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We study the absorption of a massless scalar field by a static black hole. Using the continuity equation

that arises from the Klein-Gordon equation, it is possible to define a normalized absorption rate �ðtÞ
for the scalar field as it falls into the black hole. It is found that the absorption mainly depends upon

the characteristics wavelengths involved in the physical system: the mean wave number and the width

of the wave packet, but that it is insensitive to the scalar field’s strength. By taking a limiting procedure,

we determine the minimum absorption fraction of the scalar field’s mass by the black hole, which is

around 50%.
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I. INTRODUCTION

Black holes, a concept that emerged from the simplest
exact solution of Einstein’s equations, are some of the most
fascinating objects in gravitational physics. Equally fasci-
nating is our current belief that most galaxies must host a
supermassive black hole (SMBH) in their center, with mass
values in the range of 105 to 1010 solar masses, most likely
in a state of very low matter accretion nowadays [1,2].
In particular, the measurements of the velocities of stars
near the center of the Milky Way have provided strong
evidence for the presence of a SBH with a mass of around
4� 106M� [2].

There are some models that attempt to explain the
present existence of galactic SMBH’s. Among others, we
can mention the collision of two or more black holes to
form a larger one, the core collapse of a stellar cluster, and
the formation of primordial black holes directly out from
the primordial plasma in the first instants of time after the
big bang [3].

The key point in the discussion are the features of the
precise mechanism under which a black hole can accrete
enough matter to become supermassive. In particular, some
authors have proposed that primordial black holes (PBH)
can go supermassive simply by accreting matter from a
cosmological scalar field related to dark energy (quintes-
sence). In a first study, the authors in [4] (see also [5–7])
found that PBH could have effectively accreted enough
matter from a quintessence field endowed with an expo-
nential potential.

The calculations for the accretion were in fact based
upon the simple and exact results of the accretion of a
massless scalar field into a black hole found in [8], see also
[7,9,10]. However, the results in [4] were later refuted in
[11], where it was shown that the quintessence flux must
decrease slower than t�2 for PBHs to grow at all. This same

result seems to have been confirmed by other authors under
more general assumptions [9,10,12].
On the other hand, a related topic is the use of a cosmo-

logical scalar field as a model for dark matter in the
Universe [13], and the possibility that they can be the
dominant matter in galaxy halos [14]. If so, then one has
to address the accretion of this dark matter scalar field into
the central SBH that seems to be present in most galaxies
[15,16].
The aim of this paper is to present some simple results of

the interaction of a scalar field with a black hole, with
numerical calculations based upon previous works in the
literature [17] that may be useful in the understanding of
the accretion, in general terms, of cosmological scalar
fields into black holes.
We shall make use of the fact that there exists a continuity

equation of the scalar field as long as the background space-
time is static [17]. This fact will allow us to quantify the
absorption rate of a scalar wave packet by a black hole in a
more precise manner in terms of absorption flux and decay
rates. For simplicity, we will only focus our attention in the
case of a massless scalar field.
A brief summary of the paper is as follows. In Sec. II we

set the mathematical background for the equations of
motion, boundary conditions, and initial conditions for
the scalar field’s wave packet. Here we also show the
existence of a continuity equation arising directly from
the equation of motion of the scalar field. In Sec. III, we
present the main numerical results, and the description of
the fall of the scalar field in terms of a normalized absorp-
tion rate. The latter arises naturally from the use of the
continuity equation found in Sec. II. Finally, Sec. IV is
devoted to conclusions and final comments.

II. MATHEMATICAL BACKGROUND

We first consider a fixed Schwarzschild background with
an Eddinton-Finkelstein (EF) gauge, which is defined such
that tþ r is an ingoing null coordinate. Using the 3þ 1
decomposition of the metric [17,18], the 3-metric �ij is
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�ij ¼ diag½a2ðrÞ; r2; r2sin2��; (1)

where a2ðrÞ ¼ 1þ 2GM=r,G is Newton’s constant, andM
denotes the mass of the black hole. The lapse � and shift
�i ¼ ½�; 0; 0� functions are, respectively,

�ðrÞ ¼ a�1ðrÞ; �ðrÞ ¼ 2GM

a2ðrÞr : (2)

It is illustrative to calculate the coordinate velocities of null
geodesics, that are given by

dr

dt
¼ c� � ��� �=a: (3)

Notice that the use of the EF gauge, from Eqs. (2), is
manifest through the condition c� ¼ �1 for all points in
the background spacetime (we use units in which c ¼ 1).

The Klein-Gordon (KG) equation for a massless self-
interacting scalar field � is

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ ¼ 0: (4)

In order to solve it, it proves convenient to define two first
order variables [14,17],

�ðt; rÞ ¼ @r�; �ðt; rÞ ¼ 1

�
ð@t�� ��Þ; (5)

with the help of which Eq. (4) is represented by the
following three first order equations

1

�
ð@t�� �@r�Þ ¼ �; (6a)

1

�
ð@t�� �@r�Þ ¼ @r�þ �

2r
�þ @r��; (6b)

1

�
ð@t�� �@r�Þ ¼ @r�

a2
þ a2 þ 1

r

�

a4
þ K�; (6c)

where K is the trace of the extrinsic curvature.
Equation (6a) arises from the very definition of � and �,
whereas the equation for �, Eq. (6b), arises from the
combination of Eqs. (5); that of � in Eq. (6c) arises from
the original KG equation (4).

We shall take the quantity ðGMÞ as the unit for distance
and time, so that the radial and time coordinates are made
dimensionless through the change r ! ðGMÞr̂ and t !
ðGMÞt̂, where a hat denotes dimensionless variables.
Notice that the unit for distance and time is half the usual
Schwarzschild radius, rS � 2GM. The scalar field is made

dimensionless by the change � ! �̂=
ffiffiffiffi
G

p
. Accordingly,

the rest of the scalar field variables should be changed by

the expressions � ! ðm3
Pl=MÞ�̂, and � ! ðm3

Pl=MÞ�̂,
where the Planck mass is defined as m2

Pl ¼ G�1.

We will impose outgoing-radiation boundary condition
upon our field variables at the outermost points of the
numerical grid. As for the innermost points, as long as
they are inside the event horizon, there is no need to put a
boundary condition, because the light cones there point

inwards in the EF gauge, that is, cþ < 0 and c� ¼ �1, see
Eqs. (2) and (3).
The initial data for the scalar field in our numerical

experiments will be a Gaussian profile modulated by a
spherical wave of the form

�̂ðrÞ ¼ A
cosðk̂0r̂Þ

r̂
e�ðr̂�r̂0Þ2=	̂2

; (7)

which is centered at r̂ ¼ r̂0, and has amplitude A and
width 	̂. The Gaussian distribution of wave numbers in

Fourier space has a mean value hk̂i ¼ k̂0, and variance

hðk̂� k̂0Þ2i ¼ 1=	̂2. It should be noticed here that the
wave number was made dimensionless by the change

k ! k̂=ðGMÞ.
On the other hand, by means of a lengthy but otherwise

straightforward calculation, it can be shown that the KG
equation (4) can be written in the form of a continuity
equation [17]

@t
̂� 1

r̂2
@r̂ðr̂2ĴrÞ ¼ 0; (8)

where the charge density 
̂ and the scalar field current

density Ĵr are, respectively,


̂ ¼ 1

2

�
�̂2 þ �̂2

a2

�
þ �

�
�̂ �̂; (9a)

Ĵr ¼ �ð�̂2 þ �2�̂2Þ þ �ð�2 þ a2�2Þ�̂ �̂ : (9b)

In what follows, we will skip the hats of the variables, in
the understanding that they have been made dimensionless.
We may use a hat again on the variables whenever con-
fusion may arise.

III. NUMERICAL RESULTS

The massless scalar field corresponds exactly to the
solution of the (homogeneous) wave equation in a curved
spacetime. One important feature of the massless case,
which is helpful for the study of wave packets, is that the
field keeps its shape as it falls into the black hole.
Heuristically, this can be seen from the fact that the phase
vp and group vg velocities of the wave packet are both

equal to that of light, vp ¼ vg ¼ c�. For illustration pur-

poses, this nice feature can be seen directly in the motion of
the wave packets shown in Fig. 1.
We are solving differential equations with a finite differ-

encing method, which involves the truncation of a Taylor
series expansion. It is then necessary to show the proper
convergence of numerical output as the spatial grid is re-
fined. In Fig. 2, we show numerical runs with three different
resolutions, where R1 has coarse resolution, R2 has medium
resolution, and R3 is the finest. As expected, the runs show
that the numerical code is second order convergent.
To study the rate at which the a scalar field wave packet

is absorbed by the black hole, we rely on the continuity
equation. Notice that Eq. (8) looks pretty much the same as
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a typical conservation equation in flat spacetime. Taking a
bounded proper volume V, we find

@t
Z
V

ffiffiffiffiffiffiffi�g
p


drd�¼@t
Z
V
4�r2
dr¼4�ðr2JrÞjr2r1 : (10)

Under the assumption that the scalar field current decays
rapidly enough as r2 ! 1, we find the useful result

1

M�

dM�

dt
¼ � 4�

M�

ðr2JrÞjrS ¼ ��ðtÞ; (11)

where M� ¼ 4�
R
V r

2
dr is the total scalar field mass

contained in the proper volume V. In fact, M� is the

conserved charge of the field as suggested by the continuity
equation (8). We can monitor the absorption rate of the
(total) mass of the wave packet by calculating the scalar
field current going through the inner surface; in our case,
the inner radius is the black hole’s horizon, r1 ¼ rS.
Following standard notation in physics, we have denoted

the decay rate of thewave packet’s mass as�ðtÞ, whose units
are given in terms of ðGMÞ�1. In our case, this decay rate is
just the normalized flux at the horizon of the black hole,
being the normalization factor the total mass of the wave
packet that still remains outside the black hole’s horizon.
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FIG. 2 (color online). Convergence plot for the numerical
code used to solve the KG equation in a fixed Schwarzschild
background. The example corresponds to the maximum of the
wave function �max at each time in the simplest case k0 ¼ 0
(see also Fig. 1). Shown are three different runs with resolutions
R1: �r ¼ 0:025, R2: �r ¼ 0:0125, and R3: �r ¼ 0:006 25. The
plots, after the indicated scaling, agree in their profile, then
the numerical output is second order convergent.
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FIG. 1 (color online). Motion of a Gaussian packet for different values of its mean wave number k0, see Eq. (7). The wave packets
retain their shape as they approach the black hole’s horizon, located at r ¼ 2. The wave packets were given ingoing initial conditions,
� ¼ �. The time in each row proceeds from right to left.
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Typical curves for the decay rate are shown in Fig. 3. An
interesting and unexpected result is that the (normalized)
decay rate �ðtÞ does not depend on the Gaussian’s ampli-
tude A, that is, it does not depend on the field’s strength.
This means that larger packets are absorbed at the same
rate as are smaller packets. We can notice though that the
mean wave number has an effect on the absorption, as the
latter increases for larger values of k0.

If we integrate Eq. (11), we can find the total mass
outside the horizon as a function of time,

M�ðtÞ
M�;i

¼ exp

�
�

Z
�ðtÞdt

�
¼ expð��ðtÞÞ; (12)

where M�;i is the initial total mass, and �ðtÞ is the

(exponential) absorption ratio. If the integral is calculated

for the total time the wave packet is interacting with the
black hole, it should give us the total absorption ratio of the
wave packet. For the cases shown in Fig. 3, we have found
that absorption is about 92% for k0 ¼ 0, and 100% for
k0 ¼ 2. As a matter of fact, our numerical experiments
showed that total absorption is always achieved if k0 � r�1

S

(see also [19]).
As a final step, we study the dependence of � on the

width of the wave packet; for definiteness, we focus our
attention in the case k0 ¼ 0, which is also the most dis-
persive one. Numerical results are shown in Fig. 4, and we
notice that the absorption decreases as the wave packet
becomes wider. It can be verified that the points can be
fitted by a function of the form

�ð	Þ ¼ e0e
�e1	 þ e2; (13)

where, in the present case, a fitting procedure shows that
e0 ¼ 4:98, e1 ¼ 0:259, and e2 ¼ 0:67. In particular, if
wave packets as wide as necessary were allowed, then
Eq. (13) suggests that the total absorption would be

lim
	!1�ð	Þ ¼ 0:67: (14)

IV. CONCLUSIONS

The motion of a wave packet in a black hole spacetime
raised some interest in the cosmological community be-
cause of the possibility that SMBH could have grown
because of the accretion a quintessence-type scalar field.
This is not the only possible case, but we can ask the same
question about any other cosmological scalar field living
around a black hole.
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FIG. 3 (color online). The (normalized) decay rate �ðtÞ, see
Eq. (11), of a massless scalar field� as it flows through the black
hole’s horizon. The units are given in terms of ðGMÞ�1, which
for a typical mass of 106M� gives �� 0:2 s�1. The runs were
performed for different values of the amplitude A and of the
mean wave number k0 of the wave packet (7), whereas the width
was fixed to 	 ¼ 5. The total interaction time between the black
hole and the wave packet is around tT ’ 4	 in the two cases. The
decay rate increases for larger values of k0, but it is insensitive to
the values of the amplitude A, i.e., to values of the scalar field’s
strength.
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FIG. 4 (color online). Total absorption ratio �, see Eq. (12),
for different widths of the wave packets; for all runs k0 ¼ 0. The
amplitude A was adjusted in each case as to always have the
same total mass M� at the initial time. This is not strictly

necessary, as the decay rate is independent of the packet’s
amplitude. We also show the fitting function (13).
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We have explored the simplest possibility, that of a
massless scalar field, for the motion of a wave packet in
a fixed black hole spacetime using an EF gauge. To have a
better visualization of the absorption of the scalar field by
the black hole, we took advantage of the fact that one can
write out a continuity equation from the KG equation.

The corresponding conserved charge is the total mass of
the wave packet, but more important is the definition of a
current density,with the help ofwhichwewere able to define
a (normalized) decay rate for the wave packet, whose mag-
nitude is given by the black hole’s mass, �ðtÞ � ðGMÞ�1.
This means that less massive black holes accrete scalar
field matter at a larger rate; for example, a black hole
as massive as the Sun would accrete at an incredible rate
of �� 105 s�1! In terms of the decay rate, we too found
that the absorption depends on the mean wave number
of the wave packet; actually, full absorption is reached
for mean wavelengths smaller than the Schwarzschild
radius, k0 > r�1

S .

However, a new result showed up: the decay rate
does not depend on the scalar field’s strength. Moreover,
we could use this result to show the dependence of the
absorption on the packet’s width. By a limiting procedure
on a fitting function, we determined the maximum total
absorption of a wave packet with a width much larger
than the black hole’s horizon: around e�0:67 ’ 0:51.
This is the result that may have relevance for cosmology,
as we expect cosmological scalar fields to have very
large intrinsic length scales (k0 ! 0 and 	 ! 1) as com-
pared to the Schwarzschild radius of supermassive black
holes.

In the massless case studied here, there were two length
scales involved: the mean wavelength �0 ¼ k�1

0 , and the

width of the wave packet 	. We were able to show the
general dependence of the (normalized) absorption rate on
these length scales. In general, we can say that black holes
are quite efficient in absorbing scalar fields, even in the
case of very wide packets.
The method outlined here can be extended to the massive

case. However, in the case the scalar field has a mass m,
additional length scales appears in the problem in the
form of the Compton length of the field, �C � m�1 and
the Schwarzschild radius rS (in the massless case, the
Schwarzschild radius does not appear explicitly in the
equations of motion) that may introduce nontrivial features
in the motion of the wave packet and its absorption rate.
This is ongoing research that we expect to report elsewhere.
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