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At a fundamental level the notion of particle (quantum) comes from quantum field theory. From this

point of view we estimate corrections to the free particle wave function due to minimum-length deformed

quantum mechanics to the first order in the deformation parameter. Namely, in the matrix element

h0j�ðt;xÞjpi that in the standard case sets the free particle wave function / expði½px� "ðpÞt�Þ there
appear three kinds of corrections when the field operator is calculated by using the minimum-length

deformed quantum mechanics. Starting from the standard (not modified at the classical level) Lagrangian,

after the field quantization we get a modified dispersion relation, and besides that we find that the

particle’s wave function contains a small fraction of an antiparticle wave function and the backscattered

wave. The result leads to interesting implications for black hole physics.
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I. INTRODUCTION

Minimum-length deformed quantum mechanics stems
from the generalized uncertainty relation

�Q�P � 1

2
ð1þ ��P2Þ; (1)

proposed originally in the context of perturbative string
theory as a consequence of the fact that strings cannot
probe distances below the string scale (string length) [1].
(We will assume a natural system of units ℏ ¼ c ¼ 1
throughout this paper.) This relation immediately imposes
a lower bound on position uncertainty �Qmin ¼

ffiffiffiffi
�

p
which

may already imply the discreteness of the space at a
fundamental level [2]. Furthermore, Eq. (1) was discussed
by combining the basic principles of quantum theory and
general relativity in the framework of gedanken experi-
ments [3]. Thus, the parameter � is set by the quantum
gravity scale (either by the string length or the Planck
length which are of the same order)

ffiffiffiffi
�

p � lP ’
10�33 cm. The minimum-length deformed quantum me-
chanics

½Q;P� ¼ ið1þ �P2Þ (2)

underlies the generalized uncertainty relation (1). To linear
order in� this commutation relation can be solved in terms
of standard q, p operators ½q; p� ¼ i

Q ¼ q; P ¼ p

�
1þ �

3
p2

�
: (3)

The multidimensional generalization of Eq. (2) has the
form [4]

½Qi; Pj� ¼ ið�ij þ �P2�ij þ �0PiPjÞ; (4)

where both parameters� and�0 are understood to be of the
same order. For practical use it is a very useful observation
that in the particular case �0 ¼ 2� Eq. (4) can be solved to
linear order in � in terms of the standard q, p operators
½qi; pj� ¼ i�ij [5]

1

Qi ¼ qi; Pi ¼ pi½1þ �ðpÞ2�: (5)

In the classical limit Eq. (4) results in the modified disper-
sion relation

"2 ¼ p2 þ 2�p4 þm2;

which admits a simple physical interpretation: due to
quantum-gravitational fluctuations of the background met-
ric, the energy acquires the increment 2�p4. The modified
algebra in Eq. (4) has seen extensive applications in
minimum-length physics and gravitational physics. See,
Refs. [8–12] for some recent papers.
Under the influence of this modified dispersion relation

the free particle wave function gets modified as

exp
�
i
h
px�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
t
i�

! exp

�
i

�
px�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ �p4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p �

t

��
: (6)

Namely, the modified action as suggested in [13,14]
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1For further motivation of taking �0 ¼ 2� let us notice that the
multidimensional generalization of Eq. (2) that preserves trans-
lation and rotation invariance and introduces a finite minimum
position uncertainty in all three position variables contains only
the � parameter and leads to Eq. (5) in the leading order [6,7].
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A ½�� ¼ �
Z

d4x
1

2
½�@2t �þ�P2�þm2�2� (7)

results in the equation of motion

@2t ����þ 2����þm2� ¼ 0;

which is satisfied by Eq. (6). The second related departure
from the usual quantum field theory (QFT) takes place
when we are quantizing the field (second quantization).
We will focus on this issue in what follows.

The study of modifications to quantum field theory is
motivated by a number of issues. First the generalized
uncertainty principle potentially captures some features
of a theory of quantum gravity and may therefore provide
some insight into how quantum field theory is modified by
gravity. The canonical quantization of a field theory in flat
spacetime or its generalization to curved spacetimes pro-
ceeds using the harmonic oscillator for the modes. How
does the resulting theory depend on this assumption, and
how do important issues like the zero point energy of the
modes, which are the source of the cosmological constant
problem, become affected by deviations from the harmonic
oscillator? In the particular modification to canonical
quantization we consider (the minimum-length deforma-
tion) we find that an infrared scale necessarily enters, and
has an important role in regulating the new physical
effects.

II. PREPARING THE SETUP: FREE FIELD
QUANTIZATION

Let us consider a neutral scalar field � in a finite
volume l3

H ¼
Z
l3
d3x

1

2
½�2 þ @x�@x�þm2�2�;

where � ¼ _�. After using the Fourier expansion for �
and �

� ðxÞ ¼ 1

l3
X
pn

’ðpnÞeipnx; �ðxÞ ¼ 1

l3
X
pn

�ðpnÞeipnx;

the Hamiltonian takes the form

H ¼ 1

2l3
X
pn

½�ðpnÞ�þðpnÞ þ ðp2
n þm2Þ’ðpnÞ’þðpnÞ�:

The quantization conditions

½�ðxÞ; �ðyÞ� ¼ i�ðx� yÞ;
½�ðxÞ; �ðyÞ� ¼ 0;

½�ðxÞ; �ðyÞ� ¼ 0;

for the Fourier amplitudes imply

½’ðpnÞ; �ðpmÞ� ¼ il3��pnpm
;

½’ðpnÞ; ’ðpmÞ� ¼ 0;

½�ðpnÞ; �ðpmÞ� ¼ 0:

Defining

aðpnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2"pn

p ½"pn
’ðpnÞ þ i�ðpnÞ�;

aþðpnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2"pn

p ½"pn
’ð�pnÞ � i�ð�pnÞ�;

where "pn
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
n þm2

p
, one finds

½aðpnÞ; aþðpmÞ� ¼ l3�pnpm
;

½aðpnÞ; aðpmÞ� ¼ 0;

½aþðpnÞ; aþðpmÞ� ¼ 0:

Therefore the field and momentum operators take the form

� ðxÞ ¼ 1

l3

X
pn

1ffiffiffiffiffiffiffiffiffiffi
2"pn

p ½aðpnÞeipnx þ aþðpnÞe�ipnx�;

�ðxÞ ¼ i

l3
X
pn

ffiffiffiffiffiffiffi
"pn

2

r
½aþðpnÞe�ipnx � aðpnÞeipnx�;

and the Hamiltonian reduces to

H ¼ 1

2l3
X
pn

"pn
½aþðpnÞaðpnÞ þ aðpnÞaþðpnÞ�:

Introducing real variables

Qpn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l?

2l3"pn

s
½aðpnÞ þ aþðpnÞ�;

Ppn
¼ i

ffiffiffiffiffiffiffiffiffiffiffi
"pn

2l3l?

s
½aþðpnÞ � aðpnÞ�;

the Hamiltonian splits into a sum of independent one-
dimensional oscillators

H ¼ X
pn

�
l?P

2
pn

2
þ "2pn

Q2
pn

2l?

�
: (8)

In Eq. (8) we have defined the Ppn
, Qpn

operators in such a

way that each oscillator has a mass l�1
? . Why do we need to

do so? The point is that, while in the standard quantization
the energy spectrum of harmonic oscillator does not de-
pend on its mass, for minimum-length deformed quantiza-
tion the energy correction becomes mass dependent [6,15].
One can conclude that the quantization of the field, suitably
altered to respect the effects of a minimal length, neces-
sarily involves some characteristic length (energy) scale
l? in the vein of an effective QFT. A massless free field
enclosed in a box at a zero temperature has the only length
scale defined by the box size. So, in this particular case one
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naturally infers that l? should be set by the box size l. (It
would be interesting to see how this sort of correction
contributes to the Casimir force.) In general, for the pur-
pose of identifying the length scale l?, one may keep in
mind that [in view of Eq. (2)] the deviation from the
standard quantization becomes appreciable at high ener-
gies. Therefore it naturally suggests the identification of
l�1
? with the characteristic energy scale of the problem
under consideration. This sort of reasoning is completely
in the spirit of an effective QFT; we come to this point in
more detail in Sec. IV.

The Heisenberg equation of motion reads

_aðpnÞ ¼ i½H; aðpnÞ� ¼ �i"pn
aðpnÞ;

which can be solved as

aðt;pnÞ ¼ aðt ¼ 0;pnÞe�i"pn t:

The field and momentum operators take the form

�ðt;xÞ ¼ 1

l3
X
pn

1ffiffiffiffiffiffiffiffiffiffi
2"pn

p
� ½að0;pnÞeiðpnx�"pn tÞ þ aþð0;pnÞe�iðpnx�"pn tÞ�;

�ðt;xÞ ¼ i

l3
X
pn

ffiffiffiffiffiffiffi
"pn

2

r

� ½aþð0;pnÞe�iðpnx�"pn tÞ � að0;pnÞeiðpnx�"pn tÞ�:
Then, we write aðpnÞ for að0;pnÞ, and similarly aþðpnÞ for
aþð0;pnÞ in field theory and call these quantities the
annihilation and creation operators, respectively.

III. CORRECTIONS DUE TO MINIMUM-LENGTH
DEFORMED QUANTUM MECHANICS

In the previous section we reviewed the free field quan-
tization of a scalar field and established our notation. Now
let us consider the implications of the minimum-length
deformed quantum mechanics on the field theory. For the
quantization of the field we use the one-dimensional com-
mutator in Eq. (2). This may seem a peculiar thing to do
since the field oscillators are always assumed to be har-
monic oscillators. This is entirely appropriate since we
want to understand the field theory excitations as particles.
Even when field theory is considered in a curved classical
spacetime background the Fourier components of the
field are quantized as a collection of harmonic oscillators.
However in this situation it is well-known that the notion of
particle is ambiguous and leads to physically real processes
such as Hawking radiation [16]. The particle creation that
occurs in such situations involves an infrared scale asso-
ciated with the spacetime curvature. At the very least, one
can say the introduction of the scale � (which is related to
the Planck scale and represents a deformation to the har-
monic oscillators) is a method for exploring possible ef-
fects on the field quantization coming from quantum
gravity. The success of field theory is due in part to the

fact that other mass scales that arise in our field theories do
not modify the harmonic oscillators of the second quanti-
zation. Nevertheless, gravity may be different, and in fact
the reliance on harmonic oscillators in field theory has been
criticized [17]. The introduction of this scale then neces-
sitates the introduction of a new scale l? that is not a priori
related to any parameter of the theory but is rather defined
by the energy scale of the problem under consideration.
Speaking in a more quantitative way, the appearance of
length scale l? besides � lends the possibility for introduc-
ing of a dimensionless parameter �=l2? that measures the
deviation from the standard picture in accordance with the
Eq. (2). For each oscillator now we have

½Qpn
; Ppm

� ¼ i�pnpm
ð1þ �P2

pn
Þ: (9)

Using the solution in Eq. (3) the Hamiltonian

H ¼ l?P
2

2
þ "2Q2

2l?

to the first order in � takes the form

H ¼ l?p
2

2
þ "2q2

2l?
þ l?�

3
p4

¼ "

�
bþbþ 1

2

�
þ �"2

12l?
ðbþ � bÞ4;

where

b ¼
ffiffiffiffiffiffi
l?
2"

s �
"

l?
qþ ip

�
; bþ ¼

ffiffiffiffiffiffi
l?
2"

s �
"

l?
q� ip

�
:

Using this Hamiltonian, from the Heisenberg equation
_b ¼ i½H; b� one finds

_b ¼ �i"b� i
�"2

3l?
ðbþ � bÞ3: (10)

Writing the operator b to the first order in � in the form

b ¼ fþ �g;

then Eq. (10) takes the form

_fþ � _g ¼ �i"ðfþ �gÞ � i
�"2

3l?
ðfþ � fÞ3: (11)

Equating the coefficients of like powers of � from Eq. (11)
one finds

_f ¼ �i"f; _g ¼ �i"g� i
"2

3l?
ðfþ � fÞ3;

which admits the following analytic solution:

FREE PARTICLE WAVE FUNCTION IN LIGHT OF THE . . . PHYSICAL REVIEW D 84, 044043 (2011)

044043-3



fðtÞ ¼ fð0Þe�i"t;

_g ¼ �i"g� i
"2

3l?
½fþð0Þei"t � fð0Þe�i"t�3;

gðtÞ ¼ e�i"t

�
gð0Þ � i

"2

3l?

Z t

0
d�ei"�ffþð0Þei"�

� fð0Þe�i"�g3
�
: (12)

Using Eq. (12) to the first order in � one can write

bðtÞ ¼ bð0Þe�i"t

� i
�"2

3l?
e�i"t

Z t

0
d�ei"�fbþð0Þei"� � bð0Þe�i"�g3:

Thus, the corrected field operator takes the form

�ðt;xÞ ¼ 1

l3
X
pn

1ffiffiffiffiffiffiffiffiffiffi
2"pn

p ��
bðpnÞ � i

�"2pn

3l?

Z t

0
d�ei"pn�½bþðpnÞei"pn� � bðpnÞe�i"pn��3

�
eiðpnx�"pn tÞ

þ
�
bþðpnÞ þ i

�"2pn

3l?

Z t

0
d�e�i"pn �½bðpnÞe�i"pn� � bþðpnÞei"pn ��3

�
e�iðpnx�"pn tÞ

�
:

The terms from

½bþðpnÞei"pn� � bðpnÞe�i"pn��3
that affect the matrix element h0j�ðt;xÞjpii are

e�i"pn�bðpnÞbþðpnÞbðpnÞ þ e�i"pn�b2ðpnÞbþðpnÞ:
Similarly from

½bðpnÞe�i"pn � � bþðpnÞei"pn��3
the matrix element is affected by the terms

� e�i"pn�bðpnÞbþðpnÞbðpnÞ � e�i"pn�b2ðpnÞbþðpnÞ:
Using the normalization aþjni ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1i, ajni ¼ffiffiffi

n
p jn� 1i we may write

bþðpnÞjpii � bþðpnÞbþðpiÞj0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ni

p jpn;pii and

b2ðpnÞbþðpnÞjpii ¼ 2�nij0i:
Hence we find

h0j½bþðpnÞei"pn� � bðpnÞe�i"pn ��3jpii ¼ 3�nie
�i"pn �;

h0j½bðpnÞe�i"pn� � bþðpnÞei"pn ��3jpii ¼ �3�nie
�i"pn�:

The final result looks like

h0j�ðt;xÞjpii / eiðpix�"pi tÞ
�
1� i

�"2pi

l?
t

�

þ �"pi

2l?
e�iðpixþ"pi tÞ � �"pi

2l?
e�iðpix�"pi tÞ:

(13)

From the derivation of this result it is obvious that the
validity conditions for it simply imply the smallness of
the corrections. For validity conditions from Eq. (6) we
get �p4="2 � 1, and from Eq. (13) �"2t=l? � 1,
�"=l? � 1. We should also take into account that the

generalized uncertainty relation in its minimal form,
Eqs. (1) and (2), as well as the Brau approach we are using,
Eq. (5), imply that �p2 � 1.

IV. COMPARING WITH THE POWER
COUNTING APPROACH

In this section we compare developments with the ef-
fective field theory approach to general relativity to shed
light on the physical scale l?. Notice that Eq. (2) can be
solved exactly in terms of the standard q, p operators [14]

Q ¼ q; P ¼ ��1=2 tanðp ffiffiffiffi
�

p Þ; (14)

or by expanding the momentum operator in Eq. (14) into
series in powers of �

P ¼ pþ �

3
p3 þ 2�2

15
p5 þ 17�3

315
p7 þ 62�4

2835
p9 þOð�5Þ:

(15)

Odd powers of p appear because the right-hand side of
Eq. (2) involves only integral powers of P2, and conse-
quently only even powers of p will appear in the expansion
of P2. Introducing again the real variables

qk ¼
ffiffiffiffiffiffiffiffiffi
l�2
?

2!k

s
½bðkÞ þ bþðkÞ�;

pk ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!kl

�4
?

2

s
½bþðkÞ � bðkÞ�

[for notational convenience we use in this section ð!k;kÞ
instead of ð"p;pÞ], the Hamiltonian of a free field

H ¼ 1

2

Z
d3k!k½bþðkÞbðkÞ þ bðkÞbþðkÞ� (16)

splits into a sum of independent one-dimensional
oscillators
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H ¼
Z d3k

l�3
?

�
p2
k

2l�1
?

þ l�1
? !2

kq
2
k

2

�
; (17)

each having the mass l�1
? . Now assuming pk, qk are deformed with respect to Eqs. (14) and (15), that is, we replace

pk ! Pk, qk ! Qk, the Hamiltonian (16) gets modified to

H ¼
Z d3k

l�3
?

�
P2
k

2l�1
?

þ l�1
? !2

kQ
2
k

2

�

¼
Z d3k

l�3
?

�
p2
k

2l�1
?

þ l�1
? !2

kq
2
k

2
þ �

p4
k

3l�1
?

þ �2 17p
6
k

90l�1
?

þ �3 31p8
k

315l�1
?

þ �4 691p10
k

14175l�1
?

þOð�5Þ
�

¼ 1

2

Z
d3k

�
!k½bþðkÞbðkÞ þ bðkÞbþðkÞ� þ!2

k�

6l4?
½bþðkÞ � bðkÞ�4

� 17!3
k�

2

360l8?
½bþðkÞ � bðkÞ�6 þ 31!4

k�
3

2520l12?
½bþðkÞ � bðkÞ�8 � 691!5

k�
4

226800l16?
½bþðkÞ � bðkÞ�10 þOð�5Þ

�
: (18)

Thus, at the second quantization level the modification amounts to the replacement of Hamiltonian (16) with
Eq. (18). The perturbation Hamiltonian

H ¼ 1

2

Z
d3k

�
!2

k�

6l4?
½bþðkÞ � bðkÞ�4 � 17!3

k�
2

360l8?
½bþðkÞ � bðkÞ�6

þ 31!4
k�

3

2520l12?
½bþðkÞ � bðkÞ�8 � 691!5

k�
4

226800l16?
½bþðkÞ � bðkÞ�10 þOð�5Þ

�
(19)

can be readily written in interaction representation

H IntðtÞ ¼ 1

2

Z
d3k

�
!2

k�

6l4?
½ei!ktbþðkÞ � e�i!ktbðkÞ�4 � 17!3

k�
2

360l8?
½ei!ktbþðkÞ � e�i!ktbðkÞ�6

þ 31!4
k�

3

2520l12?
½ei!ktbþðkÞ � e�i!ktbðkÞ�8 � 691!5

k�
4

226800l16?
½ei!ktbþðkÞ � e�i!ktbðkÞ�10 þOð�5Þ

�
; (20)

where now bþðkÞ, bðkÞ are creation and annihilation operators in interaction representation. The S matrix

S ¼ I � i
Z 1

�1
H Intð�Þd�þ ð�iÞ2

2!

Z 1

�1
T ½H Intð�1ÞH Intð�2Þ�d�1d�2

þ ð�iÞ3
3!

Z 1

�1
T ½H Intð�1ÞH Intð�2ÞH Intð�3Þ�d�1d�2d�3

þ ð�iÞ4
4!

Z 1

�1
T ½H Intð�1ÞH Intð�2ÞH Intð�3ÞH Intð�4Þ�d�1d�2d�3d�4 þ � � � (21)

can be used to estimate amplitudes for various processes in
the spirit of an effective quantum field theory.

The correction term in the Hamiltonian (18) [or in
Eq. (20)] is controlled by the powers of parameter �=l2? �
ðlP=l?Þ2. Comparing it with the power counting result for
gravitational scattering amplitudes obtained in the frame-
work of an effective field theory approach to general
relativity [18] (Sec. III)

A ðEÞ ¼ a1

�
E

mP

�
2 þ a2

�
E

mP

�
4 þ a3

�
E

mP

�
6 þ � � � ;

where ai are numerical factors and E denotes a character-
istic energy scale of the process, one concludes that the
length scale l? should indeed be identified with E�1. As

before, in the effective field theory approach only even
powers appear because the field theory involves an expan-
sion of integral powers of squared momenta [18].

V. APPLICATIONS TO BLACK HOLE PHYSICS

We reemphasize here that the introduction of a scale �
in the field quantization procedure required us to introduce
another scale l?. This scale enters into corrections via the
dimensionless parameter �=l? as seen in Eq. (13). In light
the discussion in the previous section, we interpret the
length scale l? to arise from the energy scale of black
hole physics (which is the temperature) and the associated
length scale is the size of the event horizon. Precisely the
same scale is at play when one quantizes a field in the black
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hole background (e.g. by using tortoise coordinates in
which the metric appears Minkowskian).

Let us analyze the �=l? corrections separately.
Rewriting

eiðpix�"pi tÞ
�
1� i

�"2pi

l?
t

�
	 eiðpix�"pi tÞe�i�"2pi t=l?

¼ eiðpix�½"piþ�"2pi =l?�tÞ; (22)

we see that energy gets increased leading to the modified
dispersion relation

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ �

p2 þm2

l?
: (23)

The second term (on the right-hand side) in Eq. (13)
represents a reflected wave. The probability of reflection is
proportional to / j�"ðpÞ=l?j2. This phenomenon provides
a mechanism for obtaining the black hole remnants. It tells
us that during the black hole evaporation there is a back-
scattered flux as well that falls into the black hole. For
Hawking radiation T / r�1

g , where rg denotes the radius of

the black hole, that is, T / m2
P=M, where M stands for the

black hole mass. So, we get dM / �m2
PdT=T

2. Because of
backscattered flux the mass increment of the black hole
takes the form dMþ / j�"=l?j2dM. By taking into ac-
count that " / T and the appropriate energy scale at hand
for defining l? is T, that is, l? � T�1, we get dMþ /
T2dT=m2

P. So we are imagining that the field quantization
depends on the Planck scale through the parameter �, and
then for the black hole the appropriate infrared length scale
arises from the scale of spacetime curvature, i.e. the radius
rg of the black hole. Thus, for the black hole mass we get

M ¼ 1

8�

m2
P

T
þ �

T3

m2
P

; (24)

where � is a numerical factor of order unity. The first term
in Eq. (24) is much greater in comparison with the second
one as long as T4 � m4

P. But when the temperature ap-
proaches the Planck scale, the second term becomes of the
order of the first one. The black hole mass reaches its
minimum Mmin �mP for T �mP. The mechanism of
stabilization is clear. Let us notice that the question of
black hole remnants was addressed in a heuristic way
immediately by using the generalized uncertainty relation
in [19]. The temperature of black hole radiation obtained
heuristically from the generalized uncertainty relation be-
comes imaginary when the black hole mass drops below
the Planck scale. That was interpreted as the reason for the
emission halting. We see that emission does not halt as
such; instead, the backscattered flux becomes comparable
to the outgoing flux when the black hole evaporates down
to the Planck mass, and that serves as a mechanism of
stabilization. However it should be remembered that our
expectations are that applying just the modifications to the
uncertainty principle are likely insufficient for describing

the physics of a Planck mass black hole. In fact the validity
conditions for our perturbative calculation are violated if
one goes to the extreme case of such a lowmass black hole.
Furthermore, the expectation is that Eq. (9) represents at
best a truncated expression for the commutator. The full
expression presumably involves a (convergent) power se-
ries in P2 whose effects beyond first order in � escape our
perturbative analysis.
Let us notice that Planck mass black hole remnants may

be an interesting candidate for the dark matter [20]. Such
primordial black holes with a sufficient number for the
dark matter can be produced during the inflation [21].
It should also be noticed that in general the effect of a

backscattering is not new for black hole emission. Because
of the (usual) backscattering of the Hawking radiation off
the curved background, the spectrum of the black hole
radiation is not precisely of the form of a black body
radiation but gets modified with the gray-body factor

N!lm ¼ 1

2�

1

e4�!rg � 1
; ) N!lm ¼ 1

2�

�!l

e4�!rg � 1
;

where the gray-body factor, �!l, indicates the decay (sup-
pression) of the outgoing flux by a factor 1� �!l because
this part of the outgoing flux becomes reflected and falls
back to the black hole [16]. It is important to emphasize
that the appearance of the gray-body factor does not affect
the thermal character of the radiation (or otherwise the
black hole remains a thermal object) because this gray-
body factor works in both directions, that is, for outgoing
and incoming fluxes equivalently. One important differ-
ence between the compared backscattering effects is the
dependence on energy. For the traditional effect (calculated
using quantum field theory in a curved background geome-
try) one has � ! 1 for frequencies large compared to the
inverse black hole radius, whereas the effect uncovered
here grows with energy.
The thermodynamic interpretation of the black hole can

be maintained in the presence of the order � corrections.
Using Eq. (24) and the formula dS ¼ dM=T we get the
following correction to the black hole entropy:

S ¼ �

�
rg
lP

�
2 þ �

�
lP
rg

�
2
; (25)

where � ¼ 3�=32�2.
It is easy to see that the increment of energy given by

Eq. (22) [or otherwise, the modified dispersion relation
Eq. (23)] results in the logarithmic correction to the black
hole entropy. Taking " / T, l? � T�1, Eq. (22) tells us that
the black hole emission temperature gets increased
T ! T þ �T3. Hence, to the first order in � the entropy
dS ¼ dM=T ! dM=T � �TdM acquires a logarithmic
correction

S ¼ �

�
rg
lP

�
2 � 	 ln

�
rg
lP

�
;
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where 	 is a (positive) number of order unity. Combining
with Eq. (25) we get a well-known entropy expression

S ¼ �

�
rg
lP

�
2 � 	 ln

�
rg
lP

�
þ �

�
lP
rg

�
2 þ const:;

obtained in loop quantum gravity [22] and in a tunneling
formalism approach to the black hole emission [23]. The
logarithmic corrections seem to be a generic property of
black holes [24], but now we have clear understanding of
the physics behind each term (at least as far as heuristic
explanations afford).

The third term (on the right-hand side) in Eq. (13) could
be interpreted as indicating the possibility of particle
transition into an antiparticle [25–27] in the framework
of minimum-length deformed quantum mechanics. But
strictly speaking, in the case of a real, fundamental scalar
there is no antiparticle as such. It is worth noticing that the
effect of particle-antiparticle transition is absent for the
charged scalar field as well (see the discussion below).
So, this effect makes sense only if � is taken as an
effective field describing a composite neutral particle. The

probability of this process is equal to the likelihood of the
backscattering effect / j�"ðpÞ=l?j2. The presence of anti-
particle content in the plane wave might also suggest the
presence of particle-antiparticle creation.
One may wonder about the validity of the above

discussion for charged particles. The generalization of
the above discussion to this case is straightforward. For a
complex scalar field the field operator and the Hamiltonian
take the form [28]

�ðxÞ ¼ 1

l3
X
pn

1ffiffiffiffiffiffiffiffiffiffi
2"pn

p ½cðpnÞeipnx þ dþðpnÞe�ipnx�;

H ¼ 1

2l3
X
kn

"pn
½cþðpnÞcðpnÞ þ dðpnÞdþðpnÞ�;

where the particle operators cðpÞ, cþðpÞ commute with
antiparticle operators dðpÞ, dþðpÞ. From now on one can
immediately use the above discussion separately for cðpÞ,
cþðpÞ and dðpÞ, dþðpÞ pairs, respectively. Therefore, the
field operator takes the form

�ðt;xÞ ¼ 1

l3
X
pn

1ffiffiffiffiffiffiffiffiffiffi
2"pn

p ��
cðpnÞ � i

�"2pn

3l?

Z t

0
d�ei"pn�½cþðpnÞei"pn � � cðpnÞe�i"pn��3

�
eiðpnx�"pn tÞ þ ðdþðpnÞ

þ i
�"2pn

3l?

Z t

0
d�e�i"pn�½dðpnÞe�i"pn � � dþðpnÞei"pn��3

�
e�iðpnx�"pn tÞ

�
:

Similarly the cases of particles with spin involve straight-
forward generalizations. It is easy to see that as compared
to Eq. (13), in the case of a charged field there is neither a
reflected component nor an antiparticle wave function. For
stabilizing the mini black holes (to get black hole rem-
nants) it is important to know whether the higher order
corrections to the field operator in � lead to the backscat-
tering effect for charged particles or not. Besides that, it is
important to estimate the effect of electrostatic attraction
between the emitted particle and antiparticle. In general
this effect causes the average emission rate and power to be
lower than for otherwise similar uncharged particles [29].
In the case of a Planck size black hole, one has to account
also for the fact that the electric coupling increases with
energy and in general one may also expect the electrostatic
force at this scale to be strong enough to cause the back-
capture of the charged particles by the black hole.

Many papers have addressed the phenomenological im-
plications of a generalized uncertainty relation for mini
black holes in the framework of extra-dimensional models
with low quantum gravity scale. What the above discussion
tells us is that in such a case the emission rate for the
uncharged particles should be highly suppressed.

The modifications to the plane wave solutions arising
here from the generalized uncertainty principle can be
compared to the more conventional studies of quantum
field theory in a curved spacetime (with canonical quanti-
zation). Many of the same effects appear here such as
contributions similar to backscattering off the curved ge-
ometry in Hawking radiation, the mixing of positive and
negative frequency modes, and particle creation. Whether
these similarities can and should be identified (or whether
possible effects from minimum-length considerations
serve as a supplement) may be an interesting topic for
future investigations. Finally, it is unclear whether there
is a path integral approach to quantization which captures
the same physical effects of the minimum-length uncer-
tainty relation.
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