eq. (27) corresponds to the outgoing boundary
condition at null infinity.

By Egs. (24) and (27), we can see that B behaves near

null infinity as
B = BWyr= =2 + O(r~(n=3/2), (28)

where
1
BY = — 16 a)IKwJLh(,lj)h(,é)L. (29)

Substituting Eq. (26) into Eq. (27), we find that C!
should behave

k<n/2—1
CI= Z C(k+l)lrf(n/2+k)_’_J[(u,xl)r*(nfl)+O(r7(nfl/2))’
k=0
(30)
where
2(n +2k—2
C(k+1)l — (I’l ) V,h“‘“)”. (31)

(n+2k)(n — 2k —2)
J'(u, x’) is the integration function in the r-integration.
It corresponds to the angular momentum at null infinity.
From the terms of the order of O(r~~1) terms in Eq. (20),
we obtain the constraint conditions on hg’}/ 2 as

V/h"? = 2v,B0), (32)

Substituting Eq. (25) into Eq. (27), we find that A should
behave as

k<n/2-2
A=1+ A(k+1)r7(n/2+k*1) _ m(u’ xl)r*(n*S)
k=0

+ 0(r~(n=3/2), (33)
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where
2(n + 2k — 4)
A+ — v ck+D
(n — 2k —4)(n + 2k —2) !
4(71 + 2k - 4) k+1
= - VIV R,

(n+2k)(n—2k—2)(n—2k—4)
(34)

m(u, x') is the integration function in the r-integration. It
corresponds to the energy and momentum at null infinity.
From the terms of the order of O(r~ V) in Eq. (25), we

obtain the constraint conditions on h;’,’/ 27D g

VI = v/ = o, (35)

To be summarized, if we impose the boundary condition
on h;; as Eq. (27), the behavior of other metric functions A,
B and C’ near null infinity are determined. We will regard
asymptotic behaviors as the definition of asymptotic flat-
ness at null infinity in n-dimensional spacetimes as

hyy=wy+ 0@ 270),  A=1+0(""2D),

(36)
B=0(r"""2), Cl=0(r""/?)

B. Bondi mass

Next we define the Bondi mass at null infinity in
n-dimensional spacetimes. Since g,, is expanded near
null infinity as

_ AN m(u )
Suu ™= /24 k=1 =3

+0(r~=5/2) (37)

we define the Bondi mass Mp,nqi(#) and momentum
M éondi(u) as

-2
My =" [ mac, (38)
167 Jor
i _n-2 si
Moo =" [ mitac, (39)

o

respectively. X' is the unit normal vector to the (n — 2)-
dimensional sphere which satisfies V,V,% + w2 = 0.
Thus each component of £ is described by linear combi-
nation of the / = 1 modes of the scalar harmonics on §” 2.
The Bondi energy-momentum is defined as Mg, =
(Mpongi» Miong)-

In the conformal method [7-9], the Bondi mass is de-
fined as Mpongi~ [ 27" CopupdQ~ [ a1 02g,,dQ,
where C‘abcd is the n-dimensional Weyl tensor. At first
glance it seems to diverge at null infinity because
" 192g,,~r*72AW (it is shown that the Bondi mass is
finite via an indirect argument in the conformal method
[9].). However, since AT can be written as A®*1 o
viv/ hg’}H) (see Eq. (34)), A%V has no contribution to
the mass and momentum at null infinity for k < n/2 — 2 as
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[ AR Q) =
Sn*?.

Thus the Einstein equations guarantee the finiteness of the
Bondi mass and momentum regardless of the dimension.

o FAKNAQ = 0. (40)

C. Evolution equations

The remaining components of the Einstein equation
describe the evolution equations of gravitational fields.
The equation R, y° ;¥?, = 0 represents the evolutions of
h;;. Indeed near null infinity we can obtain for 0 = k <
n/2—1,

. 1 1
(k+ 1A% = —5(n =2k = 4)AE a, + o[ = 6n
1
— (4k2 + 4k — 16)]A}" D + E(—v2h§’;“’

1
+ 2V VERGEY) =5 (n = 2k = 4V, €

_VKC%(-'—I)(U[], (41)

where the dot denotes the u-derivative. Note that the evo-
lutions of h(,lj) cannot be determined from the above equa-
tion. h?} are free functions on the initial u-constant surface.
Contracting Eq. (41) with V/V’ and using Eq. (34), we can
obtain the evolution equations of A**1 as
n+22k-—2
2k + 1)(n + 2k + 2)
(n + 2k — 2)%(n — 2k — 4)
8(k+ 1)(n + 2k +2)

Ak+2) — V2 AK+1)

A®D(42)

From R,,uu” = 0, we can obtain the evolution equa-
tion of m(u, x') as

. 1 Wy L T 5 1 ~(n/2-2)
= —_— @ _I_ .
T A R
TR ) (43)
n—72

Integrating this equation over the unit (n — 2)-sphere,
we can obtain the Bondi mass loss law as

d 1

L Mpopgi = — —— KA a0 < 0. (44
du Bondi 307 g2 1J ( )

Thus, the Bondi mass always decreases by gravitational
waves and this justifies that our boundary conditions of
Eq. (27) correspond to the outgoing boundary condition at
null infinity.

VI. ASYMPTOTIC SYMMETRY

In this section we discuss the asymptotic symmetry at
null infinity. We also confirm the Poincaré covariance of
the Bondi mass and momentum.
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A. Asymptotic symmetry

Asymptotic symmetry is defined to be the transforma-
tion group which preserves the asymptotic structure at null
infinity. The variations of asymptotic form of metric at null
infinity are given by

88, =0, 88, =0, g"8g;;,=0 (45)

88, = O(r=/271),
5gur = 0("7("72)))

5gul = 0("7(”/272));

4
8g1y = O(r~"/279), o
where 6g,, = Ligu = 2@(515,,) and ¢ is the generator of
asymptotic symmetry. In the following we consider the
asymptotic symmetry in n > 4 dimensional spacetimes.
The condition of Eq. (45) comes from the definition of
the Bondi coordinates and the explicit forms are

6grr = Lfgrr = _2€B(§u)/ =0, 47)
88,1 = L8, = —€PDE" + v, CI(EY) + vy (&) =
(48)
7”5811 = Y”ﬁggu
= & (logy)' + £"(logy) + 2D;€" +2C'D,é"
=0, (49)

where y = dety,,. Then, using y,; = r*h;, and the gauge
condition of Eq. (2), we can obtain £“ satisfying the above
equations as

= f(ur xl)r (50)

B
&= fl(u, x') + / drer—zh”VJf(u, ), (51)

£r= (Y, + V), (52)

n—

For later convenience, we write down the asymptotic
behavior of ¢ near null infinity as

£ = —flu x") + 0~ "2), (53)

k<n/2-2

&= P03 = i)+ 3 (i
k=0

n+2k—2 - _
Tty - T (,"“)’V,f)r (n/24+k—2)

+ O(r~n=3), (54)
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P [sz’ i m—n+ (-2
n—72 r

k<n/2-2
— r n+2k—2

k+1 k+1

LCEV o )Vlvff>r(n/2+kl):|
r n -+ Zk (l’l - 2)r

+O0(r-n73), 4

Next let us consider the boundary conditions of Eq. (46).
The each components of metric variations are

2r 0 2 9
8guu=——=—Vifl ——— —(V2f+(n—2
Suu n—20u If n_zau( f (Vl )f)
+ 2009, 10272 4 o(p~ /27D, (56)
1 1
6gur = f[vlf - (n - 2)auf]
n—2
k<n/2-2
< n+2k—2 hy}Jrl)VIVJfr_(”/Hk)
& (n—2)(n+2k)
+0(r~ "), (57)
r
8gu[ r aufl — 2aI[vaJ - (I’l - 2)auf]

1
> O[V2f + (n—2)f1+ 1o, f7r (/273

+ O(F—(n/z—z))’ (58)

K V2
081y =2r [v(lfj) f2 wu:l ZF[VIVJf fzwu]
+ o<f<n/H>>. (59)

To satisfy the boundary conditions of Eq. (46) for these
equations, we will find that f and f! should satisfy

auf’ =0, (60)
K 0
Vifi+V,fi= KJ; Wy, V,f’z(n—Z)a—f, (61)
u
V2
V,V,f= f2 wyy. (62)

Integrating the trace part of Eq. (61), we can obtain

F(x’)

f= u+ alxh), (63)

where F =V, f! and a(x’ ) is an integration function on
§"~2. Here we can show from Egs. (62) and (63) that F
satisfies

VIVJF = ;(DIJVZF, (64)
n—2
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and also contracting Eq. (61) with V/V’ we have
V2F + (n —2)F = 0. (65)

The general solutions to these equations for F are the [ = 1

modes of the scalar harmonics on S$"72. Next from
Egs. (62) and (63) we can see that
1
VIVJa = —a)uvza (66)
n—2

should hold in n > 4 dimensions. The general solutions to
this equations are / =0 and / = 1 modes of the scalar
harmonics on §" 2.

To be summarized, f can be written as

f:f0+fl(u’x1)r (67)

where f is a constant and corresponds to the / = 0 mode
in a. f;(u, x') contains the / = 1 modes in F and « for
n > 4 dimensions. Thus we can show that f satisfies the
following equations:

ViV f+(n=2)f)=0, 0,(V*f+(n=2)f)=0, (68)

in n > 4 dimensions. In addition, since V,V,f « w;; and
h(lljﬂ) are traceless for k < n/2 — 1, the gauge condition of
Eq. (2) implies that A\ "VV/V/ f vanishes for k < n/2 — 2
in Eq. (57). As a consequence, we could confirm that the
transformations satisfying Egs. (60)—(62) keep the bound-
ary conditions (46).

It is worth noting that Eq. (61) gives another condition
for f(‘m)’ which is the transverse part of f’ , namely, sat-
isfying V, f"! = 0. We find that Eq. (61) corresponds to
the Killing equation V; f(Jtra) +V, " =0 on §"2 be-
cause of the transverse condition. This means that 2/
is the Killing vector on S§"=2 Therefore, the transforma-
tions generated by the transverse part of f! are trivial and
we could focus on only the longitudinal part of f/ which
generates nontrivial transformations.

Here we give the short summary. We could show that the
asymptotic symmetry is generated by f and f7 satisfying
Egs. (60)—(62). The parts of f, which are not proportional
to u, generates a translation group. f! generates the Lorentz
group. Then the asymptotic symmetry at null infinity is the
Poincaré group.

Before closing this subsection, we have a comment
on four-dimensional cases for the comparison. In four-
dimensional cases, the boundary conditions to be held are

88 = O(r™ ), 88, = O(r™),
8g. = O(1), ogr = o(r).

Then, if f and f7 satisfy Egs. (60) and (61), the trans-
formations keep the above boundary conditions. Note that
the condition (62) is not required because the second term
in the right-hand side in Eq. (59) already satisfies the
boundary conditions and has no additional restriction to
f in four dimensions. Therefore there is no restriction on «

(69)
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where f = F(x")u/2 + a.Hence « is an arbitrary function
on S? in four dimensions while in n > 4 dimensions «
should be /=0 or [ =1 mode. The former condition
V,(V2f + (n — 2)f) = 0 in Eq. (68), which comes from
Eq. (58), does not hold in four dimensions because « can
have /> 1 modes. However since the third term in the
right-hand side in Eq. (58) already satisfies the boundary
conditions (69) in four dimensions, that condition is not
required. The / > 1 modes of « correspond to the gener-
ators of the so-called supertranslation group. Thus the
asymptotic symmetry is the semidirect group of super-
translation and Lorentz group in four dimensions rather
than the Poincaré group.

B. Poincaré covariance

Next we shall confirm the Poincaré covariance of the
Bondi mass and momentum. Since the asymptotic symme-
try is the Poincaré group, we expected that the Bondi mass
and momentum should be transformed covariantly under
the action of its Poincaré group. In practice, under the
translation of f = a(x/) and f/ = 0, the Bondi energy-
momentum is invariant, that is,

Ml%ondi - Ml(; (70)

ondi*

However, since we consider dynamical spacetimes, it is
easy to expect the contribution from gravitational waves
under translation u — u — a. Thus the Bondi energy-
momentum M{, .. should be transformed under the trans-
lation as

Mﬁondi(u) - M%ondi(u) + ‘EfMg

ondi

d
= Mo () + - M), (71)

where the second term in the right-hand side represents the
effect of gravitational radiations. Let us look at the details.
For the translations, the generator £, becomes

& =—a+ 0 "), (72)

k<n/2-2

+2k—2
&=—rVa+ Z [aCSkH)—in hgljﬂ)vja]
k=0

n+2k
X (/252 4 o~ (7Y), (73)

£ = _k<§_2|:n+2k—4
u n+2k—2

X /2D o n73), (74)

Cgkﬂ)vla + aA(kH)]

6g,, can be computed as

8gu = 2V,E,

k=n/2—2
— Z 5gslku+])r7(n/2+kfl) + 0(,,70175/2))’ (75)
k=0
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where
4
k+1 k+1
885414 ) = maucg )VIOZ - aauA“‘“)
+2k—4
S TERT T AW 4 VIV, AP, (76)

In particular, for k = n/2 — 2
dgul* V) = ém
2 _
= ad,m + —3 3V1a6uC§"/2 b
— a(n — 4)AN2D + VIaV,AW2=D - (77)

By using Eqgs. (34), (42), and (35), we can rewrite 6g(k+1)

as

2
(k+1) 2(wA®Y + (5 — (k)
Sl = [V (@A®) + (2 = DaA®]
4
+
(n + 2k)(n — 2k — 2)
_ 2(n+2k—6)
(n + 2k)(n — 2k — 2)
+ OV ) (78)

VIV (ad, hl)

[V!V/(V,aCP)

for0 =k <n/2—2and

dm=ad,m+—— v’aauc("/2 D (n—4)@A®/27?)

+ VlaVIA(”/Z 2)

___ G« h(,lj)h(')” + vlvj( 9 h(n/zﬂ))
2(n—2)
+ —Z[Vz(aA(”/z_z)) +(n—2)aA"/272]
n—
n—>5

——— 2[v1vf(v,ac§"/ T+ CPIV ] (79)
for k = n/2 — 2. We can show that

8g*ktVd0 =0, and sgk a0 =0, (80)

S'ﬁz S"72

for k<n/2 — 2 and

j omd() =
S)I*Z

for k = n/2 — 2. See Appendix B for the details of the
calculations.

Equation (80) implies that translations u — u — « pre-
serve the finiteness of the Bondi energy-momentum.
Equation (81) can be rewritten as

1 o
- ADRDE g0 (81
2(n —2) jsm i @1)

d
M]%ondi - M]%ondi +a E M]%ondi’ (82)
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where dMpg,,qi/du is given by Eq. (44). Thus the Bondi
mass in our definition has the Poincaré covariance under
the asymptotic symmetry.

V. SUMMARY AND OUTLOOK

In this paper, we have investigated the asymptotic struc-
ture at null infinity in n-dimensional spacetimes using the
Bondi coordinates. Asymptotic flatness is defined by the
asymptotic behavior of gravitational fields at null infinity.
These boundary conditions are determined by solving the
Einstein equations. Although the Bondi mass seems to
diverge in the conformal method, we can show its finite-
ness from the Einstein equations in the Bondi coordinates.
And we can show that asymptotic symmetry at null infinity
should be the Poincaré group and the Bondi energy-
momentum is transformed covariantly under the Poincaré
group by using the Einstein equations. These results are the
same with those in [7,8] for even dimensions. Note that
the conditions for asymptotic flatness in [7,8] come from
the stability of weak asymptotic simplicity [13]. On the
other hands, our definition of asymptotic flatness comes
from the behavior of perturbations around the Minkowski
spacetime. In general, these two definitions may differ. The
Bondi mass will diverge unless our boundary conditions at
null infinity are not satisfied. In this sense we would expect
that our definition guarantees the stability of weak asymp-
totic simplicity at null infinity. Nevertheless, it is nice to
show that our definition is generic enough regardless of the
Minkowski spacetime as Refs. [7,8].

As our future work we will be able to consider angular
momentum at null infinity in n-dimensional spacetimes.
Since asymptotic symmetry at null infinity is the Poincaré
group without supertranslations in higher dimensions, we
can define the angular momentum. Indeed, we can define
the angular momentum and show its Poincaré covariance
in five dimensions [11].
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APPENDIX A: ((n — 1) + 1)-DECOMPOSITION
The n-dimensional metric can be written as

8ab = €N, + Yabs (Al)
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where 7y, is the (n — 1)-dimensional induced metric and
n“ is the unit normal vector, which is normalized by
n,n® = €. Note that € takes +1 or —1 which means the
normal vector is spacelike or timelike, respectively.

We define the extrinsic curvature as

1
Kab =5 Ln Yab-

> (A2)

Because n, is the normal vector to the (n — 1)-
dimensional hypersurface, it can be written as n,=
eNV Q) where () is a function which describes the hyper-
surface by () = const and N is so-called lapse function.
Then, the Riemann tensor becomes

Refgh YaEYbfYCnggh = (Y)Rabcd - EKuchd + eKadec’
(A3)

Refgd'}/ae’)/bf'}/cgnd = DaKbc - DhKuC) (A4)

1
Rycpann® = — L, K,y + K, K, ¢ — e DaDuN. (AS)
where D, denotes the covariant derivative with respect

to v,,. Note that we have used n“V,n, = —eD; logN.
The Ricci tensor becomes

1
Rapnn® = = L,K = KK — €. DN, (A6)

R,.n"yS = DK, — DK, (A7)

Reavay,* = YR, — €L,K,, — €KK,j, + 2K, K,°

1
— —D_D,N. A8
N a™b ( )
The Ricci scalar becomes
2
R=YR—-2eL,K— eK*— €K, K — NDZN
2
=WR+ eK?— €K, K — ND2N —2€V,(Kn%). (A9)

The each components of the Einstein tensor are given by

1
G pnnt = E(—.sW)R + K2 — K, K), (A10)

Goeny,* = DK, — D,K, (Al1)

GeaVa v, =G, — eKK,,+2€K,.K,°
+§7ab(chKCd + Kz) - E‘EnKab + 670b-£11K

1 1
__DanN+N7abD N.

N (A12)
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APPENDIX B: DERIVATIONS OF (80) AND (81)

We will show Egs. (80) and (81). At first we show the
former equation in Eq. (80). Since the integrations of the
total derivative terms vanish, we can obtain

2(n—2)

n+2k
2(n+2k—06)

C(n+2k)(n—2k—2)

885{?1)de = 2[ aA®
Sn_

Sn—2

v1ac§">]d9.
(BI)
Using Egs. (31) and (34), we can see that

2n + 2k — 4)
(I O =
o O Vi = =20

X s VJh(k)IJvIadQ
N

 2n+2k—4)
(n + 2k —2)(n — 2k)

X '[Sn72 h(k)lijVJadQ

=0, (B2)

and

An + 2k — 6)
40 — —
fSH A = = ) — 2k —2)

x f aVIV Y a0
Sn—2

- 4(n + 2k — 6)
(n + 2k — 2)(n — 2k)(n — 2k — 2)

X f WV adQ
o

=0, (B3)

where we used the fact that hyj)

Then we can show

are traceless for k < n/2.

f 2 Sgkran = o. (B4)
N

This is the former one in Eq. (80).
Next we show the latter one in Eq. (80). For this we can
see

[ F 7 @A®) + (0~ Daatla0
Sn—z
= aAW[V2R + (n — 2)51dQ

S"72
0, (B5)

fs 8,V (ahi)d0 = fs ahVIVI§dQ =0, (B6)
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and
[s H[VIV(V,aCy) + VaCld0
- [SH V,aCWIVIVIE + w!'£i1dQ
- (B7)

hold. In the above we used the tracelessness of hy}). Using
of them, we can show
[ Zﬁiagi,’;“)dﬂ =0. (B8)
N

This is the latter one in Eq. (80).
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Finally we show Eq. (81). Since the integrations on §" 2
of the total derivative terms vanish,

1

[ (D) g (1)1
- Sdmd() 200=2) Jgrs ah;;h dQ)
4 [ [aA(”/2_2) _n 5c<n/2—2>1v,a]dn
g2 n—2
1 (1)

where we used Eqs. (B2) and (B3) from the first to second
line. This is Eq. (81).
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