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In general relativity, the fields on a black hole horizon are obtained from those in the bulk by pullback and

restriction. Similarly, in quantum gravity, the quantized horizon degrees of freedom should result from

restricting, or pulling back, the quantized bulk degrees of freedom. This is not yet fully realized in the—

otherwisevery successful—quantization of isolated horizons in loop quantumgravity. In thisworkweoutline

a setting in which the quantum horizon degrees of freedom are simply components of the quantized bulk

degrees of freedom. There is no need to quantize them separately. We present evidence that for a horizon of

sphere topology, the resulting horizon theory is remarkably similar to what has been found before.
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I. INTRODUCTION

The quantization of an isolated horizon is a remarkable
success of loop quantum gravity [1–13]. However, it is
only an effective description, in the sense that it uses a
number of elements that are not intrinsic to the formalism
of loop quantum gravity. For example, the location of the
horizon is fixed to be the boundary of the space-time, and
the fields on the boundary, although related to those in the
bulk, are quantized separately, using a symplectic structure
that is derived from the one on the bulk fields in the
classical theory [4,11].

The goal of the present work is to advocate a slightly
more intrinsic viewpoint. For this, we take as the input from
the classical theory only the horizon boundary conditions

F(ðAÞ ¼ ��ð1� �2Þ
aH

�
(
ðEÞ: (1.1)

Here, A and E are the canonical variables of loop quantum
gravity, F is the curvature of A, � is the dual of E, and the
arrows denote pullback to a given surface H that is an
isolated horizon [14] of type I. We have stated here the
SU(2) isolated horizon condition from [10,11] since it uses
less external input.Wewill however also be treating amodel
with the U(1) condition from [3,4]. States� that contain a
black hole horizon are then solutions to an equation—in the
quantum theory—of the structure

F̂(� ¼ ��ð1� �2Þ
aH

�̂
(
�; (1.2)

where the operators on both sides are defined in terms of
elementary operators of loop quantum gravity. Wewill also
refer to surfaces S in (1.2) as horizon branes. They can be
thought of as loci of very highly excited quantum fields—
such that (1.2) is satisfied. Such branes are not to be found in
the kinematic Hilbert space of loop quantum gravity.

Rather, these states lie in different representations of the
holonomy-flux algebra, due to the branelike excitations.
In fact, the present work can be viewed as a continuation

of some lines of thought in the earliest work [1] connecting
horizons in loop quantum gravity to topological quantum
field theory. The author of Ref. [1] were prescient in many
ways, for example, by introducing SU(2) boundary con-
ditions similar to (1.1), for identifying Chern-Simons-
theory as describing the horizon degrees of freedom, and
for linking the size of the horizon state space to the entropy
of a black hole. It also already contained the idea that the
observables on the horizon should form a subablgebra of
the full algebra of gravity observables.
What we will do is to collect evidence that the condition

(1.2) allows for solutions � that are remarkably close in
structure to what has been found upon quantizing the
Chern-Simons phase space on the horizon. In particular,
we will present evidence that, by restricting such states and
the loop quantum gravity operators to the horizon, one will
obtain a theory that resembles quantum SU(2) BF theory in
the spherical case, or, for general horizon topologies,
ISU(2) Chern-Simons theory [15,16]. Thus, for the case
of spherical topology, which is most relevant for the de-
scription of black holes, we seem to obtain a very similar
state counting. Thus, no separate quantization of the hori-
zon degrees of freedom seems to be necessary. Those
degrees of freedom are already part of the quantized gravi-
tational field of loop quantum gravity.
Let us sketch the evidence thatwe have: For one thing, for

a model in which the structure group SU(2) is replaced by
U(1), we can find exact solutions to the analog of condition
(1.2). The resulting surface theory resembles U(1) BF the-
ory coupled to particles. For the case of SU(2), we do not
have all the technical details in hand. Our preliminary
analysis shows, however, that a gauge invariant state that
solves (1.2) is, when restricted to the brane, a solution of the
constraints of SU(2) BF theory, at least formally.
Obviously, our proposal, even if made fully rigorous

in the SU(2) case, is not a fully quantum-mechanical*sahlmann@apctp.org
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description of black holes. For example, the horizon area
still appears in (1.2). It is, rather, one step in this direction. In
fact, more radical proposals have been made [2,17–19].

Some of the ideas and results contained in this work
have already been implicitly or explicitly articulated in the
literature on quantum isolated horizons. We have already
mentioned [1]. Reference [4] contains a detailed discussion
of how to split the space of generalized connections into
a boundary and a bulk part, and how the connections
appearing in U(1) Chern-Simons theory with particles
define generalized connections. As another example, in
[11] certain operators in SU(2) Chern-Simons theory are
identified with certain loop quantum gravity operators.
What is new in the present work is that we take these ideas
as far as possible.

In the next section, we will use heuristic considerations
to support the new picture. In Sec. III we discuss, in some
technical detail, a U(1) model. Section IV contains the
results we obtained for the SU(2) case. We finish with a
discussion of the results and open questions in Sec. V.

II. HEURISTIC CONSIDERATIONS

In general relativity, the fields on a black hole horizon
are obtained from those in the bulk by pullback or restric-
tion. Similarly, in quantum gravity, the quantized horizon
degrees of freedom should result from restricting, or pull-
ing back, in a suitable way the quantized bulk degrees of
freedom. In the previous literature on quantum isolated
horizons, the pullbacks of the bulk degrees of freedom have
been quantized separately, starting from a symplectic
structure that was obtained from a boundary term in the
symplectic structure of general relativity. Here we want to
proceed differently: We start from the holonomy-flux al-
gebra A that is a quantization of the kinematic degrees of
freedom of general relativity in the connection formula-
tion. This algebra makes no reference to horizons or branes
whatsoever. Then we will look for representations of A
which contain states that solve (1.2). Finally, once we have
solutions of (1.2) in hand, we can consider the action on
these solutions, by operators localized, in a suitable sense,
in H. This constitutes the ‘‘horizon theory.’’

Let us start by considering the classical theory, and make
an inventory of the degrees of freedom on the horizon. In
the canonical formulation, the gravitational fields live on a
spatial slice S of space-time. We take S to be orientable
and oriented. In terms of connection variables, the fields
are A [an su(2) valued connection one-form] and E (a triad
of vector densities). They are coordinates in a phase space
given by the Poisson brackets

fAi
aðxÞ; Eb

j ðyÞg ¼ 8�G��b
a�

j
i�ðx; yÞ: (2.1)

We now consider a two-dimensional submanifold H of S.
We note that with a view towards black hole horizons, the
case of H being homeomorphic to S2 is the most relevant
one. At this point, we will however only assume that H is

compact, connected, and orientable, and we will chose an
orientation. Note also that H need not be a boundary of S.
If S has a boundary, then H may or may not be part of that
boundary.
If we restrict attention toH, we can divide up A and E as

follows. First, we have the components intrinsic to H, the
pullbacks

E(
:¼ i�HE; A(

:¼ i�HA; (2.2)

where iH is the embedding of H in S. We note that these
fields precisely correspond to the kinematic canonical
variables of SU(2) BF theory, if the brackets (2.1) are
extended in a suitable way to the pullbacks.
Next, there are the remaining components of A and E on

H. These can be given as

A? :¼ AðnÞ; �
(
:¼ i�H�; (2.3)

where n is a fixed transversal vector field onH, and� is the
dual of E,

�i ¼ �ijke
j ^ ek ¼ 1

2E
a
i �abcdx

b ^ dxc; (2.4)

with e the spatial triad. The conditions (1.1) link A( with �
(
.

Fixing � and imposing the conditions on H completely

fixes the curvature of H
(

and hence most of the gauge
invariant degrees of freedom contained in A(. What remains

are essentially the holonomies around nontrivial cycles in
H. Again we note that this is in analogy to SU(2) BF
theory, now after imposition of the constraints.
After having organized the classical degrees of freedom

on the horizon, we now come to the quantum theory. Here
the object we have to consider is the holonomy-flux algebra
A [20–23], since it encodes, on an abstract level, the
quantization chosen in loop quantum gravity. The elements
of A corresponding to A can be thought of as functions of
the holonomies of A. They form an Abelian subalgebra
Cyl. The elements corresponding to the densitized triad E
are quantizations of the ‘‘fluxes’’

ES;f ¼ 2
Z
S
fI�I; (2.5)

where S is a surface in S. The pullback of A on H is then
encoded in the cylindrical functions that just depend on
holonomies in H.
The pullback of E is encoded in the flux through S \H

for surfaces S transversal to H. Operators corresponding to
such ‘‘fluxes through one-dimensional submanifolds’’ are
sometimes also considered part of A (as in [24,25]) and
can, in any case, be defined in the Ashtekar-Lewandowski
(AL) representation of A. Even if one does not want to
consider these operators, the information about the pull-
back of � is certainly contained in the quantized flux
through S for surfaces S transversal to H.
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The component A? is quantized in holonomies transver-
sal to H, and the pullback of � has its exclusive quantiza-
tion by flux operators for surfaces S within H.

Now that we have accounted for the degrees of freedom
on H in A, we can try to answer the question: Can we
consistently ask for condition (1.2), given the commutation
relations in A?

The first thing to note is that

½ES;f; h�� ¼ 0 for �; S � H; (2.6)

which is good news as (1.2) would become extremely
restrictive, if not inconsistent, if the pullbacks of � and A
were not commuting. The next thing to note is that only
holonomies are contained inA, not the connection A itself,
nor its curvature. Thus (1.2) can not be imposed as it
stands. Fortunately, the non-Abelian Stokes theorem (see
for example [26]) relates surface integrals of curvature
with holonomy,

h�½A� ¼ P exp∯ SF ½A�: (2.7)

Here � is a loop that bounds the surface S,F ¼ hFh�1½A�
is the curvature F ¼ DAA of A, transported to the begin-
ning/endpoint of �, and the surface integral on the right-
hand side is surface ordered. We should mention that for
this formula to hold, S must be simply connected. Using
Stokes’ theorem, one can thus replace certain functionals
depending on the curvature, with functionals depending on
the connection, in the classical theory. The idea is, then, to
replace (1.2) with

h@S� ¼ P exp∯ S �
2�ð1� �2Þ

aH
h�h�1�: (2.8)

Since surface integrals of � act nontrivially only at trans-
verse intersections by holonomies, a spin network edge
that punctures H will correspond to nontrivial holonomy
around @S ¼ �, see Fig. 1. But now an immediate concern
is whether it is possible to define the complicated opera-
tor—let us call itWS—on the right-hand side. For the trace
of WS in the j ¼ 1=2 representation this question was
answered affirmatively in [27]. We will describe some of
the details below, in Sec. IV. Here it suffices to say that the
main difficulty in defining the right-hand side is that be-
cause the components of � do not commute, there is an
ordering ambiguity. The authors of Ref. [27] pointed out a
way to resolve this ordering ambiguity by using a device

from the theory of Lie algebras, the Duflo map. Using this
ordering, spin network functions are eigenstates of the
operator WS under many circumstances, and the corre-
sponding eigenvalues are related to path integral expecta-
tion values of Wilson loops in SU(2) Chern-Simons theory.
We remark that there is an apparent contradiction be-

tween the fact that holonomies inA commute, whereas the
operators WS certainly do not commute with holonomies
in general. So how can it be equal to a holonomy? The
resolution is that it is certainly not equal to a holonomy in
general, (2.8) being a highly nontrivial condition on the
state. The only thing that follows from this consideration is
that the action of holonomy operators on a solution � of
(2.8) can, in general, not be a solution again.
While both sides of (2.8) are defined in the AL repre-

sentation, the standard representation of loop quantum
gravity, there are no solutions to (2.8) in this representation.
To find solutions of (2.8), there are then at least two
possible strategies: One can take the properties of the
operators on the left-hand side in the AL representation
of A, and use them to define a nonstandard representation
of the operators on the right-hand side, or, vice versa, use
the standard representation of the right to seek a nonstan-
dard representation of the left-hand side. We chose the
latter possibility in this article, for the reason that the
results seem to compare well with previous work.
In the AL representation of A, the action of flux opera-

tors ES;f is concentrated on transversal intersections of

holonomies with S, and this continues to hold for the
operator WS. Thus we need to find a state such that this
is the case also for holonomies within H. We can use the
fact that the space of generalized connections factorizes
into a space of connections on H, and a space of connec-
tions in the ‘‘bulk,’’

�A ¼ �AH � �A?: (2.9)

The standard representation is defined by the AL measure

on �A. The idea is now to modify this measure on �AH in a
suitable way. Essentially what one wants to define are
measures

�ð �AHÞ
�
F½A�ðxÞ �X

i

ci�
ðHÞðpi; xÞ

�
d�ALj �AH

� d�ALj �A?

(2.10)

where the first delta function is a functional Dirac-delta-
function, and the second one is the ordinary Dirac delta
on H. In the Hilbert space generated by such a measure,
one can then find solutions to (2.8), by considering spin
networks that end in the pointspi and adjusting the constants
ci appropriately. In the U(1) model, this construction goes
through quite literally. In the SU(2) case, we have no rig-
orous proof that, with the right-hand side evaluated on a state
in the AL representation, (2.8) rigorously defines a measure

on �AH, of the form indicated above. But it is clear that, with
the right-hand side well defined, the holonomies on all

α
H

S

FIG. 1 (color online). A spin network edge punctures H that
results in nontrivial holonomy around @S ¼ �.
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contractible loops inH are fixed, at least up to conjugation,
and thus there are no local gauge-invariant degrees of
freedom left in the holonomies on H. There are, however,
holonomies that are not fixed by (2.8), holonomies that run
between punctures, and also around nontrivial cycles ofH if
not simply connected. There are thus nontrivial holonomy
operators for those, and thus provided that the measures can
be constructed rigorously, all the observables related to the
connection are represented.

What about the fluxes? What happens to the flux opera-
tors when one changes; the measure has been studied in
detail in [22,28]. The upshot is that if one modifies the
measure, one has to modify the fluxes by adding a diver-
gence term,

�ðES;fÞ ¼ XS;f þ i

2
div�ðS; fÞ (2.11)

to have the operators still symmetric. Here XS;f is a certain

derivation on the cylindrical functions. This divergence can
be ill defined (more precisely, not L2 as would be required)
for a delta function in the measure, thus existence of
symmetric flux operators ES for which S touches the
surface is, at first sight, questionable. But it turns out that
all the fluxes one needs are actually well defined for a
measure of the form (2.10). First off, the delta function in
(2.10) concerns only A(, but �(

corresponds to an operator

acting on A?. Thus all the fluxes ES with S � H are well
defined and symmetric without any change. Moreover,
whenever a holonomy variable is constrained by the delta
function in the measure (2.10), there is no corresponding
degree of freedom in the quantum theory, hence no way for
any fluxes to act in a nontrivial way. Vice versa, the action
of the flux operators is well defined on holonomies that
represent degrees of freedom leftover under the measure.
To summarize, some flux operators may not be well de-
fined, but their failure to exist can be understood easily, and
they are not needed for the physical interpretation of the
resulting theory, anyway.

Let us make some remarks about the properties of the
measure (2.10) and the consequences for the state spaces:
The first one is that in the case of H being a topological
sphere, there are no nontrivial cycles, so the only degrees of
freedom on H reside in holonomies connecting the punc-
tures (and in the conjugate fluxes). Gauge invariant states
are constructed out of such holonomies, and holonomies in
the bulk, by forming spin networks.A priori, there are many
different ways of forming the spin network component on
H but many of them will describe the same state, due to the
flatness constraint built into the measure. In fact we will
argue that the independent states onH, given the punctures,
are labeled by a single intertwiner between the spins at the
punctures. This is very close to the pictures in [4,10]. Note
that this is fully born out in the U(1) case.

The second remark is that, again due to the flatness
constraint built into the measure, the exchange of punctu-
res leads to the same state up to a nontrivial phase. Thus the

punctures enjoy a nonstandard statistics, and counting
states modulo diffeomorphisms is nontrivial. This is again
reminiscent of [4,10], and it is actually vital to obtain
proportionality between area and entropy of the horizon.
The arguments that we have given so far are somewhat

heuristic, if encouraging. We will show, however, that they
can be made completely precise in a model with structure
group U(1), to which we turn next. We will then begin to
address the case of structure group SU(2). We will discuss
more details in Sec. IV.

III. U(1) BOUNDARY CONDITIONS

In this section, we consider the kinematics of loop
quantum gravity, but with the structure group SU(2) re-
placed by U(1) [29]. In this model we replace condition
(1.2) by

h@S� ¼ e�½ð2�i�Þ=aH�ES�; (3.1)

between a quantized U(1) connection A and a quantized
vector density E. Note that this is precisely the isolated
horizon condition obtained by gauge fixing to U(1) as used
in [4]. Much of the material of this section will remain
valid if the gauge fixing is just carried out on the horizon, in
particular, the quantum theory on the horizon as far as the
connection is concerned.
Irreducible representations of U(1) are labeled by inte-

gers, and hence the generalized spin networks correspond
to functions

T�;n½A� ¼
Y
e2�

ðhe½A�Þne ; (3.2)

which are usually called charge networks. They are gauge
invariant, whenever the incoming charges equal the out-
going charges at each vertex,

X
e into v

ne ¼
X

e out of v

ne for all v: (3.3)

Charge nets commute with the operator ES as follows:

½ES; T�;n� ¼ XS½T�;n� ¼ 2��‘2p

� X
v2�[S

X
e at v

�ðeÞne
�
T�;n;

(3.4)

where it is assumed that all edges intersect S in vertices of
�, and� isþ1,�1, or 0, depending on whether the edge is
oriented consistently1 with the surface, the opposite way as
the surface, or is tangential to the surface. XS is a derivation
on the space of charge nets.

1What we mean by ‘‘consistent’’ is the following: Both S and
S carry orientations. Let ðs1; s2Þ be a positively oriented basis of
tangent vectors to S. Then if ðs1; s2; tÞ is positively oriented in S,
with t the tangent of e in the intersection point, then we call the
orientations of e and S consistent.
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Given a charge network, we can always decompose it as

T�;n ¼ T�H;nHT�?;n? ; (3.5)

where �H � H and �? intersects H only transversally.
Thus, given ð�; nÞ, in view of (3.1) and (3.4) we need a
state � such that for loops @S in H, we would have

h@S� ¼ e

�2�i=k
P

p2S\�?
mp

�; (3.6)

where we have set k ¼ aH=‘
2
p and mp ¼ P

e at p�ðeÞne.
We will call

P ¼ fðp1; m1Þ; ðp2; m2Þ; . . . ; ðpN;mNÞg (3.7)

puncture data. Equation (3.6) means that the connection on
H must be a (quantized) flat connection,

FðAÞðxÞ ¼ �2�=k
X
i

mi�ðx� piÞ: (3.8)

We will see, however, that due to the fact that (3.6) only
speaks about holonomies, not the curvature itself, if we
change the puncture data, by adding to each mi a multiple
of k, the quantum state on the horizon will not change.
Thus one may also view the mi as elements of Zk.

A. Lebesgue measure on flat connections

We will now define a functional on charge networks
that can be regarded as Lebesgue integral on connections
that fulfill (3.8) for some puncture data fðp1; m1Þ;
ðp2; m2Þ; . . . ; ðpN;mNÞg. We will see that in the case that
H ’ S2 the functional is only well defined ifX

i

mi ¼ 0 mod k; (3.9)

and that the actual parameters of the state we construct
are not the mi but the mi mod k. Let us also define H0 ¼
H � fp1; . . .pNg.

It is clear what to do in principle: A given charge network
T�;n with � � H needs to be decomposed into factors such

that we can apply (3.6) to split the variables into ones that are
free, and ones that are determined. But this has to happen in a
consistent way, and the bookkeeping involved in doing this
by hand gets unwieldy very quickly. Fortunately homology
theory comes to the rescue (see for example [30] for a gentle
introduction to the concepts used below). Note first that by
subdividing and adding edges, � can always be made into
the 1-skeleton of a subcomplex of the singular chain com-
plex of H0. Then, given this subcomplex, a labeling of the
graph edges with charges n defines a 1-chain

n ¼ X
niei (3.10)

with integer coefficients. T�;n is gauge invariant precisely

whenn is a cycle,@n ¼ 0. There is a natural pairing between
chains and one-forms, and, in particular, between the chainn
and connections A,

hnjAi ¼ X
i

ni
Z
ei

A: (3.11)

The connections A relevant for the definition of the func-
tional are flat, dA ¼ 0. Let us assume for the moment that
@n ¼ 0. Then the above pairing is gauge invariant, and hnj�i
is a functional on the first de Rham cohomologyH1ðH0;RÞ.
Let flig be a basis of elementary cycles ofH0, and let faig be
the dual basis in H1ðH0;RÞ. Then we introduce parameters
	i to write

að	Þ ¼ X
i

	iai: (3.12)

Now we can define the state. Let

�0ðT�;nÞ¼
Z 2�

0
...
Z 2�

0
ehnjað	ÞiY

pi

2��ð	iþ2�ni=kÞ
Y
j

d	j

2�
:

(3.13)

Note that this formula is manifestly invariant under subdi-
vison of the graph underlying n, and under adding new
edges. It is thus consistentwith the equivalence of labelings
of charge network functions. It also defines a positive func-
tional. To see this, let f ¼ P

IcIT�;nI
. Then

�0ðjfj2Þ ¼ X
IJ

cI cJ
Z

ehnJ�nI jað	ÞiY
pi

�ð. . .Þd	

¼
Z ��������

X
I

cIe
hnI jað	Þi

��������
2Y
pi

�ð. . .Þd	 � 0: (3.14)

Before we study further properties, let us extend this defini-
tion to a state � on not necessarily gauge invariant charge
networks, by simply declaring� to be�0 on gauge invariant
charge networks, and zero otherwise. More formally, let

�ðT�;nÞ :¼ �00ðT�;nÞ�0ðT�;nÞ with �00ðT�;nÞ ¼ �ð@nÞ:
(3.15)

This does not spoil positivity: It can be easily seen that�00 is
positive. Thus, given charge nets T�;nI

, the matrices

M0
IJ ¼ �0ðTnJ�nI

Þ; M00
IJ ¼ �00ðTnJ�nI

Þ (3.16)

are positive semidefinite. But then the Hadamard product
M0 �M00 (obtained by multiplying the matrices entrywise)
is positive semidefinite according to the Schur product theo-
rem, and hence for f ¼ P

IcIT�;nI

�ðjfj2Þ ¼ X
IJ

cIcJðM00 �M0ÞIJ � 0: (3.17)

Now we discuss the Gelfand-Naimark-Segal (GNS) repre-
sentation given by �. We will denote the ground state by
j0iP , and the GNS state corresponding to T�;n by jniP . The
dependence on� is left implicit to improve readability. Note
that since � has a large kernel, many GNS vectors actually
have zero norm.
First, let � be the boundary of a surface S in H. Then

either � is contractible, in which case for the correspond-
ing cycle we can write @S ¼ �, and note
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h�jað	Þi ¼ h@Sjað	Þi ¼ hSjdað	Þi ¼ 0: (3.18)

Or� goes around a puncture, in which case h�jað	Þi ¼ 	j

for some 	j that is in a delta function in (3.13). Thus for

arbitrary n we find

hnjh�j0iP ¼
Z

eih��njað	Þid	

¼ hnj0iP �
� 1 if � ¼ @S

expð�2�inj=kÞ: if � around pj

:

(3.19)

Since the vectors jni are dense by construction, this shows
that j0i is an eigenstate to h�, and that it solves (3.6). Since
charge networks commute, the calculation also shows that
T�;nj0i is again a solution to (3.6),where� is any graph inH.

Let us now briefly discuss the properties of the state
under diffeomorphisms. It turns out that for a diffeomor-
phism’ ofH that is connected to the identity and that fixes
the punctures, as well as the boundary 0-cycle @n of a
charge net T�;n, one finds

j�; niP ¼ j’ð�Þ; niP : (3.20)

We will not prove this in detail, but just sketch the idea.
Consider first an edge e in H and its image ’ðeÞ under a
diffeomorphism ’ that is the identity outside of a compact
region, and drags part of e as in Fig. 2. In this case Te;n and

T’ðeÞ;n are related by a cycle �,

Te;nT’ðeÞ;�n ¼ T�;n: (3.21)

If ’ fixes the punctures, � cannot contain a puncture, and
we find

kje; ni � j’ðeÞ; nik2
¼ !ðjTe;nj2 þ jTe;nj2 � Te;�nT’ðeÞ;n � Te;nT’ðeÞ;�nÞ
¼ !ð1þ 1� T�;�n � T�;nÞ
¼ 0; (3.22)

since � ¼ @S and hence!ðT�Þ¼0. Thus je;ni¼ j’ðeÞ;ni.
With a similar calculation, one can show that one can move
gauge invariant vertices in a charge network without
changing the corresponding GNS state (see Fig. 3).

B. Extension to A

We can now extend the state we found in the preceding
section even further, to charge networks T�;n that have

graphs in S. To that end we use the decomposition (3.5)

of a general charge net T�;n into the product T�H;nHT�?;n?

where the first factor is entirely in H and the second is
transversal to H. Then set

!ðT�;nÞ ¼ �ðT�H;nH Þ!AILðT�?;n?Þ (3.23)

where !AIL is the state devised by Ashtekar, Isham, and
Lewandowski. ! is positive by virtue of the Schur product
theorem: For f ¼ P

IcIT�;nI
we have

!ðjfj2Þ ¼ X
IJ

cIcJðMH �M?ÞIJ (3.24)

where the product on the righ- hand side is again the
Hadamard product, and the matrices

MH
IJ ¼ �ðTnHJ �nHI

Þ; M?
IJ ¼ !AILðTn?J �n?I

Þ (3.25)

are positive semidefinite, because � and !AIL are.
Thus for each puncture data P , we have found a state on

the charge networks. The resulting GNS representation has
the properties we have discussed in the previous section on
H, and the standard properties of the AL representation
away from H. We note that according to general results
[21], the state ! defines a measure on generalized con-
nections on S.
Given this representation of ‘‘half’’ of the holonomy-

flux algebraA, we will now briefly discuss whether the flux
operators ES can be represented alongside the charge net-
works. How this question can be answered for general
representations has been discussed in [22,28]. The main
obstruction is that the fluxes have to be symmetric, thus
for nontrivial measures on generalized connections, a
‘‘divergence term’’ has to be added to the derivative,
see (2.11). This divergence term may fail to exist in the
proper sense, thus making it impossible to represent flux
operators. In the present case, the situation is as follows:
(i) All flux operators ES with S \H ¼ ; can be

defined.
(ii) All flux operators ES with S � H can be defined.
(iii) All flux operators ES with S \H a 1-cycle2 can be

defined.

The first point is obvious. The second point is due to the
fact that the derivations XS related to flux operators forn

= .
n

n

n

FIG. 2 (color online). Relation between a charge network edge
and its transformation under a diffeomorphism.

FIG. 3 (color online). Relation between a charge network and
its tranformation under a diffeomorphism.

2The orientation of S \H can be defined using the orientation
of S, the orientation of S, and the orientation of H.
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surfaces S � H only act nontrivially on holonomies that
intersect S, and hence H, transversally. But the measure
relevant for those edges is just the AL measure, and hence
no divergence term is needed.

There is a problem representing fluxes through S where
S \H is not a cycle. The problem is related to the fact that
the action of the corresponding derivation XS can turn a
function that is null with respect to ! into one that is not.
Consider, for example, the two nontrivial cycles �1 and �2

in Fig. 4. We have

j�1; niP ¼ j�2; niP ; (3.26)

but

XSðT�1;n � T�2;nÞ ¼ nT�1;n � T�2;n; (3.27)

and the corresponding GNS vector is not zero. For S \H a
cycle, this cannot happen, and the flux ES is well defined as
we will show in the following. We consider a spin net T�;n

in H. According to (3.4), it is an eigenstate of XS,

XST�;n ¼ mðS \H; nÞT�;n: (3.28)

Take first the case that @n ¼ 0. Then we claim m is a
topological invariant of S \H; n. To see this, we recall
that the intersection of two 1-cycles inH defines a 0-cycle,
and its homology class depends only on the homology
classes of the two 1-cycles, by means of Poincaré duality.
NowH0ðH;ZÞ ¼ Z, so this class is given by an integer. We
apply this to the case of the cycles S \H and n. The integer
is then precisely given by mðS \H; nÞ up to a global sign
that depends on conventions. That this is so can be seen by
inspecting the way the coefficients work in (3.4) and in the
definition of the intersection 0-cycle. ThusmðS \H; nÞ is a
topological invariant, and the definition

ESjniP ¼ mðS \H; nÞjniP (3.29)

makes sense, and is manifestly symmetric. Note that m is
zero if n is a trivial cycle with respect to the homology ofH
(i.e. contractible, possibly by crossing punctures), so in the
cases in which symmetry of the operator might be an issue,
namely, when it acts on a loop around a puncture, the
action is trivial.

The case where @n � 0 can be treated with a similar
argument, by noting that for two charge nets n and n0,

jniP ¼ const:jn0iP (3.30)

precisely when they are in the same homology class in
H1ðH;ZÞ. But in that case, as remarked above, they differ
by a boundary @S0, and

mðS \H; nÞTn ¼ XS½Tn� ¼ XS½Tn0T@S0 �
¼ XS½Tn0 �T@S0 þ Tn0XS½T@S0 �
¼ XS½Tn0 �T@S0 ¼ mðS \H; n0ÞTn; (3.31)

whence mðS \H; nÞ ¼ mðS \H; n0Þ and (3.29) is well
defined also in this case.
Thus we have a representation of a large class of fluxes,

in fact, as many as we can expect to recover, given that
(3.1) freezes many of the degrees of freedom on H.

C. Gauge invariant solutions

It remains to write down gauge invariant solutions to
(3.1). To this end, consider puncture data

P ¼ fðp1; m1Þ; ðp2; m2Þ; . . . ; ðpN;mNÞg (3.32)

and work in the GNS representation corresponding to this
data. Then it is easy to see the following: The space of
solutions is spanned by charge networks n that
(1) intersect H precisely in the punctures p1 . . .pN ,
(2) satisfy, for all punctures pi,X

e at pi

�ðeÞne ¼ mi: (3.33)

We note that these solutions are not necessarily
gauge invariant. The gauge invariant solutions
form a subspace.

Let us make a few comments on the structure of the
representation with puncture dataP and the space of gauge
invariant solutions.
The case H ’ S2. The case in which H has S2 topology

is the one usually considered for a black hole horizon. Then
there are no nontrivial cycles. Consequently, there is no
nontrivial gauge invariant charge network that is lying
entirely in H,

jniP ¼ const:j0iP for n � H: (3.34)

For a general gauge invariant charge network n, we find
that due to the diffeomorphism invariance of the measure

on �AH, we can always label the part nH that is lying in H
in such a way that there is at most one edge emanating from
each point on H that is intersected by n?, and all of these
edges meet in a single point (see the left-hand part of
Fig. 5). Furthermore, due to the fact that in this case a
loop surrounding all the punctures is contractible inH0, we
get (3.9).
Finally, so far we have only studied the action of diffeo-

morphisms that keep the punctures fixed. Let us briefly
take a glimpse at the action of diffeomorphisms that move
punctures (those transformations will move states between

FIG. 4. A surface the flux of which does not have a well-
defined action on surface states.
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different GNS Hilbert spaces). One would eventually like
to mod out these transformations, but this is a nontrivial
task due to the following fact: When one considers the
process of exchanging two punctures by diffeomorphisms
that leave the other punctures invariant, one finds that there
are two ways to do it, see Fig. 6. There must be a relative
phase that is picked up on the way, because the two final
states differ by a phase

’ ¼ eð2�i=kÞðm2n2�m1n1Þ: (3.35)

This means that the punctures must obey some kind of
anyonic statistics. This is very encouraging, as it was found
when studying the entropy of isolated horizons, that punc-
tures cannot behave like identical particles. They must be,
to a certain extent, distinguishable to account for a linear
area-entropy relation [7].

We note that in all of these aspects, the U(1) case
compares very well to the quantization of an isolated
horizon when gauge fixing to Uð1Þ before quantization.
Here too, the state on H of solutions of the horizon condi-
tion is uniquely determined by the structure of the punc-
tures. The connection onH can be considered flat except at
the punctures, and the punctures obey nontrivial statistics.
The fluxes m1 . . .mN determine the measure only mod k,
and their sum must be 0 mod k for consistency. The only
difference is that due to the fact thatH does not have to be a
boundary of S, there is no strict correlation between the
flux through H at a puncture, and the flux of gauge charge
into H. Consider, for example, the puncture in Fig. 7: The

measure on �AH near the puncture is fully determined by
the fluxm ¼ �ðn1 þ n2Þ throughH at the puncture. Gauge
invariance gives the condition n1 ¼ n2 þ n3. Thus there
are different configurations with the same flux possible at a
given puncture.

The general case: The case where H has more general
topology shows all the same features that we have de-
scribed above for H ’ S2. The only difference is that there
is a nontrivial space of gauge invariant charge network
states that lie entirely within H. For genus g there are 2g
nontrivial cycles that contribute nontrivial holonomies (see
Fig. 5, right-hand side). In this case, for a gauge invariant
charge net n, the part nH in H can be decomposed into a
part connected with the punctures, with a single internal
vertex analogous to what happened in the S2 case and a part
completely internal to H. This decomposition is, however,
not necessarily unique; see Fig. 8.

IV. TOWARDS QUANTUM ISOLATED HORIZONS
WITH SU(2) BOUNDARY CONDITIONS

Now we will describe, how far we can get for the SU(2)
case, in taking the same steps as in the U(1) model. The
goal is again to construct state ! that induces GNS repre-
sentation of the holonomy-flux algebra containing solu-
tions to (1.2).
The crucial difference between the U(1) model inves-

tigated so far, and the situation for SU(2) is that due to the
non-Abelian nature of SU(2), the operators WS [see (2.8)]
are highly nontrivial. In the U(1) case, the corresponding
object was just the exponential of an operator, (3.1). Thus
let us start with a summary of the properties of these
operators that can be gleaned from [27].

A. The surface operators WS

In this section we will discuss the properties of the
operators WS. All the results we give are either contained
in [27] or easily obtainable with the methods contained in

FIG. 5 (color online). Graphs of two gauge invariant charge
nets, for the case of H ’ S2 (left) and H ’ T2 (right).

FIG. 6 (color online). Two ways to permute two punctures:
Left, the original configuration, middle and right, the two final
states of the permutation.

FIG. 7 (color online). Gauge invariance gives a condition on
n1, n2, and n3, but does not fix the flux m ¼ �ðn1 þ n2Þ
(‘‘outside’’ of H is to the right).

FIG. 8 (color online). Change in decomposition of an
H-charge net.
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that work. A more thorough investigation of the properties
of the WS is still desirable and will be undertaken else-
where [31].

The first property we want to list is that given two
surfaces S1, S2 that intersect each other at most nontrans-
versally, i.e., in such a way that they are both contained in a
bigger surface S, then the traces of the corresponding
operators commute,

½trjðWS1Þ; trj0 ðWS2Þ� ¼ 0; for S1; S2 � S: (4.1)

Here and in the following, trj stands for the character in the

irreducible representation of SU(2) labeled by the half-
integer j,

tr jðWSÞ ¼ trð�jðWSÞÞ: (4.2)

The next property that will be important for us is that traces
of the operatorWS are diagonalized by spin network edges
that pierce the surface S. For states �j having one spin-j

edge puncturing S and exiting S on the other side, we find

tr1=2ðWSÞ�0 ¼ q� q�1

q1=2 � q�1=2
�0;

tr1=2ðWSÞ�1=2 ¼ ðqþ q�1Þ�1=2;
(4.3)

and one can show that higher spin punctures continue to be
eigenvectors for tr1=2WS. The constant q in the above

formulas is given by

q ¼ exp

�
2�i

k

�
; (4.4)

with

k ¼ � 2aH
��ð1� �2Þ‘2p

: (4.5)

Furthermore, one can show that this pattern continues for
traces in other irreducible representations,

tr jðWSÞ�j0 ¼ cj;j0�j0 ; (4.6)

but we have no closed formula for the eigenvalues cj;j0 . We

note that c1=2;0 is the path integral expectation value for an

unknotted Wilson loop in the j ¼ 1=2 representation, in
SU(2) Chern-Simons theory with level k, and c1=2;1=2
is related to the expectation value of linked Wilson loops
[27]. We thus suspect that all the cj;j0 are related to SU(2)

Chern-Simons theory in a similar way.
Moreover, one can see that states �0

j having one spin-j

edge puncturing S and ending on S are again eigenvectors,

tr jðWSÞ�0
j0 ¼ c0j;j0�

0
j0 : (4.7)

We stress that the eigenvalues in (4.3), (4.6), and (4.7) are
completely independent of the shape of S, as long as the
boundary of S encloses the puncture. (This is obvious for
(4.3), but it is also true in all the other cases, as can be seen
with the methods in [27].)

The cases that several edges pierce H in the same
puncture and that a surface contains several punctures are
more complicated, and there are indications that the spin
nets puncturing the surface may not be eigenstates in
general.
It is not true that the operators WS themselves are

diagonalized by the states �j, �
0
j. What happens is that

the surface S in (2.8) comes with extra structure from the
non-Abelian Stokes theorem: This involves the choice of a
system of paths in S, connecting the beginning/endpoint
of � with the points of S. When acting on a state �j, the

operator will in general give back a sum of spin networks,
some of which involve holonomies along the path system
in S that are coupled via suitable intertwiners to the spin
network edge piercing the surface S. There is, however, a
crucial exception: Going through the same steps that were
used in [27] to calculate tr1=2ðWSÞ�0, one finds

W S�0 ¼ cI2�0: (4.8)

This result is natural, since for the state�0, there is nothing
the holonomies along the path system in S can couple to. It
should however also be said that the case �0 is special in
that there is a divergence in the eigenvalue that has to be
renormalized away [27], so this case merits further careful
investigation. In particular, it is not entirely clear what the
value of finite constant c leftover in (4.8) should be. If we
follow the argument in [27], the answer would be

c ¼ 1
2ðq1=2 þ q�1=2Þ: (4.9)

It is noteworthy that in [27], c sets the normalization of the
Jones polynomial, which in principle is arbitrary. Thus it is
conceivable that another way to remove the divergence
would yield another value, in particular, c ¼ 1.
A final remark is about the properties of WS under

change of orientation of S. From [27] we know

tr jðW�SÞ ¼ trjðWÞyS ; (4.10)

where �S is obtained from S by change of orientation.

B. A functional on simple loops

Now we can come back to our main topic: What do the
properties ofWS listed above mean for our goal of defining

a measure on �AH through (2.8)? The first thing to note is
that because trjðWSÞ are diagonal on the states �j, �

0
j, so

must be the traces trjðh�Þ of holonomies around loops � in

H. In particular their quantum-mechanical fluctuations
must vanish,

hðtrjðh�ÞÞ2iP � htrjðh�Þi2P ¼ 0; (4.11)

which shows that the gauge invariant information con-
tained in contractible loops on H is completely fixed by
the puncture data P , and supports the idea that representa-
tions that contain horizons should be based on a measure of
a form similar to (2.10).
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To formalize this, let us again pick puncture data

P ¼ fðp1; j1; m1Þ; ðp2; j2; m2Þ; . . . ðpN; jN;mNÞg; (4.12)

where p1 . . .pN are points on H and j1 . . . jN, and
m1 . . .mN are labels of irreducible representations of
SU(2) and magnetic quantum numbers in those represen-
tations. Furthermore, We will denote traces of holonomy
functionals as

T�;j½A� :¼ trjðh�½A�Þ: (4.13)

Now let f�ig be a collection of loops that are contractible
within H, and such that each one of them encloses at most
one puncture in P . We will also call such loops simple.
Then to each simple loop there is an oriented disc Si in H,
such that @Si ¼ �i, and we can set

�

�Y
i

T�i;ki

�
:¼ Y

i

c0ki;ji ; (4.14)

where the numbers c0 are the eigenvalues from (4.6), i.e.,
we have assumed that the punctures P come from edges
ending in H. This can be generalized in an obvious way to
the case where some of the piercing edges do not end onH.
Linear extension of this definition gives a functional on a
large class of gauge invariant functionals of the pullback of
A to H.

Next we check positivity: The first remark is that due to
the unitarity of the irreducible representations of SU(2), we
have

T�;j½A� ¼ T��;j½A�; (4.15)

where we denote with �� the change of orientation of �.
If � ¼ @S, then �� ¼ @ð�SÞ. Taking this together with
(4.10) gives

�ðT�;jÞ ¼ �ðT�;jÞ: (4.16)

Similar statements can be made for products of traces, due
to the factorization property of (4.14). With this said, let
f�Ig be a collection of multiloops, where the individual
loops again fulfill the requirements assumed in the defini-
tion of �, and fkIg corresponding assignments of represen-
tations. Then we consider the expectation value of the
modulus squared of the function f ¼ P

IcIT�I;kI
,

�ðjfj2Þ¼X
IJ

cI cJ�ðT�I;kI
T�J;kJ

Þ

¼X
IJ

cI cJ�ðT�I;kI
Þ�ðT�J;kJ

Þ

¼X
IJ

cI cJ�ðT�I;kI
Þ�ðT�J;kJ

Þ�0; (4.17)

so the functional is positive. This is very encouraging.
There is, however, another important property that we
cannot yet check for �. Because of the properties of the
operators WS, we have defined � such that it factorizes,

�ðT�;kT�0;k0 Þ ¼ �ðT�;kÞ�ðT�0;k0 Þ: (4.18)

The problem is that the product among the functionals T�;j

is not free. For example, we have

T�;kT�;k0 ¼
X
k00
ck00T�;k00 (4.19)

for some constants ck00 . We have no formal proof that � is
compatible with these relations, but we have some indica-
tion that that is indeed the case. The point is that the
expression

P exp∯ SF ½A� (4.20)

that is identical to a holonomy by virtue of the non-Abelian
Stokes theorem differs from the operator WS only by the
fact that certain polynomials in F are replaced by operators
in the universal enveloping algebra U(SU(2)) of SU(2).
Therefore, WS can lose properties of a holonomy only at
that point. Now, the replacement of polynomials of F by
operators is done using the Duflo map, which insures that
the replacement is an isomorphism of algebras on the
gauge invariant polynomials of F, thus on this subspace
it does not lose any structure. Moreover, in the calculations
of eigenvalues in [27], only that subspace was relevant.
Thus we conjecture

c0k;jc
0
k0;j ¼

X
k00
ck00ck00;j; (4.21)

and similar relations among the eigenvalues of theWS that
make � consistent.
If we grant consistency of� as above, what is left to do?

The algebra of the simple loops above does not include
holonomies around noncontractible loops, nor does it con-
tain gauge noninvariant functionals. We have to show that
the functional extends consistently to this larger class of
holonomy functionals on H. Then it can be extended
further to Cyl with exactly the same arguments used in
Sec. III B. Finally one would have to consider the action of
the fluxes, but the situation is exactly the same as for the
fluxes in the U(1) case, and so we foresee no difficulty with
defining all the physically relevant flux operators. Since the
bookkeeping involved in these steps is quite complicated,
we leave their completion to another work [32]. We will
finish by commenting on some ramifications of the picture
that emerges.
Is the state � extended to all cylindrical functions,

supported on connections that are locally flat, except at
the punctures? The answer seems to be yes. Note first that
the definition of the state � on simple loops (4.14) makes
no reference to the precise location of the loops, apart from
that they must enclose at most one puncture. Note further-
more that due to (4.8), for � 2 H the operator h� (not just
its trace) must be represented by a multiple of the identity
due to the measure (2.10). This makes holonomies he in H
dependent only on the homotopy class of e in H with the
punctures removed. For example, consider he for the path
e ¼ e1 � e2 � e3 depicted in Fig. 9. We have
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he1he2he3 ¼he1he2he02h
�1
e0
2
he3 ¼he1h�h

�1
e0
2
he3 ¼che1he02he3 :

(4.22)

Certainly this is acceptable only if c ¼ 1, but as we have
said above, one can argue that c depends on normalization
and has to be set by hand, anyway. If this is done, we have
indeed he� ¼ he0� for the path e0 ¼ e1 � e02 � e3 and �
a solution, and similar identities in more complicated
situations.

Thus, altogether, given what we know about the opera-
tors WS, it seems that the program of finding rigorous
solutions to (2.8) has a chance to succeed, in a very similar
way as it did for the case of the U(1) theory. Obviously,
there are still some steps to be taken. There is work in
progress on these issues, and results will be reported in a
future publication [32].

V. DISCUSSION AND OUTLOOK

In the present work we have taken the condition (1.1) for
an isolated horizon from classical GR, expressed it as an
equation [(3.1) and (2.8), respectively] in the quantum
theory using operators in the holonomy-flux algebra A of
loop quantum gravity, and studied one class of solutions,
both for a U(1) model and for the full SU(2) theory. In the
U(1) case, we could complete all the steps, in the SU(2)
case there are still some open questions. Our procedure is
quite different from the one followed so far [3,4,10,11] in
which one, roughly speaking, quantizes the phase space of
space-times that contain an isolated horizon as an inner
boundary; see Fig. 10. Classically, the degrees of freedom
that live on the horizon are part of the full field content of
general relativity. In our treatment, this is transparent in the
quantum theory: The horizon degrees of freedom are rep-
resented simply by elements (or components of elements)
of the algebra A that characterizes loop quantum gravity
and makes no reference to horizons.

It was not clear a priori, whether the results of the two
routes to quantum isolated horizons would coincide, but it
turned out that it appears they do to a remarkable extent. In

the U(1) case, we recover almost verbatim the structure of
the quantized horizon of [3,4]. In the SU(2) case, our
results are not complete, but what we saw points towards
a very similar picture as [10,11]. There are differences,
however, and they become more obvious if one considers
the case of nontrivial horizon topology. Then the picture
we obtain on the horizon is not so much resembling
quantized U(1) or SU(2) Chern-Simons theory, as quan-
tized U(1) or SU(2) BF theory, i.e. Chern-Simons theory
with ‘‘twice as many degrees of freedom.’’ For example, in
the torus case we see two holonomies and two conjugate
fluxes, whereas one would expect that the two holonomies
are conjugate to each other for U(1) or SU(2) Chern-
Simons theory. This does not make much difference for
the horizon of spherical topology that is most relevant for
the description of black holes, but it may be interesting
from a conceptual viewpoint: We find that loop quantum
gravity, restricted to certain special null-hypersurfaces,
gives Euclidean quantum gravity in three dimensions.
From the conceptual standpoint taken in this work, the

SU(2) version (1.1) of the isolated horizon boundary con-
dition seems more attractive, since fewer classical struc-
tures are needed in the quantum theory, and we have a
chance to account for all quantum degrees of freedom with
the algebra A. If only one of the three components of the
SU(2) connection A is fixed by the horizon conditions,
there are two other components free on the horizon.
Since they do not form a connection, they are hard to treat
with loop quantum gravity methods. This is the reason for
treating the U(1) case with gauge fixing to U(1) every-
where. But if one wishes, one can certainly gauge fix only
on the horizon, and our methods will essentially give back
the picture of [3,4].
Clearly, we have to complete the investigation of the

SU(2) case, but besides and beyond this, there are other
interesting questions that should be considered. We make a
list of some of them:
(1) For the case that the horizon is not a boundary of S,

the counting of horizon states of a given area may be
modified due to the fact that gauge charge can now
enter and leave at the punctures. This means that the
area-entropy relation may be modified—a potential
problem for the approach. This needs to be studied
in detail.

(2) It is odd that the classical horizon area aH shows up
in the quantum horizon condition (1.2), and conse-
quently all over the place in the quantum theory. It
would be very nice if this can be changed, either
through a change in the classical theory as sketched
in [11] or through replacing aH in (1.2) by a suitable
operator.

(3) Since the states containing a horizon and the vac-
uum state of loop quantum gravity are states on the
same algebra, it is now possible to relate them. In
particular, it should be possible to approximate the

FIG. 9 (color online). The graph used in the discussion of
diffeomorphism invariance in the SU(2) case.

FIG. 10. Two ways to obtain a quantized isolated horizon.
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states with a horizon by states in the vacuum (AL)
representation.

(4) The implementation of diffeomorphisms that move
punctures should be studied carefully, to confirm the
anyonic statistics of the punctures in both the U(1)
and the SU(2) case.

(5) The type of solutions of the quantum horizon con-
dition (1.2) we found may not be the only one. Note,
for example, that we took the flux as given from the
vacuum representation of loop quantum gravity, and
thereby fixed the connection on the horizon. One
could think of doing it the other way around, taking
the holonomy operators on the horizon to be in the
loop quantum gravity vaccum, and thereby deter-
mine a nonstandard representation of the fluxes.
There may be other possibilities. This merits further
thought.

(6) Horizons with nontrivial topologies and their quan-
tization in loop quantum gravity have been studied
in a very interesting series of articles [33–35]. This
gives a good point of comparison for the results
reported in the present work.

Finally, this investigation may be the motivation to find
and study other kinds of branelike states in loop quantum
gravity.
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