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The Penrose process on rotational energy extraction of the black hole in the original nonprojectable

Hořava-Lifshitz gravity is studied. The strong dependence of the extracted energy from the special range

of parameters of the Hořava-Lifshitz gravity, such as parameter�W and specific angular momentum a, has

been found. Particle acceleration near the rotating black hole in Hořava-Lifshitz gravity has been studied.

It is shown that the fundamental parameter of the Hořava-Lifshitz gravity can impose a limitation on the

energy of the accelerating particles preventing them from the infinite value.
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I. INTRODUCTION

Hořava proposed a new theory of quantum gravity mo-
tivated by the Lifshitz theory in solid state physics. The
Hořava-Lifshitz theory is nonrelativistic and power-
counting ultraviolet-renormalizable, and should recover
general relativity in the infrared limit [1,2]. Since then,
many authors have paid attention to this scenario to apply it
to black hole (BH) physics [3–8], cosmology [9–15], and
observational tests [16]. Here we investigate the Penrose
process around rotating BHs in the Hořava-Lifshitz gravity
theory. The quantum interference effects [17] and the
motion of the test particle around a BH [18] in Hořava-
Lifshitz gravity have been also recently studied.

In Ref. [16], the possibility of observationally testing
Hořava-Lifshitz gravity at the scale of the Solar System, by
considering the classical tests of general relativity (peri-
helion precession of the planet Mercury, deflection of light
by the Sun, and the radar echo delay) for the Kehagias-
Sfetsos (KS) asymptotically flat black hole solution of
Hořava-Lifshitz gravity has been considered. The stability
of the Einstein static universe by considering linear homo-
geneous perturbations in the context of an infrared (IR)
modification of Hořava-Lifshitz gravity has been studied in
[19]. Potentially observable properties of black holes in the
deformed Hořava-Lifshitz gravity with Minkowski vac-
uum, the gravitational lensing, and quasinormal modes
have been studied in [20]. The authors of Ref. [21] derived
the full set of equations of motion and then obtained
spherically symmetric solutions for UV completed theory
of Einstein proposed by Hořava.

Recently authors of Ref. [22] have studied the particle
motion in the spacetime of a KS black hole. In Ref. [23],
the authors systematically studied black holes in the
Hořava theory in the framework of the kinematic approach.
Black hole solutions and the full spectrum of spherically

symmetric solutions in the five-dimensional nonproject-
able Hořava-Lifshitz type gravity theories have been re-
cently studied in [24]. Geodesic stability and the spectrum
of entropy/area for a black hole in Hořava-Lifshitz gravity
via a quasinormal modes approach are analyzed in [25].
Particle geodesics around a Kehagias-Sfetsos black hole in
Hořava-Lifshitz gravity are also investigated by the authors
of Ref. [26]. Recently observational constraints on Hořava-
Lifshitz gravity have been found from the cosmological
data [27]. The authors of Ref. [8] have found all spherical
black hole solutions for two, four, and six derivative terms
in the presence of a Cotton tensor.
Recently Patil and Joshi [28] have shown that the naked

singularities that form due to the gravitational collapse of
massive stars provide a suitable environment where parti-
cles could get accelerated and collide at arbitrarily high
center-of-mass energies. Particle acceleration around a
black hole is systematically studied in Ref. [29].
Recently the rotating black hole solution in the context

of the Hořava-Lifshitz gravity has been obtained in [8]. In
this paper we plan to study the energy extraction mecha-
nism through the Penrose process and particle acceleration
mechanisms near the rotating black hole in the Hořava-
Lifshitz gravity. The authors of Ref. [30] considered Kerr
black holes as particle accelerators to arbitrary high ener-
gies. The results of Ref. [30] have been addressed in
Ref. [31], where the authors concluded that astrophysical
limitations on the maximal spin, backreaction effects, and
sensitivity to the initial conditions impose severe limits on
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the likelihood of such accelerations. This new proposed
solution forces us to study the particle acceleration in the
gravity theory of Hořava-Lifshitz.

The paper is organized as follows. The description of the
rotating black hole solution and the ergosphere around it is
considered in the Sec. II. The Penrose process in the ergo-
sphere of the rotating black hole in Hořava-Lifshitz gravity
has been studied in Sec. III. Section IVis devoted to study of
the particle acceleration mechanism near the black hole in
Hořava-Lifshitz gravity. We conclude our results in Sec. V.

We use a system of units in which c ¼ G ¼ 1, a space-
like signature ð�;þ;þ;þÞ, and a spherical coordinate
system ðt; r; �; ’Þ. Greek indices are taken to run from 0
to 3 and Latin indices from 1 to 3.

II. EXTREME ROTATING BLACK HOLE IN
HOŘAVA-LIFSHITZ GRAVITY

The four-dimensional metric of the spherical-symmetric
spacetime written in the Arnowitt-Deser-Misner (ADM)
formalism [16,19,20,32] has the following form:

ds2 ¼ �N2c2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (1)

whereN is the lapse function andNi is the shift vector to be
defined.

The Hořava-Lifshitz action describes a nonrelativistic
renormalizable theory of gravitation and is given by (for
more details, see Refs. [1,2,16,19,20,32])

S ¼
Z

dtdx3
ffiffiffiffiffiffiffi�g

p
N
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2

�2
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2Þ
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where �, �g, �g, �, and �W are constant parameters, the

Cotton tensor is defined as

Cij ¼ �iklrk

�
Rj

l �
1

4
R�j

l

�
; (3)

Rijkl is the three-dimensional curvature tensor, and the

extrinsic curvature Kij is defined as

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (4)

where dot denotes a derivative with respect to coordinate t.
If one considers up to second derivative terms in the

action (2), one can find the known topological rotating
solutions given by [33] for equations of motion in the
Hořava-Lifshitz gravity. Because we are considering mat-
ter coupled with the metric in a relativistic way, we can
consider the metric in Boyer-Lindquist coordinates instead
of its ADM form, which is the solution of Hořava-Lifshitz
gravity. In the Einstein gravity, this spacetime metric reads

in Boyer-Lindquist-type coordinates in the following form
(see e.g. [8]):

ds2 ¼ � �r

�2�2
½dt� asin2�d’�2 þ �2

�r

dr2

þ �2

��

d�2 þ ��sin
2�

�2�2
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�r ¼ ðr2 þ a2Þ
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l2

�
� 2Mr; �� ¼ 1� a2

l2
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l2
; l2 ¼ �2=�W

are introduced,M is the total mass of the central BH, and a
is the specific angular momentum of the BH. Note that
metric (5) in ADM form can be written as [33]

ds2 ¼ ��2�r��

�2�2
dt2 þ �2

�r

dr2 þ �2

��

d�2

þ�2sin2�

�2�2
½d’�$dt�2; (6)

where

�2 ¼ ðr2 þ a2Þ2�� � a2�rsin
2�;

$ ¼ � a

�2
½�ðr2 þ a2Þ�� þ�r�:

The spacetime (5) has a horizon where the four-
velocity of a corotating observer tends to zero, or the
surface r ¼ const becomes null. Thus we have

rþ ’ ð1� 3�Þ
�
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2ð1þ 3�Þ

q �
; (7)

where we have introduced a small dimensionless
parameter � ¼ a2=l2 � 1.
The static limit is defined where the time-translation

Killing vector 	

ðtÞ becomes null (i.e. g00 ¼ 0), so the static

limit of the BH can be described as

rst’ð1�3�Þ
�
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�a2ð1þ�sin2�Þð1þ3�Þcos2�

q �
:

(8)

In the recent paper [33], the authors provide the ADM and
Boyer-Lindquist forms of the spacetime metric, both in
Hořava-Lifshitz gravity. From the expression (6) one can
easily see that the results for the radii of the event horizon
and static limit will be identical in the ADM and Boyer-
Lindquist ones (for more details about these forms of
spacetime metric presentation in Hořava-Lifshitz gravity
we refer to the papers [8,33]).
Considering only the outer horizon rþ and static limit

rst, it can be verified that the static limit always lies outside
the horizon. The region between the two is called the
ergosphere, where timelike geodesics cannot remain static
but can remain stationary due to corotation with the BH
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with the specific frame dragging velocity at the given
location in the ergosphere. This is the region of spacetime
where timelike particles with negative angular momentum
relative to the BH can have negative energy relative to the
infinity. Then, energy could be extracted from the hole by
the well-known Penrose process [34].

In Fig. 1 the dependence of the shape of the ergosphere
from the small dimensionless parameter � is shown. From
the figure one can see that the relative shape of the ergo-
sphere becomes bigger with increasing the module of the
parameter �. Although in the polar region there is no
ergoregion in the presence of the nonvanishing � parame-
ter, where the Penrose process can be realized, near to the
polar zone the ergoregion becomes bigger than that in
the Kerr spacetime. It may increase the efficiency of the
Penrose process.

III. ENERGY EXTRACTION OFA BLACK HOLE
THROUGH THE PENROSE PROCESS

Because of the existence of an ergosphere around the
BH, it is possible to extract energy from a black hole by
means of the Penrose process. Inside the ergosphere, it is
possible to have a timelike or null trajectory with negative
total energy. As a result, one can envision a particle falling
from infinity into the ergosphere and splitting into two
fragments, one of which attains negative energy relative

to the infinity and falls into the hole at the pole, while the
other fragment would come out by conservation of energy
with the energy being greater than that of the original
incident particle. This is how the energy could be extracted
from the hole by axial accretion of particles with the non-
vanishing momentum and � parameter.
Consider the equation of motion of such a negative

energy particle at the equatorial plane (� ¼ �=2, _� ¼ 0).
Using the Hamilton-Jacobi formalism the energy E and
angular momentum L of the particle are given as (see e.g.
[35])

� ~E ¼ � E

m

¼
�
� 1

�2

�
1� 2M

r
� r2 þ a2

l2

��
_t

þ a

�2

�
r2 þ a2

l2
� 2M

r

�
_’; (9)

~L ¼ L

m

¼ 1

�2

�
r2 þ a2

l2 � r2 � a2

l2
þ 2Ma2

r

�
_’

þ a

�2

�
r2 þ a2

l2
� 2M

r

�
_t; (10)

FIG. 1 (color online). The dependence of the shape of the ergosphere from the small dimensionless parameter �: (a) � ¼ 0,
(b) � ¼ 0:001 (c) � ¼ 0:01, (d) � ¼ 0:1.
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From Eqs. (9) and (10) one can easily obtain the
equation of motion as


E2 þ �Eþ 
þ �2

�r

_pr2 þm2 ¼ 0; (11)

where we have introduced the following notations:
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From Eqs. (9)–(11), one can easily obtain the equations
of motion in the following form:

dt

ds
¼ �2

r2�r

f½ðr2 þ a2Þ2 ��ra
2�Eþ ð�r � r2 � a2ÞaLg;

(16)

d’

ds
¼ �2

r2�r

fð�r � a2ÞLþ ðr2 þ a2 � �rÞEg; (17)

�
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ds

�
2 ¼ E2 � Veff ; (18)

Veff ¼
�
1þ �r


�2

�
E2 þ �r

�2
ð�Eþ 
þ 1Þ:

In the Fig. 2 the radial dependence of the effective
potential of radial motion of the massive test particle has

been shown for the different values of the parameter �.
Here for the energy and momenta of the particle the
following values are taken: E=m ¼ 0:9, L=mM ¼ 6:2.
The presence of the parameter � slightly shifts the shape
of the effective potential upward.
When one of the two produced particles falls into the

central BH, the mass of the BH will change by �M ¼ E.
The change in mass can be made as large as one pleases by
increasing the mass m of the infalling particle. However,
there is a lower limit on �M which could be added to the
BH corresponding to m ¼ 0 and _pr ¼ 0 [35]. Evaluating
all of the required quantities at the horizon rþ, one can
easily get the limit for the change in BH mass as

Emin ¼ L
�ða2 þ r2þÞ=a� 2Ma=rþ

r2þ þ a2 � a2�� r2�þ a22M=rþ
: (19)

From the expression (19), one may conclude that the
Penrose process can be realized if the condition � <
2Ma2=rþða2 þ r2þÞ will be satisfied. Since current astro-
physical data indicate that parameter � is much less than 1,
one may conclude that the Penrose process is a more
realistic process among the energy extraction mechanisms
from a BH in the Hořava-Lifshitz scenario. However, it
should be mentioned that in the early Universe when the
module of the cosmological constant played an important
role, energy extraction from the rotating BH could be
impossible in Hořava=Lifshitz scenario because of the
positivity of the sign of Emin. This limitation for the
Penrose process does not exist in the standard theory
gravity and appears in the modified theory gravity such
as the Hořava-Lifshitz one.

IV. PARTICLE ACCELERATION
NEAR THE BLACK HOLE

Let us find the energy Ecm in the center of mass of the
system of two colliding particles with energy at infinity E1

FIG. 2 (color online). The radial dependence of the effective
potential of radial motion of the massive test particle for
different values of the dimensionless parameter �.

FIG. 3 (color online). The radial dependence of the center of
mass energy of two infalling particles for different values of the
parameter � in the case of the extreme black hole (a ¼ M).
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and E2 in the gravitational field described by spacetime
metric (5). It can be obtained from

�
1ffiffiffiffiffiffiffiffiffiffiffi�g00

p Ecm; 0; 0; 0

�
¼ m1v



ð1Þ þm2v



ð2Þ; (20)

where v�
ð1Þ and v�

ð2Þ are the four-velocities of the particles,
properly normalized by g��v

�v� ¼ �1 and m1, m2 are

rest masses of the particles. We will consider two particles

with equal mass (m1 ¼ m2 ¼ m0) which have the energy
at infinity E1 ¼ E2 ’ 1. Thus we have

Ecm ¼ m0

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g
�v



ð1Þv

�
ð2Þ

q
: (21)

Now using Eqs. (16)–(18) one can obtain the expression
for the energy of colliding particles near the Hořava-
Lifshitz black hole as
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In Fig. 3 the radial dependence of the center of mass
energy of two particles for the different values of the
dimensionless parameter � has been shown.

From Fig. 3 one can easily see that in the Hořava-
Lifshitz gravity the particle can essentially accelerate
near the horizon but not to arbitrary high energies. With
increasing the parameter � the maximal value of the center
of mass energy is decreasing.

Bañados, Silk, and West [30] have shown that the total
energy of two colliding test particles has no upper limit in
their center of mass frame in the neighborhood of an
extreme Kerr black hole, even if these particles were at
rest at infinity in the infinite past. On the contrary we show
here that the energy of two colliding particles in the center
of mass frame observed from the infinity has an upper limit
in the Hořava-Lifshitz gravity.

V. CONCLUSION

We have studied the energetics of the rotating black hole
in Hořava-Lifshitz gravity. First, we considered the energy
extraction mechanism via the Penrose process and found
an exact expression for the limit for the change in BH mass
(19) and concluded that the Penrose process can be realized
if the condition � < 2Ma2=rþða2 þ r2þÞ will be satisfied.
Since the parameter � is much less than 1, it is easy to
conclude that energy extraction through the Penrose pro-
cess is a more realistic process among the energy extrac-
tion mechanisms from a BH in the Hořava-Lifshitz
scenario. However, it should be mentioned that in the early

Universe when the module of the cosmological constant
played an important role, energy extraction from the rotat-
ing BH could be impossible in the Hořava-Lifshitz sce-
nario because of the positivity of the sign of Emin. This
limitation for the Penrose process does not exist in the
standard theory gravity and appears in the modified theory
gravity such as the Hořava-Lifshitz one.
In Ref. [30], the authors underlined that a rotating black

hole can, in principle, accelerate the particles falling to the
central black hole to arbitrary high energies. Because of
some mechanisms such as astrophysical limitations on the
maximal spin, backreaction effects, and sensitivity to the
initial conditions, there appears to be some upper limit for
the center of mass energy of the infalling particles. One
of the mechanisms offered in this paper is appearing due to
the Hořava-Lifshitz gravity correction which prevents the
particle from the infinite acceleration.
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