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In this work, a minisuperspace model for the projectable Hořava-Lifshitz gravity without the detailed-

balance condition is investigated. The Wheeler-DeWitt equation is derived and its solutions are studied

and discussed for some particular cases where, due to Hořava-Lifshitz gravity, there is a ‘‘potential

barrier’’ nearby a ¼ 0. For a vanishing cosmological constant, a normalizable wave function of the

Universe is found. When the cosmological constant is nonvanishing, the WKB method is used to obtain

solutions for the wave function of the Universe. Using the Hamilton-Jacobi equation, one discusses how

the transition from quantum to classical regime occurs and, for the case of a positive cosmological

constant, the scale factor is shown to grow exponentially, hence recovering the general relativity behavior

for the late Universe.
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I. INTRODUCTION

Hořava-Lifshitz (HL) gravity is a quite original proposal
for an ultraviolet (UV) completion of general relativity
(GR) [1], in which gravity turns out to be power-countable
renormalizable at the UV fixed point. GR is supposed to be
recovered at the infrared (IR) fixed point, as the theory
goes from high-energy scales to low-energy scales. In
order to obtain a renormalizable gravity theory one aban-
dons Lorentz symmetry at high energies [1,2]. Even though
the idea that the Lorentz symmetry is a low-energy sym-
metry has been previously considered [3], the novelty of
the HL proposal is that the breaking of Lorentz symmetry
occurs the very way as in some condensed matter models
(cf. Ref. [1] and references therein), that is through an
anisotropic scaling between space and time, namely,
~r ! b~r and t ! bzt, with b a scale parameter. The dynami-
cal critical exponent z is chosen in order to ensure that
the gravitational coupling constant is dimensionless,
which makes possible a renormalizable interaction. As
the Lorentz symmetry is recovered at the IR fixed point,
z flows to z ¼ 1 in this limit.

The anisotropy between space and time leads rather
naturally to the well-known 3þ 1 Arnowitt-Deser-
Misner (ADM) splitting [4], originally devised to express
GR in a Hamiltonian formulation. Following Ref. [1], a
foliation, parametrized by a global time t, is introduced.
Since the global diffeomorphism is not valid anymore, one
imposes a weaker form of this symmetry, the so-called

foliation-preserving diffeomorphism. Choosing this ap-
proach, the lapse ADM function, N, is constrained to be
a function only of the time coordinate, i.e. N ¼ NðtÞ. This
assumption satisfies the projectability condition [1]. In
order to match GR, one could also choose N ¼ Nð~r; tÞ, a
model dubbed nonprojectable and which has been inves-
tigated in Refs. [5,6]. The next step involves getting a
gravitational Lagrangian into this anisotropic scenario.
For this purpose, the effective field theory formalism is
used: Every term that is marginal or relevant at the UV
fixed point (z � 1) is included and, at the IR fixed point,
only the z ¼ 1 terms survive. GR is then presumably
recovered. The number of terms that must be included
splits HL gravity into two classes, depending on whether
one adopts the detailed-balance condition or not. It is
argued in Ref. [1] that if one allows every relevant term
to be included into the Lagrangian, the number of coupling
constants would be so large that any analysis would
become impracticable. The detailed-balance condition is
inspired by nonequilibrium thermodynamics [7] and,
loosely speaking, it states that the potential terms of a
D-dimensional action are obtained using a (D� 1)-
dimensional function, the superpotential. It is argued that
although detailed balance is a simplifying assumption, it is
by no means a necessary one [8,9]. It is shown that the list
of allowed terms is not so large after all and the detailed-
balance Lagrangian is obtained after the proper choice of
coefficients.
A common problem plaguing all HL versions is the

presence of a scalar field mode, which has a trans-

Bogoliubov dispersion relation with ~k6 term [10,11]. This
scalar mode appears, likewise a Goldstone boson, after
breaking a continuous symmetry. To avoid this mode,
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one has to introduce more symmetries: Besides the
foliation-preserving diffeomorphism, a local Uð1Þ symme-
try can be introduced [12] and it is shown that the scalar
mode is then gauged away. This version of HL gravity is
referred to as a general covariant, given that the number of
degrees of freedom matches that of GR. In Ref. [12] it was
argued that this extra symmetry is sufficient to ensure that
� ¼ 1; however, it was shown in Ref. [13] that this is not so
and that despite this symmetry � � 1 values are possible.
For the general covariant version, the detailed-balance
condition was investigated in Ref. [14]. For reviews on
these versions of HL gravity, the reader is referred to
Refs. [7,10,11].

In order to verify the consistency of these versions, one
has to check the issues of stability, the presence of ghost
modes, and the strong coupling. The projectable version
without detailed balance has either ghosts or instabilities
for the extra scalar mode [9,15]. The Minkowski space-
time is shown to be unstable [15] and in Ref. [16], the
stability of the de Sitter space-time was obtained. In
Refs. [17,18], it was shown that there exists a strong
coupling problem. Abandoning the projectable version
does not eliminate the scalar mode, but leads to an im-
provement of behavior given that for some ranges of
parameters the resulting version is ghost free and stable
[5,6]. Nonetheless, despite this somewhat better behavior,
the strong coupling problem persists [19]. A possible so-
lution to this problem consists of introducing a new energy
scale M�, above which the higher order terms are sup-
pressed so that M� <Msc, where Msc is the energy scale
where the coupling gets strong [20]. This method was used
in Ref. [18] to solve the strong coupling problem of the
projectable version and some phenomenological bounds to
M� were found [10]. For the generalized covariant version
proposed in Ref. [13], all the mentioned problems are
solved [21], and in Ref. [22] it is shown that by introducing
a new energy scale M�, as discussed above, the strong
coupling problem is resolved. Interestingly, the method
of Ref. [20] is not the unique way to circumvent the issue
of the strong coupling. It can be shown that the strong
coupling arises when considering a theory with � � 1 and
then taking the GR limit � ! 1 (see, e.g., Refs. [10,23]).
This problem is analogous to the one encountered in mas-
sive gravity theory, investigated in Ref. [24], where a
perturbative approach about zero graviton mass is impos-
sible; however one can find a static spherically symmetric
solution that is continuous in the limitm ! 0. This method
was applied in Ref. [23], which shows the so-called non-
perturbative continuity of a static spherically symmetric
space-time in the limit � ! 1.

Cosmological considerations have been extensively
studied in the context of HL gravity (for reviews, see
Refs. [23,25]). One subtle point that arises in the project-
able version concerns the lapse function which, being just a
function of time, implies that the classical Hamiltonian

constraint of GR is no longer local and must be integrated
over spatial coordinates. It is shown in Ref. [26] that this
yields an additional term that mimics dust into the
Friedmann equations. However, as noted in Ref. [9], the
Robertson-Walker metric is homogeneous, so this spatial
integral is simply the spatial volume of the space and hence
this ‘‘dark dust’’ constant must vanish [27]. The presence
of higher spatial curvature terms in HL gravity gives rise to
a plethora of new cosmologies that exhibit, for instance,
some bouncing and oscillating solutions [28–30]. A
classification of Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) cosmologies for HL gravity has been performed
in Refs. [27,31]. One should notice that the analysis carried
out in these references is entirely classical and based
on the resulting Friedmann-like and Rauchaudhury-like
equations.
Quantum cosmology (QC) is an interesting step toward

the understanding of quantum gravity and the initial con-
ditions of the Universe. Its setup consists of splitting space-
time, using the ADM formalism and applying well-known
quantum mechanical considerations for constrained sys-
tems. The cosmological principle is evoked so that space-
time is foliated in leaves with a constant global time. To
implement the quantum scenario, one promotes the
Hamiltonian constraint H ¼ 0 to an operator equation,

the Wheeler-DeWitt (WDW) equation, Ĥc ¼ 0, where
c is the wave function of the Universe [32]. The WDW
equation is a hyperbolic equation on the space of all
3-metrics, the so-called superspace. Its complexity makes
the task of obtaining solutions a formidable one. To deal
with this equation, one often considers simpler spaces,
such as for instance the FRLW space-times, which leads
to a minisuperspace model, where the number of degrees
of freedom is considerably reduced from infinite (any
3-metrics) to 1 (the scale factor) [33]. Despite their relative
simplicity the minisuperspace models are not completely
free from problems. Indeed, one can point out, for instance,
the fact that the wave function of the Universe is not in
many cases normalizable, which implies that the usual
interpretation of quantum mechanics cannot be used.
However, in the context of some particular models normal-
izable wave functions have been found and discussed
[34–36]. For, comprehensive reviews, see e.g. Refs. [37,38].
We argue that quantum cosmology allows for a valuable

insight of HL gravity in the quantum context. In both
approaches, one foliates the space-time in constant global
time leaves, a procedure that automatically satisfies the
projectability condition. But when adopting the QC for-
malism in HL gravity, one faces the problem of turning the
Hamiltonian constraint into the WDW equation, since the
Hamiltonian constraint in the HL gravity is not local.
Nevertheless, choosing a FLRW metric minisuperspace
model or, more generally, a spatially homogeneous cos-
mological metric, one can argue that the spatial integration
yields a local constraint. Notice that another suitable

ORFEU BERTOLAMI AND CARLOS A.D. ZARRO PHYSICAL REVIEW D 84, 044042 (2011)

044042-2



feature of HL gravity is that it does not introduce higher
than first order time derivatives of the scale factor on the
action, making the quantization procedure straightforward
as a mixture between time and spatial derivatives and
powers of momentum are not found. Indeed, the kinetic
part of the Hamiltonian has the same structure as the one in
the usual QC, and HL gravity introduces only higher
spatial derivative terms, which dominate on the very small
scales. Notice that the problem of high order time deriva-
tives imposes severe obstacles for applying QC on high
order derivative gravities and string theory, but not for HL
gravity. One concludes then that the minisuperspace model
can be naturally implemented in the HL gravity proposal.
In the minisuperspace model, the WDW equation for the
HL gravity was obtained in Ref. [39]; however in there the
interest was on the cosmological constant problem and
the HLWDWequation was neither discussed nor solutions
presented.

In this work, one investigates the projectable HL gravity
without detailed balance in the context of the minisuper-
space model of quantum cosmology for a FLRW universe
without matter. This particular choice, despite being much
simpler than the nonprojectable version [5,6] and the gen-
eral covariant approach [12], exhibits the main features of
the HL gravity and contains the detailed balance as a
limiting case. A matter sector is not introduced, given
that the main interest in the very early Universe, where
the HL new terms dominate and for the late Universe, an
epoch dominated by the cosmological constant. Moreover,
the inclusion of the matter sector and how it is coupled to
HL gravity remains an open question [10].

This paper is organized as follows: In Sec. II, the min-
isuperspace HL is presented and the WDW equation is
obtained. In Sec. III, the solutions of the WDW are found
and discussed. In Sec. IV, the wave function of a HL is
interpreted and an analysis of the Hamilton-Jacobi
equation is performed. Finally, concluding remarks are
presented in Sec. V.

II. THE WHEELER-DEWITT EQUATION

A. Metric

One considers the Robertson-Walker (RW) metric with
R� S3 topology

ds2 ¼ �2ð�NðtÞ2dt2 þ a2�ijdx
idxjÞ; (1)

where i, j ¼ 1, 2, 3, �2 is a normalization constant, NðtÞ
is the lapse function, and �ij is the metric of the unit

3-sphere. Its metric is given by

�ij ¼ diag

�
1

1� r2
; r2; r2sin2�

�
:

The extrinsic curvature takes the form:

Kij ¼ 1

2�N

�
�@gij

@t
þriNj þrjNi

�
; (2)

where Ni is the ADM shift vector and ri denotes the
3-dimensional covariant derivative. As Ni ¼ 0 for
RW-like spaces in study,

Kij ¼ � 1

�N

_a

a
gij: (3)

Taking the trace one gets

K ¼ Kijgij ¼ � 3

�N

_a

a
: (4)

The Ricci components of the 3-metric can also be obtained
as the foliation is a surface of maximum symmetry

Rij ¼ 2

�2a2
gij; (5)

R ¼ 6

�2a2
: (6)

B. Hořava-Lifshitz action

The action for the projectable HL gravity without de-
tailed balance is given by [8,9]:

SHL ¼ M2
Pl

2

Z
d3xdtN

ffiffiffi
g

p fKijK
ij � �K2 � g0M

2
Pl � g1R

� g2M
�2
Pl R

2 � g3M
�2
Pl RijR

ij � g4M
�4
Pl R

3

� g5M
�4
Pl RðRi

jR
j
iÞ � g6M

�4
Pl R

i
jR

j
kR

k
i

� g7M
�4
Pl Rr2R� g8M

�4
Pl riRjkriRjkg; (7)

where gi are coupling constants, MPl is the Planck mass,
and ri denote covariant derivatives. The time coordinate
can be rescaled in order to set g1 ¼ �1, recovering the GR
value. One also defines the cosmological constant � as
2� ¼ g0M

2
Pl. An important feature of the IR limit is the

presence of the constant � on the kinetic part of the HL
action. GR is recovered provided � ! 1 (corresponding to
the full diffeomorphism invariance); however � must be a
running constant, so there is no reason or symmetry that
a priori yields � ¼ 1 GR value. Phenomenological bounds
suggest however that the value of � is quite close to the GR
value [10].
Performing these redefinitions the HL action reads

SHL ¼ M2
Pl

2

Z
d3xdtN

ffiffiffi
g

p fKijK
ij � �K2 þ R� 2�

� g2M
�2
Pl R

2 � g3M
�2
Pl RijR

ij � g4M
�4
Pl R

3

� g5M
�4
Pl RðRi

jR
j
iÞ � g6M

�4
Pl R

i
jR

j
kR

k
i

� g7M
�4
Pl Rr2R� g8M

�4
Pl riRjkriRjkg: (8)
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C. Hořava-Lifshitz minisuperspace action

In order to consistently reduce the number of degrees of
freedom when restricting the 3-metrics of the superspace to
be isotropic and homogeneous, one can consider that the
restriction is performed directly into the equations of mo-
tion, or through the substitution of the RW metric into the
Lagrangian density and then obtain the equations of mo-
tion for the remaining degrees of freedom. In general, the
physical content of these two ways is different, showing
that the restriction cannot be done over the Lagrangian
unless one properly solves the arising constraints. For the
RW metric, without matter fields, these procedures are
shown to lead to the same results [40]. Since the HL
proposal introduces only an anisotropy between space
and time, it does not alter the homogeneity of the RW
metric and hence the metric (1) can be substituted into
Eq. (8) yielding the HL minisuperspace action

SHL¼M2
Pl�2�2�3ð3��1Þ�2

2

�
Z
dtN

�� _a2a

N2
þ 6a

3ð3��1Þ�
2��2a3

3ð3��1Þ
�M�2

Pl � 12

3ð3��1Þ�2a
�ð3g2þg3Þ

�M�4
Pl � 24

3ð3��1Þ�4a3
�ð9g4þ3g5þg6Þ

�
; (9)

where the spatial integral
R
d3x

ffiffiffiffi
�

p ¼ 2�2 has been per-

formed. A further simplification is obtained after choosing
units so to satisfy�2 � 6�2 � ð3�� 1ÞM2

Pl ¼ 1. The min-

isuperspace action then reads

SHL¼1

2

Z
dtN

�� _a2a

N2
þ 2a

ð3��1Þ�
�M�2

Pl a
3

18�2ð3��1Þ2

�24�2ð3g2þg3Þ
a

�288�4ð3��1Þð9g4þ3g5þg6Þ
a3

�
:

(10)

Following Ref. [27] the dimensionless coupling con-
stants are redefined as

gC ¼ 2

3�� 1
; g� ¼ �M�2

Pl

18�2ð3�� 1Þ2 ;

gr ¼ 24�2ð3g2 þ g3Þ;
gs ¼ 288�4ð3�� 1Þð9g4 þ 3g5 þ g6Þ:

(11)

Notice that gC > 0, which stands for the curvature cou-
pling constant. The sign of g� follows the sign of the
cosmological constant. These two terms are already
present in the minisuperspace GR model, but now they
depend on �. The coupling constants gr and gs can be
either positive or negative as their signal does not alter
the stability of the HL gravity (cf. Ref. [27]). As discussed
in Ref. [9], physically, gr corresponds to the coupling

constant for the term behaving as a radiaton and gs stands
for the term behaving as ‘‘stiff’’ matter (p ¼ � equation of
state). The minisuperspace action is finally written as [9]

SHL ¼ 1

2

Z
dt

�
N

a

��
�
�
a

N
_a

�
2 þ gCa

2 � g�a
4 � gr � gs

a2

�
:

(12)

D. Hořava-Lifshitz minisuperspace Hamiltonian
and Wheeler-DeWitt equation

The canonical conjugate momentum associated with a is
obtained using Eq. (12)

�a ¼ @L
@ _a

¼ � a

N
_a: (13)

The Hořava-Lifshitz minisuperspace Hamiltonian density
is performed using Eqs. (12) and (13)

H ¼ �a _a�L

¼ 1

2

N

a

�
��2

a � gCa
2 þ g�a

4 þ gr þ gs
a2

�
: (14)

The next step in implementing the quantum cosmology
program involves promoting the classical minisuperspace
Hamiltonian into an operator on which the so-called wave
function of the Universe is applied [32,33].
This is a subtle point in HL gravity since there is no

global diffeomorphism, just a foliation-preserving diffeo-
morphism [1]. This can also be seen as the lapse function
no longer depends on the space-time variables, as in GR,
but now it depends only on the global time N ¼ NðtÞ, as
discussed in Sec. I. This implies that the Hamiltonian
constraint is not local; however this problem can be cir-
cumvented for an homogeneous metric, such as Eq. (1), as
the integration over space can be performed as seen above.
The canonical quantization is obtained by promoting the
canonical conjugate momentum into an operator, i.e.
�a � �i d

da . Because of ambiguities in the operator order-

ing, one chooses �2
a ¼ � 1

ap
d
da ðap d

daÞ [33]. The resulting

WDW equation is then obtained�
1

ap
d

da

�
ap

d

da

�
� gCa

2 þ g�a
4 þ gr þ gs

a2

�
�ðaÞ ¼ 0:

(15)

The choice of p does not modify the semiclassical
analysis [41]; hence one chooses p ¼ 0, and the WDW
equation is written as

�
d2

da2
� gCa

2 þ g�a
4 þ gr þ gs

a2

�
�ðaÞ ¼ 0: (16)

This equation is similar to the one-dimensional
Schrödinger equation for ℏ ¼ 1 and a particle with
m ¼ 1=2 with E ¼ 0 and potential
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VðaÞ ¼ gCa
2 � g�a

4 � gr � gs
a2

: (17)

E. Hořava-Lifshitz minisuperspace potentials

TheWDWequation derived in the last section resembles
an unidimensional Schrödinger equation with potential
given by Eq. (17). Classically the allowed regions are
such that VðaÞ � 0 since E ¼ 0. A complete analysis of
the phase structure of HL FLRW cosmologies was per-
formed in Ref. [27].

Notice that the first two terms of Eq. (17) are the usual
GR terms of the quantum cosmology analysis [33]. HL
gravity introduces the last two terms which dominate for
a � 1, i.e. are relevant at short distances, presumably at
the very early Universe, where the GR description must be
replaced by the quantum gravity one. At the very early
Universe, this potential is dominated by the term �gs=a

2,
implying that for gs < 0 this potential exhibits a ‘‘barrier’’
that might prevent space-time from being singular. The
case gs > 0 is not examined as it leads to a cosmology that
cannot be suitably investigated using QC techniques.
Notice that the detailed-balance condition yields gs ¼ 0.

The choice gs < 0 splits the discussion into three dis-
tinct scenarios, for positive, negative, and vanishing cos-
mological constants. In what follows one studies the cases
ensued by these choices for the coefficients of Eqs. (11).

1. The � ¼ 0 case

In this case the curvature term dominates at large dis-
tances. The Universe oscillates between a1 and a2. The
potential, depicted in Fig. 1, is written as

V�¼0ðaÞ ¼ gCa
2 � gr � gs

a2
: (18)

2. The � � 0 case

For large a, the potential is dominated by the cosmo-
logical term, and given by

V��0ðaÞ ¼ gCa
2 � g�a

4 � gr � gs
a2

: (19)

The sign of g� follows the sign of the cosmological con-
stant�. For positive� the potential is depicted in Fig. 2(a)
and the negative � case in Fig. 2(b). For a positive cos-
mological constant, one considers a potential that has three
positive roots (a1, a2, and a3); hence there are two classi-
cally allowed regions for a1 < a< a2 and a3 < a and a
forbidden region where a2 < a< a3. There is another
possibility, discussed in Refs. [23,27], in which the poten-
tial has only one real positive root, namely, a1. The ex-
pression for the roots of Eq. (19) can be found in Ref. [42]
and will not be presented here as their expressions will
not play any role in what follows. The potential can be
factorized as

V�>0ðaÞ ¼ �g�
a2

ða2 � a21Þða2 � a22Þða2 � a23Þ: (20)

By the same token, for a negative cosmological constant,
one finds a similar behavior already present in the � ¼ 0
case: Classically, the Universe oscillates between a1 and
a2. This implies that the potential Eq. (19) reads

V�<0ðaÞ ¼ �g�
a2

ða2 � a21Þða2 � a22Þða2 þ a2i Þ; (21)

where a ¼ �iai are the imaginary roots of this potential
and ai is real.

III. SOLUTIONS OF THE WHEELER-DEWITT
EQUATION

Having described the three types of potentials one en-
counters, the task is to solve the WDW equation (16).
If � � 0, the cosmological constant term is quartic so
Eq. (16) cannot be solved in a closed form, and the
WKB approximation will be employed.

a1 a2
a

V 0 a

FIG. 1 (color online). Potential for � ¼ 0.

a1 a2 a3
a

V 0 a

a1 a2
a

V 0 a

FIG. 2 (color online). Potentials for nonvanishing cosmological constant.
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A. Boundary conditions

To find suitable boundary conditions for the WDW
equation one has to rely on physical assumptions. The
most discussed choices are the DeWitt boundary condition
[32], the ‘‘no-boundary’’ proposal [33,37], and the tunnel-
ing boundary condition [43].

The DeWitt boundary condition [32] is the one in which
the wave function of the Universe is required to vanish
wherever there is a classical singularity. It is inspired on
quantum mechanics, and it is suitable for the cases under
study here, as there is a potential barrier (bounce) for
a � 1 yielding that the singularity is inside a classically
forbidden region (cf. Ref. [34]). The DeWitt boundary
condition is expressed, for FLRW models as

c dWða ¼ 0Þ ¼ 0: (22)

The no-boundary condition, of Hartle and Hawking [33],
arises from using the Euclidean path integral formalism. In
that formalism, the ground state for the wave function of
the Universe is written as (cf. [44])

c ðaÞ ¼
Z
C
½da� expð�IÞ; (23)

where C denotes the integral taken over compact mani-
folds, and I is the Euclidean version of the action defined
in Sec. II such that the corresponding Euclidean action
I ¼ �iSHL can be obtained from Eq. (12) using d� ¼ iNdt
and the N ¼ 1 gauge:

I ¼ �iSHL

¼ 1

2

Z
d�

�
�a

�
da

d�

�
2 � gCaþ g�a

3 þ gr
a
þ gs

a3

�
; (24)

where � is the Euclidean time. It is possible to evaluate
c ðaÞ nearby a ¼ 0 [44,45]. In this case, it can be proven
that for � � 1 (close to a ¼ 0), one has da

d� ¼ 1 [37].

Substituting these conditions into the Euclidean version
of action (24), and integrating from 0 to ��, one finds

I ¼ 1

2

Z
d�

�
�ð1þ gCÞ�þ g��

3 þ gr
�
þ gs

�3

�
; (25)

which is I ! �1, for gr � 0 and gs � 0 yielding a di-
vergent wave function. This shows that the no-boundary
condition is not suitable for the problem under study.

It is important to notice that the boundary condition
c ð0Þ ¼ 0 does not mean that there is a quantum avoidance
of the classical singularity given that it is a sufficient but
not a necessary condition [34–36]. In the above references,
some examples are given where c ! 0, but

R
dajc ðaÞj2

diverges, and conversely cases where
R
dajc ðaÞj2 ! 0,

but c diverges. The conditions under which the classical
singularity is removed or avoided by quantum mechanics
are understood only in specific cases (cf. [34,36] and
references therein).

B. WDW equation solution for a � 1

This region corresponds to the very early Universe,
where the HL terms dominate. This HL epoch is expected
since any theory of quantum gravity is supposed to alter the
GR description of the structure of the space-time at small
distances. For this case, the WDW Eq. (16) reads�

d2

da2
þ gs

a2

�
c ðaÞ ¼ 0; (26)

which is an Euler equation whose solution is c ðaÞ ¼ a�

and � ¼ 1
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4gs

p
. As the solution must be real

and c ð0Þ ¼ 0, one finds that the wave function for
a � 1 goes as

c ðaÞ � a1=2þ1=2
ffiffiffiffiffiffiffiffiffiffi
1�4gs

p
; (27)

which yields gs � 1=4, a ‘‘quantum’’ bound for gs. Notice
that this coefficient is unconstrained by classical consid-
eration [27]. Although the potential for gs > 0 corresponds
to an infinite well, this quantum bound gives rise to a mild
singularity, which admits a well-defined mathematical
treatment (cf. Ref. [46]).

C. WDW equation solutions for a 	 1

This limit corresponds to the very late Universe, which is
dominated by the curvature and cosmological constant
terms. These terms are already present in the usual GR
quantum cosmology setup [33,37], reflecting the fact that
GR behavior is recovered at large distances. For � ¼ 0,
Eq. (16) for a 	 1 is given by

�
d2

da2
� gCa

2

�
c ðaÞ ¼ 0; (28)

which has the following asymptotic solution:

c ðaÞ � e�ð ffiffiffiffi
gC

p
=2Þa2 : (29)

Thus, as expected, the wave function has an exponential
behavior, since a 	 1 corresponds to a classically forbid-
den region for the potential Eq. (18).
For the positive cosmological constant case (g� > 0),

the WDW Eq. (16) reads�
d2

da2
þ g�a

4

�
c ðaÞ ¼ 0; (30)

whose asymptotic solution is given by a combination
of Bessel and Neumann functions with 	 ¼ 1=6
[cf. Eq. 8.491.7) of Ref. [47]]. Since the limit a 	 1 is
being considered and the Neumann functions only diverge
at a ¼ 0, these two functions are admissible:

c ðaÞ ¼ �C1

ffiffiffi
a

p
J1=6

� ffiffiffiffiffiffi
g�

p
3

a3
�
þ �C2

ffiffiffi
a

p
N1=6

� ffiffiffiffiffiffi
g�

p
3

a3
�
;

(31)
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where �C1 and �C2 are constants. A further analysis shows
that the asymptotic expansions for Bessel and Neumann
functions of any order (	) and large arguments (jzj ! 1)
are given by [cf. Eqs. (9.2.1) and (9.2.2) of Ref. [42]]

J	ðzÞ 

ffiffiffiffiffiffi
2

�z

s
cos

�
z� 	�

2
� �

4

�
;

N	ðzÞ 

ffiffiffiffiffiffi
2

�z

s
sin

�
z� 	�

2
� �

4

�
:

(32)

Substituting these asymptotic expressions into Eq. (31)
one finds the asymptotic behavior of the wave function for
large a:

c ðaÞ ¼ C1

a
cos

� ffiffiffiffiffiffi
g�

p
3

a3 � �

12
� �

4

�

þ C2

a
sin

� ffiffiffiffiffiffi
g�

p
3

a3 � �

12
� �

4

�
; (33)

where Ci ¼ �Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=�

ffiffiffiffiffiffi
g�

pq
, for i ¼ 1, 2. Notice that this

wave function is oscillatory, denoting that this is a classi-
cally allowed region and damped as jc ðaÞj2 � a�2. Not
surprisingly, the same behavior is found in Ref. [33] when
the cosmological constant dominates the evolution of
the Universe, and the GR regime is recovered. This issue
will be discussed in Sec. IV. Interestingly, the WKB
method yields the same asymptotic expression given by
Eq. (31) [36,46].

For �< 0 ) g� < 0, Eq. (23) is written as�
d2

da2
� ð�g�Þa4

�
c ðaÞ ¼ 0; (34)

whose asymptotic solution is a combination of the modi-
fied Bessel functions, I	ðzÞ and K	ðzÞ [cf. Eq. (8.406) of
Ref. [47]] of order 	 ¼ 1=6. However, I	ðzÞ grows expo-
nentially as z ! 1 [cf. Eq. (36)], hence only K	ðzÞ repre-
sents an acceptable solution for large a. The wave function
in that limit is given by

c ðaÞ � ffiffiffi
a

p
K1=6

� ffiffiffiffiffiffiffiffiffiffi�g�
p

3
a3
�
: (35)

As above, asymptotic expansions for modified Bessel func-
tions of any order (	) and large arguments (jzj ! 1) are
obtained using Eqs. (9.7.1) and (9.7.2) of Ref. [42]:

I	ðzÞ 
 ezffiffiffiffiffiffiffiffiffi
2�z

p ; K	ðzÞ 

ffiffiffiffiffi
�

2z

r
e�z: (36)

One then gets the wave function for the very late Universe

c ðaÞ � 1

a
eð�

ffiffiffiffiffiffiffiffi�g�
p

=3Þa3 : (37)

Thus, one concludes that for a 	 1 the wave function is, as
expected, strongly suppressed in this limit, given that this
region is classically forbidden.

D. WDW equation solution for � ¼ 0

If the cosmological constant vanishes theWDWEq. (16)
reads1 �

d2

da2
� gCa

2 þ gr þ gs
a2

�
�ðaÞ ¼ 0: (38)

After a change of variables, x ¼ g1=4C a, Eq. (38) reads�
d2

dx2
� x2 þ gr

g1=2C

þ gs
x2

�
�ðxÞ ¼ 0: (39)

This equation can be exactly solved in terms of the
associate Laguerre functions. Indeed, the following differ-
ential equation [cf. Eq. (22.6.18) of Ref. [42]]:

�
d2

dx2
þ 4nþ 2
þ 2� x2 þ 1� 4
2

4x2

�
yðxÞ ¼ 0; (40)

has the solution of yðxÞ ¼ e�x2=2x
þ1=2Lð
Þ
n ðx2Þ. Here n is a

positive integer, and Lð
Þ
n are associate Laguerre functions.

Comparing Eqs. (39) and (40), one finds that


 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4gs

p
;

grffiffiffiffiffiffi
gC

p ¼ 4nþ 2þ 2
;

c ðaÞ ¼ Ne�ð ffiffiffiffi
gC

p
a2=2Þðg1=4C aÞ
þ1=2Lð
Þ

n ð ffiffiffiffiffiffi
gC

p
a2Þ;

(41)

where N is a normalization constant to be obtained below.
As gs < 0, 
> 0, the wave function c ð0Þ is regular.
Comparing with Eq. (27), one also finds that the ratio
gr=

ffiffiffiffiffiffi
gC

p
must be quantized. This is not surprising given

that one is solving the Schrödinger equation with E ¼ 0,
which for a bounded potential has a discrete spectrum.
Thus, E ¼ 0 is an eigenvalue only for specific values of
the coefficients and these values must be quantized.
Another interesting feature of this solution is that it is
normalizable. Indeed, using Eq. (41) and Eq. (8.980) of
Ref. [47], one obtains for the normalization condition that

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!g1=4C

�ðnþ 
þ 1Þ

vuut
:

The complete solution, for the � ¼ 0 WDW equation
satisfying the c ð0Þ ¼ 0 boundary condition, is given by

c ðaÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!g1=4C

�ðnþ
þ1Þ

vuut
e�ð ffiffiffiffi

gC
p

a2=2Þðg1=4C aÞ
þ1=2Lð
Þ
n ð ffiffiffiffiffiffi

gC
p

a2Þ:
(42)

This wave function behaves as Eq. (27) for a � 1 and as
Eq. (29) for a 	 1. The Laguerre associated function L


n is

1In a quantum mechanical context, this equation was solved in
problem 4 of Sec. 36 of Ref. [48].
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an nth order polynomial which yields that the wave func-
tion has n nodes. It is not difficult to verify that for a fixed
gs, any gr obtained through the quantization condition
Eq. (41) implies that the potential Eq. (18) has two
positive real roots and so the Universe is oscillating what-
ever value of n � 0 is chosen. For large gr values, which
implies that n is large, the very structure of the wave
function shows that the Universe is almost classical [this
can be also seen by inspection of the probability density
plots for large n as shown in Fig. 3(d)]. This result can be
understood in terms of Bohr’s correspondence principle,
according to which the classical behavior is obtained from
the quantum one in the limit of large quantum numbers.
The probability density distribution for the wave function
of the Universe, jc ðaÞj2, for some n values are plotted in
Fig. 3. One clearly sees that the solution is highly sup-
pressed in the classically forbidden region, and it is oscil-
lating with n nodes in the classically allowed region.
Finally, it is straightforward to show that the singularity
is avoided in this model given that the probability to find
the Universe at a ¼ 0 vanishes due to the HL gravity
terms.

E. WDW solution for � > 0

If g� � 0, Eq. (16) cannot be analitically solved. The
behavior of the wave function for large a and nearby the
singularity a ¼ 0 were already discussed. For the inter-
mediate regions where the curvature term starts to become
relevant, after the HL epoch (very early Universe), one has
to rely on the WKB approximation, which for the classi-
cally allowed region is given by [48]

c ðaÞ 
 1

jVðaÞj1=4 exp

�
�i

Z a

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da

�
; (43)

where the � symbol denotes that one must consider a
combination of these two exponentials, VðaÞ is the poten-
tial Eq. (20) and a1 is the classical turning point, i.e.
Vða1Þ ¼ 0. The following integral must be solved:

Z a

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da¼ ffiffiffiffiffiffi

g�
p Z a

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�a21Þða22�a2Þða23�a2Þ

q
a

da:

(44)

One uses that VðaÞ � 0 for the classically allowed region
and, hence jVðaÞj ¼ �VðaÞ. This integral is valid for
a1 < a< a2 < a3. Changing the variables to t ¼ a2 and
rationalizing the square root, one finds

Z a

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da ¼

ffiffiffiffiffiffi
g�

p
2

Z a2

a2
1

ðt� a21Þða22 � tÞða23 � tÞ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt� a21Þða22 � tÞða23 � tÞ

q dt:

(45)

This integral can be written as a sum of elliptic integrals
[47,49]. Using the formulas (3.131.3), (3.132.2), and
(3.137.3) of Ref. [47] and the reduction formula (230.01)
of Ref. [49] one finds after a rather long, although straight-
forward computation

a

n 0

a 2

a
n 1

a 2

a

n 2

a 2

a

n 10

a 2

FIG. 3 (color online). Probability density for the wave function of the Universe for diferent values of n. The dashed line plots
represent the potential Eq. (18).
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Z a

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da ¼

ffiffiffiffiffiffi
g�

p
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � a21Þða22 � a2Þða23 � a2Þ

q

� ða21 þ a22 þ a23Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � a21

q
� Eð�; qÞ

þ
�
2a21a

2
2 þ a21a

2
3 þ a22a

2
3 � a43ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a23 � a21

q
�
Fð�; qÞ

� 3a22a
2
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a23 � a21

q �

�
�;

a21 � a22
a21

; q

��
; (46)

where

� ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � a21
a22 � a21

s
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � a21
a23 � a21

s
:

Fð’; kÞ is an elliptic integral of the first kind, Eð’; kÞ is an
elliptic integral of the second kind, and �ð’; n; kÞ is the
elliptic integral of the third kind (cf. [47]). Substituting
Eqs. (20) and (46) into Eq. (43) one finds the WKB wave
function of the Universe. This approximation is valid only

if dVðaÞ
da � jVðaÞj3=2 [48].
For a positive cosmological constant, the classically

forbidden region, a1 < a2 < a< a3, has the following
WKB wave function:

c ðaÞ ¼ C1

jVðaÞj1=4 exp

�Z a

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da

�

þ C2

jVðaÞj1=4 exp

�
�
Z a

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da

�
; (47)

and one has to solve

Z a

a2

ffiffiffiffiffiffiffiffiffiffi
VðaÞp

da¼ ffiffiffiffiffiffi
g�

p Z a

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�a21Þða2�a22Þða23�a2Þ

q
a

da:

(48)

Following the same steps as before, this integral can be
written as

Z a

a2

ffiffiffiffiffiffiffiffiffiffi
VðaÞ

p
da ¼

ffiffiffiffiffiffi
g�

p
2

Z a2

a22

ðt� a21Þðt� a22Þða23 � tÞ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt� a21Þðt� a22Þða23 � tÞ

q dt;

(49)

which can be solved using the formulas (3.131.5),
(3.132.4), and (3.137.5) of [47] and the reduction formula
(230.01) of [49]. One gets

Z a

a2

ffiffiffiffiffiffiffiffiffiffi
VðaÞ

p
da ¼

ffiffiffiffiffiffi
g�

p
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � a21Þða2 � a22Þða23 � a2Þ

q

� ða21 þ a22 þ a23Þða22 � a21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � a21

q �ð�; p2; pÞ

þ
�
a41 � a21a

2
2 � a21a

2
3 þ a22a

2
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a23 � a21

q
�
Fð�; pÞ

þ 3a23ða22 � a21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � a21

q �

�
�;

p2a21
a22

; p

��
; (50)

where

� ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða23 � a21Þða2 � a22Þ
ða23 � a22Þða2 � a21Þ

s

and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � a22
a23 � a21

s
:

Substituting Eqs. (20) and (50) into Eq. (47), one finds the
WKB wave function for a1 < a2 < a< a3.

F. WDW solution for � < 0

One is interested in the WKB wave function for the
classically allowed region a1 < a< a2. The WKB wave
function is given by Eq. (43). The steps are the very ones
of the above procedure, however, following the discussion
of Sec. II, one must consider that the smaller root (a2) is
negative and real [cf. Eq. (21)]. Using the formulas
(3.131.5), (3.132.4), and (3.137.5) of Ref. [47] and the
reduction formula (230.01) of Ref. [49], one gets

Z a

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðaÞj

q
da¼

ffiffiffiffiffiffiffiffiffiffi�g�
p

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða22�a2Þða2�a21Þða2þa2i Þ

q

�ða21þa22�a2i Þða21þa2i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22�a2i

q �ð�;p2;pÞ

þ
�
a4i þa2i a

2
2þa2i a

2
2�5a22a

2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22þa2i

q
�
Fð�;pÞ

�3a22ða21þa2i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22þa2i

q �

�
�;
�p2a2i
a21

;p

��
; (51)

where

� ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða23 � a21Þða2 � a22Þ
ða23 � a22Þða2 � a21Þ

s

and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � a22
a23 � a21

s
:
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The WKB wave equation is obtained after inserting
Eqs. (21) and (51) into Eq. (43). This completes the WDW
solutions for the potentials given by Eqs. (18) and (19). Any
analysis of theWKBwave function in this regime, due to its
complex expressions, is somewhat difficult.

IV. INTEPRETATION OF THE WAVE FUNCTION

To analyze the behavior of the wave function, one must
compute K2 ¼ KijK

ij, the trace of the square of the

extrinsic curvature Eq. (2) [44,45]. If a wave function is
oscillatory (exponential), K2 has positive (negative) ei-
genvalues. Using Eqs. (3) and (13), one gets

K 2 ¼ � 9

�2a4
d2

da2
: (52)

Defining the auxiliary quantity W :¼ K2c ðaÞ
c ðaÞ and the

asymptotic expression Eq. (27), for a � 1, one obtains
that W < 0. When the HL gravity terms dominate the
Universe, the wave function is exponential, corresponding
to a Euclidean geometry.

For the very late Universe, the behavior of the wave
function is very different depending on the value of the
cosmological constant. If � ¼ 0, the wave function is
given by Eq. (29) and it is easy to show that W < 0,
showing that the behavior is exponential. If �> 0, the
wave function is given by a combination of oscillatory
functions Eq. (33), givingW > 0, meaning that the geome-
try is Lorentzian or classical. Finally, for negative values of
the cosmological constant, Eq. (37) yields W < 0. In the
case studied here, the computations are quite simple, and it
is not surprising to find this result since the nature of the
wave function given by Eqs. (27), (29), (33), and (37) can
be obtained directly by inspection.

The semiclassical approximation implies that the con-
figurations will oscillate about the classical solution [38].
In order to verify whether GR can be recovered for the
low-energy limit in this approximation, one obtains the
Hamilton-Jacobi equation from theWDWequation through
theWKBmethod. TheWDWequation [cf. Eq. (16)] can be
written as

�
d2

da2
� VðaÞ

�
�ðaÞ ¼ 0: (53)

Substituting a wave function of the form c ¼ Re½CeiS�,
where C is a slowly varying amplitude and S is the phase,
one obtains the Hamilton-Jacobi equation�

dS

da

�
2 þ VðaÞ ¼ 0: (54)

Notice that S is real provided VðaÞ � 0 (classically allowed
region), denoting that the wave function is oscillatory. If
VðaÞ> 0 (classically forbidden region), S is imaginary
and the wave function has an exponential behavior. Using

Eq. (54), one finds that S ¼ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�VðaÞp
da is the phase for

the classically allowed region. This integral was discussed
in Sec. III. Applying �a to the wave function of the
Universe, c ¼ Re½CeiS�, one gets

�ac ¼ �i
dc

da
¼ �i

�
dC

da
þ iC

dS

da

�
eiS:

The WKB assumption, j dCda j � j dSda j, yields that �a ¼ dS
da .

Using Eqs. (13) and (54) one is led to

t ¼
Z aðtÞ

að0Þ
da

affiffiffiffiffiffiffiffiffiffiffiffiffiffi�VðaÞp ; (55)

where this equation relates the global time and the scale
factor. One intends to investigate the regions where the posi-
tive cosmological constant dominates, so VðaÞ � �g�a

4;
substituting this asymptotic potential into Eq. (55), one gets
that the time evolution for the scale factor when a 	 1 is
given by

aðtÞ � e
ffiffiffiffiffi
g�

p
t: (56)

This corresponds to a de Sitter expansion phase, a behavior
expected for the GR regime, which is recovered when
� ¼ 1. Of course, this does not prove that GR is recovered
as an IR fixed point of the HL gravity, but shows that a HL
FLRW cosmology yields for a 	 1 a semiclassical solution
that corresponds to theGRone.Apossible approach to tackle
the problem would involve considering a scaling � ¼ �ðaÞ,
and expect that � ! 1 for a 	 1. Considerations of this
nature were developed for cosmological models with
scale-dependent Newtonian gravitational coupling
(cf. Refs. [50,51]).

V. CONCLUSIONS

In this work, the quantum cosmology for the Hořava-
Lifshitz gravity without matter is investigated for the
closed Universe. In the minisuperspace model, the WDW
equation is derived, and it is shown that the HL gravity
introduces terms that are dominant for short distances,
modifying the behavior of GR on these scales. One chooses
the configurations for which the HL gravity new terms act
as a ‘‘potential barrier’’ close to the singularity, a ¼ 0.
The solutions for the WDW equation are obtained con-

sidering the DeWitt boundary condition, Eq. (22), which
states that the wave function vanishes at the singularity. For
a � 1, corresponding to the very early Universe when the
HL gravity terms dominate, the wave function is an ex-
ponential that is typical of the classically forbidden region.
A quantum bound for the coefficient gs is found.
For the very late Universe, when a 	 1, the curvature

and the cosmological constant terms dominate and, one
finds that, for � ¼ 0 or �< 0, the wave function is ex-
ponentially suppressed, denoting as before, that this region
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is classically forbidden. For a positive cosmological
constant case, one finds a damped oscillatory behavior,
already found in the usual QC for GR.

For the vanishing cosmological constant, an exact solu-
tion can be obtained. In this case, one finds that the singu-
larity is avoided due to quantum effects as the probability to
reach the singularity a ¼ 0 vanishes and that gr is quan-
tized. Fixing the value of gs, for large values of n (large gr
values), one can obtain a classical Universe according to the
analog of the correspondence principle of old quantum
mechanics. The complete exact solution for � � 0 cannot
be obtained, although wave functions in the WKB approxi-
mation can be obtained for the intermediate regions.

Finally, a discussion of how the classical solution
emerges from the semiclassical analysis is performed solv-
ing the Hamilton-Jacobi equation: One encounters a semi-
classical solution oscillating nearby the classical solution.
For �> 0 and a 	 1, this leads to a de Sitter space-time,
as expected from GR.

One then concludes that quantum cosmology applied
to HL gravity suggests that this proposal matches the
expectations of a quantum gravity model for the very
early Universe, as it provides, for instance, a hint for
the singularity problem for the � ¼ 0 case. In what
concerns specific solutions, the model suggests that GR
behavior is recovered at the semiclassical limit.
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Lett. B 311, 27 (1993).

[51] O. Bertolami and J. Garcia-Bellido, Int. J. Mod. Phys. D 5,
363 (1996).

ORFEU BERTOLAMI AND CARLOS A.D. ZARRO PHYSICAL REVIEW D 84, 044042 (2011)

044042-12

http://dx.doi.org/10.1103/PhysRevD.27.2848
http://dx.doi.org/10.1088/0264-9381/16/7/326
http://dx.doi.org/10.1088/0264-9381/16/7/326
http://dx.doi.org/10.1103/PhysRevD.56.4530
http://dx.doi.org/10.1103/PhysRevD.56.4530
http://arXiv.org/abs/quant-ph/0603187v2
http://arXiv.org/abs/quant-ph/0603187v2
http://dx.doi.org/10.1016/0370-2693(93)90528-P
http://dx.doi.org/10.1016/0370-2693(93)90528-P
http://dx.doi.org/10.1142/S0218271896000230
http://dx.doi.org/10.1142/S0218271896000230

