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We show that the addition of a topological Gauss-Bonnet term to the gravitational action can greatly

increase the instability of four-dimensional de Sitter space by favoring the nucleation of black holes.

The pair-production rate given by the Euclidean action for the instanton takes the form expð�SÞ where S is

the entropy in Einstein-Gauss-Bonnet theory. The coefficient of the Gauss-Bonnet term in the action sets a

stability bound on the curvature of empty de Sitter space. For that coefficient in the low-energy effective

action of heterotic string theory, the maximal curvature of de Sitter space is, in general, much lower than

the Planck scale.
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I. INTRODUCTION

During the inflationary epoch, spacetime was well-
described by de Sitter space. De Sitter space is known to
be stable under classical perturbations [1]. Quantum me-
chanically, however, de Sitter space has a nonperturbative
instability due to the spontaneous nucleation of black holes
[1,2]. But in Einstein gravity, the rate per unit volume of

producing a black hole pair is only e��=�G, which is
exceedingly low unless the effective cosmological con-
stant, �, is close to the Planck scale. Moreover, any
nucleated black holes have Planckian masses and hence
evaporate in a flash.

In this paper, we show that adding a topological Gauss-
Bonnet term to the gravitational action affects the pair-
production rate of black holes; this is because the
Euclidean black hole solution has a different global topol-
ogy from Euclidean de Sitter space. We find that the
Gauss-Bonnet term always enhances the nonperturbative
instability of four-dimensional de Sitter space. The en-

hancement is by a factor of e4��=G and, depending on the
dimensionful coefficient� of the Gauss-Bonnet action, can
be enormous. The Gauss-Bonnet action appears at order �0
in the ten-dimensional low-energy effective action of het-
erotic string theory. Although the precise value of �=G
depends on the compactification to four dimensions, the
likely bounds on the string scale imply an enhancement of

at least eð103Þ. Furthermore, the black holes thus formed are
produced at the scale

ffiffiffiffi
�

p
, rather than at the Planck scale,

and are therefore longer-lived. Thus, the presence of a
Gauss-Bonnet term in the action has potential repercus-
sions for Planck-scale inflation as well as for the produc-
tion of primordial black holes.

II. BLACK HOLE PRODUCTION IN
EINSTEIN-GAUSS-BONNET GRAVITY

In the path integral approach to quantum gravity, one
considers a sum over gauge-inequivalent metrics:

Z ¼
Z

Dgabe
iI½g�þgauge-fixing: (1)

In ordinary quantum field theory, one Wick-rotates the
time coordinates to tame the divergence of the path inte-
gral. In general relativity, there is no preferred time coor-
dinate but one can replace the sum over Lorentzian metrics
with a sum over all ‘‘Euclidean’’ metrics (more correctly
Riemannian, i.e., positive-definite, metrics) that satisfy the
appropriate boundary conditions. The resulting path inte-
gral still has dubious convergence properties because the
gravitational action is indefinite and bounded neither from
above nor from below. Nevertheless, this is the starting
point of the Euclidean quantum gravity approach [3], a
very successful program which is particularly well-adapted
to nonperturbative semiclassical problems in quantum
gravity. As in Yang-Mills theory, it is important that the
sum includes solutions with different global topologies.
It is usually only feasible to evaluate the path integral in

a saddle-point approximation. Then the path integral is
given by a sum over gravitational instantons. These are
defined as nonsingular geodesically complete solutions of
the Euclidean gravitational equations, with or without a
cosmological constant. The Euclidean action, IE, for differ-
ent gravitational instantons determines their relative prob-
abilities. Ignoring the prefactor, we have

�� expð�IE½instanton�Þ
expð�IE½background�Þ : (2)

This is interpreted as the rate per unit volume of sponta-
neously nucleating the object described by the instanton in
the background spacetime. For example, the Euclideanized
Schwarzschild solution and hot Minkowski space at the
same temperature share the same boundary conditions.
Then, the action for the Euclidean Schwarzschild solution
determines the rate per unit volume of spontaneous black
hole nucleation in thermal Minkowski space [4].
The rate depends on the gravitational action. Here we

take the action to be
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I ¼ 1

16�G

Z
dDx

ffiffiffiffiffiffiffi�g
p ½R� 2�þ �ðRabcdR

abcd

� 4RabR
ab þ R2Þ� þ Iboundary: (3)

This is the Einstein-Gauss-Bonnet action. The boundary
terms, which generalize the Gibbons-Hawking term, van-
ish for the compact Euclidean manifolds we consider here
so we will ignore them henceforth. The coefficient � is a
constant of dimension ðlengthÞ2. It is essential that � be
positive; otherwise, the theory would admit black hole
solutions with negative entropy [5]. At quadratic order in
curvature, there are three independent curvature invariants:
RabcdRabcd, RabR

ab, and R2; the motivation for picking the
Gauss-Bonnet combination is twofold: it is the only com-
bination that is ghost-free (in all dimensions) when ex-
panded around flat space, and it is precisely this
combination that appears at order �0 in the low-energy
effective action of heterotic string theory [6,7].

In four dimensions, the variation of the Gauss-Bonnet
part of the action is a total derivative, canceling identically
against the variation of the corresponding boundary term.
These two terms together are in fact proportional to a
topological invariant, the Euler character, � [8]. For com-
pact four-dimensional manifolds, there are no boundary
terms and so we have

�¼ 1

32�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRabcdR

abcd�4RabR
abþR2Þ: (4)

For Einstein spaces (Rab ¼ �gab), the Einstein-Gauss-
Bonnet action for four-dimensional Euclidean compact
manifolds is therefore

IE ¼ � �V4

8�G
� 2��

G
�; (5)

where V4 is the four-volume of the manifold.
The addition of a topological Gauss-Bonnet term

obviously does not affect Einstein’s equations in four
dimensions, meaning that gravitational instantons of the
Einstein-Hilbert theory continue to be solutions of the
Einstein-Gauss-Bonnet theory. In particular, for positive
�, Euclidean de Sitter space—a four-sphere with radius

L ¼ ffiffiffiffiffiffiffiffiffi
3=�

p
—remains a gravitational instanton. The Euler

character of an S4 is 2 [as (4) confirms], and hence

IE½dS� ¼ ��L2

G
� 4��

G
: (6)

Another solution is Euclidean Schwarzschild-de Sitter
space whose line element is

ds2¼þ
�
1�2GM

r
� r2

L2

�
dt2Eþ

�
1�2GM

r
� r2

L2

��1
dr2

þr2d�2: (7)

This space has two potential conical singularities with radii
r�, which are found by solving a cubic. In Lorentzian

signature, these correspond to the black hole and cosmo-
logical event horizon whose inverse Hawking temperatures
are, respectively,

�hole¼ 4�r�L2

ðrþ�r�Þðrþþ2r�Þ; �cosmo¼ 4�rþL2

ðrþ�r�Þð2rþþr�Þ:
(8)

When rþ � r�, the black hole and cosmological horizons
have different temperatures, with Thole > Tcosmo. Hence,
only one of the conical singularities can be eliminated by
letting tE have the appropriate periodicity. Because of the
remaining singularity, Euclidean Schwarzschild-de Sitter
space is not, in general, nonsingular when rþ � r� and is
therefore not a gravitational instanton.
However, in the extremal, or ‘‘Nariai,’’ limit, the two

horizons coincide: r� ! L=
ffiffiffi
3

p
. This happens for

MNariai ¼ L=
ffiffiffiffiffiffi
27

p
. By (8), both horizons then have zero

temperature. At first sight, the region r� < r < rþ covered
by the coordinates in (7) seems to vanish in the extremal
limit r� ! rþ. However, this is an artifact of the coordi-
nate system [1,2,9]. In fact, the four-volume for the
Euclidean Schwarzschild-de Sitter black hole approaches
a nonzero constant in the Nariai limit:

V4¼4��H

Z rþ

r�
r2dr¼ ð4�Þ2rþL2ðr3þ�r3�Þ

3ðrþ�r�Þð2rþþr�Þ!
16�2L4

9
:

(9)

Indeed, the Euclidean Nariai solution is a gravitational
instanton, a completely regular space which has many
interesting properties [10]. As the largest black holes in
de Sitter space, Nariai black holes also play a key role in
resolving the de Sitter information puzzle [11]. Pair pro-
duction of Nariai black holes in de Sitter space has been
investigated before [1,2] in the context of Einstein gravity.
There it was shown that a Euclidean Nariai black hole is
geometrically and topologically the product of two two-
spheres, S2 � S2 [1,2]. Now, the Euler character for a
product manifold (M ¼ M1 �M2) is the product of
the Euler characters; this follows from the definition
of the Euler character as an alternating sum of Betti
numbers, � ¼ P

D
n¼0ð�1Þnbn, and the Künneth formula

for the Betti numbers of product topologies, bnðMÞ ¼P
pþq¼nbpðM1ÞbqðM2Þ. Hence,

�Nariai ¼ 4: (10)

[This can be checked by inserting Rab ¼ �gab and the

Kretschmann scalar RabcdR
abcd ¼ 48ðGMÞ2

r6
þ 24

L4 for

Schwarzschild-de Sitter space directly into (4) and then
taking the Nariai limit of coincident horizons.] Thus, we
find that

IE½Nariai� ¼ � 2�L2

3G
� 8��

G
: (11)
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Importantly, because of the difference in topology, the
second term above does not cancel with the corresponding
term in (6). The rate per unit volume of black hole pair
production in the de Sitter background is therefore

�� expð�IE½Nariai�Þ
expð�IE½dS�Þ ¼ exp

�
��L2

3G
þ 4��

G

�
: (12)

Since �> 0, we see that the production rate of black holes
is always enhanced in Einstein-Gauss-Bonnet gravity com-
pared to the corresponding rate in Einstein gravity.
Moreover, the amount of enhancement is highly sensitive
to the value of �=G.

III. DISCUSSION

There is another way to understand (12). Without the
Gauss-Bonnet term, the probability for black hole produc-
tion can also be written as the exponent of the difference in
Bekenstein-Hawking entropy between pure de Sitter space
(with radius L) and extremal Schwarzschild-de Sitter space

(which has two horizons with radius L=
ffiffiffi
3

p
):

�� expð��L2=3GÞ ¼ expð�A=4GÞ: (13)

Now when the Gauss-Bonnet term is included, the rate is
no longer the difference in area. However, the entropy is
proportional to the area only for black holes in Einstein
gravity; for more general theories of gravity, one must
use the Wald entropy [12]. In particular, for black holes
in D-dimensional Einstein-Gauss-Bonnet gravity, the
entropy is

S ¼ 1

4G

Z
dD�2x

ffiffiffiffi
�

p ð1þ 2�RðD�2ÞÞ; (14)

where RðD�2Þ is the D� 2-dimensional Ricci scalar on a

horizon cross section [5,13,14]. The first term is just the
usual Bekenstein-Hawking area formula. The Gauss-
Bonnet contribution to the entropy is given by the second
term. In four dimensions, this is �

2G

R
d2x

ffiffiffiffi
�

p
Rð2Þ. But the

two-dimensional Euler character is � ¼ 1
4�

R
d2x

ffiffiffiffi
�

p
Rð2Þ,

which is 2 for horizons whose spatial sections have spheri-
cal topology. Hence, the Gauss-Bonnet contribution to the
entropy is 4��=G, which exponentiates to precisely the
modification to the nucleation rate. Thus, we find that, even
in Einstein-Gauss-Bonnet gravity, the rate still takes the
form

�� expð�SÞ; (15)

where S is now given by (14). It is interesting that the rate
for black hole nucleation takes the same form as the
emission rate for Hawking radiation from the de Sitter
horizon, when backreaction effects are taken into account
[15]; that the rate scales as the exponential of the entropy is
consistent also with the idea that black hole entropy counts
the number of quantum states [16,17].

We see that, depending on the dimensionful scale �, the
presence of the Gauss-Bonnet term can dramatically en-
hance the production of black holes. Without the Gauss-
Bonnet term, the probability for black hole production goes
as expð��L2=3GÞ. The rate of black holes is therefore
tremendously suppressed unless L is of the order of the
Planck length. But for Planckian curvatures, we would
anyway be deep in the quantum gravity regime and outside
the validity of a semiclassical analysis. However, with
the Gauss-Bonnet term included, the production rate
approaches unity not near the Planck scale but when
L2 ¼ 12�. Thus, if

ffiffiffiffi
�

p � lP, the nucleation rate could
approach unity at a curvature scale that is significantly
lower than the Planck scale. Now, in effective field theory,
one might worry that the large coefficient of the Gauss-
Bonnet term would generate, via loop corrections, large
coefficients at higher order in curvature, thereby invalid-
ating the semiclassical treatment. However, Lovelock
terms are special: they neither affect the graviton propa-
gator, nor the interaction vertices. Hence, no large correc-
tions are generated by loops. Schematically,

IE ��c���X
n

cnðLMpÞ4�2n: (16)

When LMp � 1, the series can be consistently truncated,

leaving only the Einstein-Gauss-Bonnet action: the usual
Einstein-Hilbert action plus the scale-independent topo-
logical term.
One can estimate the value of �=G in string theory. The

bosonic part of the ten-dimensional low-energy effective
action of heterotic string theory is

I¼ 1

2�2
10

Z
d10x

ffiffiffiffiffiffiffiffiffi�gs
p

e�2�

�
Rsþ4ðr�Þ2þ�0

�
1

8
LGB

�2Gabra�rb�þ2h�ðr�Þ2�2ðr�Þ4
��

; (17)

where� is the dilaton and the subscript s indicates that the
quantities refer to the string-frame metric [18]. (We have
neglected terms associated with the Kalb-Ramond field,
B�	, and the gauge field strength, F�	.) The higher-

dimensional prefactor of the Gauss-Bonnet term is �0=8.
To relate this to our coefficient �, we have to transform
from string frame to Einstein frame and reduce the dimen-
sions from ten to four. Unfortunately, it is difficult to
connect (3) and (17) more precisely; indeed, a famous
no-go theorem [19] proves that there are no straightforward
de Sitter compactifications of ten-dimensional super-
gravity. However, if one takes

ffiffiffiffi
�

p
to be around the string

length then, since the string length is generically larger
than the Planck length by at least an order of magnitude,ffiffiffiffiffiffiffiffiffiffi
�=G

p � 10, one estimates that the enhancement factor is

at least eð103Þ.
The enhancement of black hole production in de Sitter

space has consequences for inflationary cosmology.
Inflation presumably cannot happen when the rate of black
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hole production is of order unity; black hole production
thus places an upper bound on the effective cosmological
constant:

Hmax ¼ 1ffiffiffiffiffiffiffiffiffi
12�

p : (18)

Now, although Nariai black holes have zero temperature, a
small perturbation can separate their degenerate horizons.
Then, since Thole > Tcosmo, the black hole will eventually
disappear leaving just de Sitter space. This makes sense
entropically: empty de Sitter space has greater entropy than
de Sitter space with a black hole in it. However, for an
effective cosmological constant close to 1=�, the time
between nucleation of black holes could exceed the time
it takes for them to decay via Hawking radiation. There
would then always be at least some black holes around in
any given Hubble volume. This would render invalid the
usual inflationary assumption of a spatially homogeneous
background. Thus, black hole production puts an upper
bound on how curved empty de Sitter space can be; if it is
too curved, it will not stay empty.

Moreover, as these black holes are produced at the scale
(18), they are larger than Planck-sized black holes roughly
by a factor of �=G and would correspondingly live longer

by a factor of ð�=GÞ3. Such black holes would therefore
not only be produced later but would also live longer than
Planck-sized primordial black holes; it would be interest-
ing to study the time evolution of these black holes (and
their electrically or magnetically charged cousins) to see
whether any inflationary scenarios can be constrained
[2,20].
It would also be interesting to see what effect adding a

Gauss-Bonnet term has on the probabilities for other gravi-
tational instantons [21]. In general, the Gauss-Bonnet ac-
tion affects the probability whenever the instanton has a
different Euler number than the background. This could
happen not only when the instanton is topologically non-
trivial, but also when the background has nontrivial topol-
ogy, as, for example, in elliptic de Sitter space [22–24].
Moreover, similar constructions with six-dimensional to-
pological terms might affect the probabilities of various
Calabi-Yau manifolds.
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