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We study entropy corrections due to thermal fluctuations for asymptotically anti-de Sitter black holes in

the grand canonical ensemble. To leading order, these can be expressed in terms of the black hole response

coefficients via fluctuation moments. We also analyze entropy corrections due to mass and charge

fluctuations of R-charged black holes, and our results indicate an universality in the logarithmic

corrections to charged anti-de Sitter black hole entropy in various dimensions.
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I. INTRODUCTION

Black holes are probably the most mysterious objects in
the General Theory of Relativity that are still far from
being fully understood. Whereas a quantum description
of the nature of black hole spacetimes has remained elusive
as of now apart from certain specific examples in loop
quantum gravity (LQG), a lot of progress has nevertheless
been made in the understanding of black hole thermody-
namics (see, e.g [1,2]). Although the origin of entropy in
black holes is quantum in nature unlike ordinary thermo-
dynamic systems, semiclassical analyses have often pro-
vided insights into the rich phase structure possessed by
black hole systems. For example, it is well known by now
that, whereas asymptotically flat black holes are thermally
unstable, asymptotically anti-de Sitter (AdS) ones can be in
thermal equilibrium with their own radiation. These often
exhibit critical phenomena akin to phase transitions in
ordinary liquid gas systems. Phase structures for AdS
black holes have been extensively studied in the literature
[3–5], and, for many cases, critical exponents have been
computed [6–8] revealing universality in a class of
examples.

In the context of black hole thermodynamics, it has
been established that black hole entropy, as given by the
celebrated Beckenstein-Hawking area law S ¼ A

4 (in units

of the Planck area), acquires logarithmic corrections due to
thermal fluctuations in the black hole parameters.1 This
has been extensively investigated by several authors
over the past decade (see, e.g [10–12]). Indeed, considered
as a microcanonical ensemble, where the black hole is
isolated, it has a fixed horizon area and an entropy
proportional to a quarter of this area. Allowing for fluctua-
tions of the black hole extensive parameters give rise to

logarithmic corrections2 to the area law. These corrections,
which are classical in nature thus arise if one allows the
black hole to be in an equilibrium canonical (or grand
canonical) ensemble where the black hole is allowed to
exchange energy (and charge, angular momentum) with its
surroundings. Inclusion of fluctuations in black hole ther-
modynamics is nontrivial and these often provide en-
semble dependent phase behavior. For example, it is well
known that whereas, in the canonical ensemble, electri-
cally charged AdS black holes exhibit liquid gas like phase
coexistence between a small black hole and a large black
hole phase culminating at a critical point, in the grand
canonical ensemble the situation is entirely different, and
one only has a Hawking-Page-like phase transition from a
thermal AdS space time to a nonextremal Reissner-
Nordstrom (RN)-AdS black hole at low temperatures
[3,4]. In the context of black hole entropy, corrections to
the same are also found to be ensemble dependent.
Although some specific examples have been considered
so far, a general treatment of such corrections in the grand
canonical ensemble is however lacking. It is this issue that
we set out to address in this paper.
Corrections to black hole entropy can be computed from

fluctuation theory by considering the entropy of black hole
in an appropriate equilibrium ensemble. In the canonical
ensemble, where the system is in equilibrium with a heat
bath and exchanges energy with the surrounding, the cor-
rections to the Beckenstein-Hawking area law can be
simply related to the specific heat of the black hole [10].
This follows from standard analyses in thermodynamic
fluctuation theory. In the grand canonical ensemble, where
one allows for fluctuations in all the extensive thermody-
namic parameters (i.e. charges) of the black hole while
keeping the corresponding potentials fixed, the situation is
more intricate. Electrically charged black holes in the
grand canonical ensemble have been studied for the four
dimensional RN-AdS black hole in [12], via the grand
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1These are classical fluctuations, where we tacitly assume that

the area of the black hole is large. This is the regime that we will
be interested in here. The entirely different issue of quantum
corrections to black hole entropy has been studied in the frame-
work of LQG in [9].

2We will adhere to standard terminology. By ‘‘corrections’’ to
black hole entropy we mean the terms that appear in the
expression of the entropy in addition to the Beckenstein-
Hawking area law, in the canonical or grand canonical ensemble.
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canonical partition sum, by postulating a power law rela-
tion between the energy, area, and charge. More generic
examples, where the black hole is allowed to exchange
angular momenta as well, have not been considered in the
literature. This is mainly due to the fact that the ‘‘angular
momentum spectrum’’ is hitherto not completely known in
the formalism of LQG. However, these are interesting and
important to study, as they serve to directly elucidate the
effect of charge fluctuations on the black hole entropy, vis à
vis fluctuations in the angular momentum. We will in fact
show in the sequel that the nature of these fluctuations are
completely different.

The main idea in this paper is to exploit the Smarr type
relations between the black hole parameters to calculate
corrections to its entropy, via fluctuation theory in the
grand canonical ensemble. This also takes into account
fluctuations of the angular momentum for rotating black
holes, which, to the best of our knowledge, have not been
studied so far. Our method elucidates the general procedure
to evaluate these corrections in the grand canonical en-
semble in the presence of arbitrary fluctuating para-
meters in any dimension, using standard thermodynamics.
Using this, we also calculate the entropy corrections in the
mixed ensembles [5] of Kerr-Newman (KN)-AdS black
holes in four dimensions (where one fixes a charge and a
potential), which allow for interesting phase coexistence
behavior. We further relate these corrections to black hole
response coefficients, thus generalizing the result of [10].
Our methods are applicable to string theoretic black holes
as well, and we show that there exists a certain universality
in the correction terms for the entropy of electrically
charged AdS black holes.

This paper is organized as follows. In Sec. II, we
review the general method to calculate fluctuation in-
duced corrections to black hole area law. A formula for
such corrections, involving the black hole response coef-
ficients, is also written down, generalizing the known
canonical ensemble result, using the properties of the
generalized Massieu transform of the entropy. This is
illustrated for the example of the Banados-Teitelboim-
Zanelli (BTZ) black hole in Sec. III. In Sec. IV, we evalu-
ate, in the grand canonical ensemble, corrections to the
Beckenstein-Hawking entropy of charged, rotating
AdS black holes in four dimensions. In addition, we cal-
culate these in the mixed ensembles alluded to in [5].
Section V is devoted to the calculation of the entropy
of class of string theoretic black holes in the grand canoni-
cal ensemble. Finally, we end with our conclusions in
Sec. VI.

II. BLACK HOLE ENTROPYAND THERMAL
FLUCTUATIONS

In order to calculate corrections to black hole entropy
from thermal fluctuations, one starts from the expression
for the partition function in the grand canonical ensemble,

which is given, for continuous values of the energy and the
charges by

Zð�i;�Þ¼
Z 1

0

Z 1

0
���

Z 1

0
�ðE;NiÞ

�exp½��ðE��iNiÞ�dEdN1dN2 ���dNi; (1)

where � is the density of states, Ni are the ‘‘particle
numbers’’ or ‘‘charges,’’ with �i being the corresponding
chemical potentials. � is the inverse temperature. In the
canonical ensemble, the expression simplifies as � is a
function of only the energy of the system, and the integra-
tions over the Ni’s are absent. For charged rotating black
holes, i ¼ 2 with N1 and N2 being the electric charge and
the angular momentum, and �1, �2 are the electric poten-
tial and angular velocity. Note that this expression is valid
only for a continuous distribution of the eigenvalues of the
Hamiltonian, the charge operator, the angular momentum
operator, etc., in the corresponding quantum theory.
Equation (1) is then inverted [13] by using an inverse
Laplace transform to obtain the density of states, which,
in the saddle point approximation, is

�ðE;NiÞ ¼ Zð�0; �i0Þ expð�0Eþ �i0NiÞ
ð2�Þ3=2�1=2

0

; (2)

where � ¼ 1
T and �i ¼ � �i

T . By definition, �i ¼ ð @S@Ni
Þ,

where S is expressed as a function of ðE;NiÞ. �0 is the
determinant of the matrix

D ¼
@2 lnZ
@�2

1

@2 lnZ
@�1@�2

� @2 lnZ
@�1@�

@2 lnZ
@�2@�1

@2 lnZ
@�2

2

� @2 lnZ
@�2@�

� @2 lnZ
@�@�1

� @2 lnZ
@�@�2

@2 lnZ
@�2

0
BBB@

1
CCCA (3)

evaluated at the equilibrium values of the temperature and
the chemical potentials. It is to be noted (see, e.g [14]) that
the logarithm of the (grand canonical) partition function
appearing in Eq. (3) is the generalized Massieu transform
of the entropy,

lnZ ¼ S� �E� �iNi; (4)

where the left hand side of Eq. (4) should be thought of as a
function of � and �.
It follows from Eq. (4) that the numerator of Eq. (2) is

the exponential of the grand canonical entropy (as a func-
tion of E and Ni), and, hence, we have, apart from irrele-
vant constants,

Sg ¼ ln�þ 1

2
ln�0: (5)

If we define the microcanonical entropy as the logarithm
of the density of states (as a function of only energy), then
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the above formula gives a correction to the microcanonical
entropy in the grand canonical (or canonical) ensemble.3

The expression for �0 can be computed via the response
coefficients of the black hole. For example, in the canoni-
cal ensemble where the system is in equilibrium with a heat
bath, Eq. (5) simplifies to

Sc ¼ ln�þ 1

2
lnCT2; (6)

where C is the specific heat and T the equilibrium tem-
perature. In the grand canonical ensemble, where we allow
for the fluctuations in the particle numbers, the elements of
the matrix D, which are directly related to the moments of
fluctuation of the black hole parameters (see, eg. [14]), get
related to the black hole response coefficients. For ex-
ample, in a grand canonical ensemble with the mass M
and electric charge Q being the fluctuating parameters, it
can be shown that the determinant �0 can be written as

�0 ¼ h�M2ih�Q2i � ðh�M�QiÞ2: (7)

A similar formula holds for angular momentum fluctua-
tions. Simple algebraic manipulations then show that when
the black hole is in a grand canonical ensemble with the
energy and a single charge (electric charge or angular
momentum) being allowed to fluctuate, the determinant
�0 can be expressed as4

�0 ¼ T3C��þ T4���� T4�2; (8)

where we have defined the heat capacity at constant �, and
the response coefficients � and � (analogous to the ‘‘com-
pressibility’’ and the ‘‘expansivity’’) with N ¼ fQ; Jg, as

C� ¼ 1

�

�
@S

@T

�
�
; � ¼ � 1

T

�
@N

@�

�
T
; � ¼

�
@N

@T

�
�T
:

(9)

Note that�0 > 0 gives the general condition for stability in
the grand canonical ensemble. If one allows for fluctua-
tions in the energy and a single charge (with chemical
potential � and � ¼ � �

T ), this yields

C� > T�

�
�

�
� �

�
: (10)

The reader will notice that Eq. (10), which is applicable in
the grand canonical ensemble, generalizes the well known
stability condition of the positivity of the specific heat in
the canonical ensemble. A similar formula can be easily
written down for the case when both the black hole charges
are allowed to fluctuate.

On physical grounds, one would expect that Eq. (10)
holds in the regions where the black hole is globally stable
(i.e. the Gibbs free energy is negative). This is indeed the
case for the BTZ black hole in the grand canonical en-
semble, as this is locally as well as globally stable every-
where.5 However, for other black holes, as we will
elucidate in the sequel, the region of global stability is
more constrained than the region of parameter space for
which Eq. (10) is valid. The latter equation can be shown to
be valid when the black hole is locally stable.
We also mention here that for the grand canonical en-

semble, it is more appropriate to deal with (fixed) thermo-
dynamic potentials than the charges. In this sense, Eq. (8)
should be thought of as being expressed in terms of the
appropriate potentials. The results that we will obtain will
be in terms of the fixed potentials, which can then be used
to deduce leading order corrections to black hole entropy in
the limit of small potentials. We should again remind the
reader that our analysis is strictly valid only in the classical
regime, i.e. for large black holes, away from extremality.
Finally, note that Eq. (5) is based on the assumption that

the spectrum of energy and the charges are continuous
parameters. The situation changes markedly if this is not
the case (as is expected from LQG). We should, therefore,
include an appropriate Jacobian in going to the continuum
limit in Eq. (1), as advocated in [11]. The Jacobian factor6

K modifies the result for the entropy correction, and the
corrected entropy is given by [11]

Sg ¼ ln�þ lnK þ 1

2
ln�0: (11)

Evaluation of the Jacobian factor requires knowledge about
the quantum spectrum of the black hole parameters. This is
not fully understood, and we will proceed with the assump-
tion that the area, charge and angular momentum spectra
are linear in the quantum numbers that they are measured
in [12].
Let us also mention that an equivalent approach is to

calculate the partition function of Eq. (1) directly, in the
Gaussian approximation [9]. It can be checked that this
gives the same result for the correction to the entropy as
that outlined above.
We now illustrate this procedure for the case of the BTZ

black hole in the grand canonical ensemble.

III. BTZ BLACK HOLE IN THE GRAND
CANONICAL ENSEMBLE

The entropy of the BTZ black hole is given, in terms of
its mass and angular momentum, as

3Such corrections to the microcanonical entropy appear for
ordinary thermodynamic systems as well, but for such systems,
in the infinite volume limit, when one talks about thermody-
namic quantities per unit volume, these can be neglected.

4A similar relation can be readily obtained for more than two
fluctuating parameters. The result however is lengthy and not
particularly illuminating.

5We allude to the standard definitions that a thermodynamic
system is locally stable if the Hessian of its entropy does not
develop negative eigenvalues. Global stability implies that the
Gibbs free energy is negative.

6We denote the Jacobian by K in this paper, so as not to
confuse with the notation for angular momentum.
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S ¼ 4�ffiffiffi
2

p
�
Ml2

�
1þ

�
1� J2

M2l2

�
1=2

��
1=2

; (12)

where l is related to the cosmological constant � ¼ � 1
l2
.

A useful quantity for the thermodynamic description is the
angular velocity, which is given by the expression

� ¼ 8�2 J

S2
; (13)

in terms of which the Hawking temperature of the black
hole is

T ¼ 1

8�2l2
Sð1��2l2Þ; (14)

which implies that non extremal BTZ black holes with non
zero temperature exist only for�l < 1 [15]. The correction
to the entropy can be evaluated from Eq. (3) by noting that

� ¼ 1

T
; � ¼ 8�2�l2

Sð�2l2 � 1Þ : (15)

The determinant �0 can be calculated from Eq. (3) [or
equivalently Eq. (8)]:

�0 ¼ 1

4096

S6ð1��2l2Þ3
�8l6

: (16)

For a continuous energy spectrum, the final result is, apart
from unimportant constants,

Sg ¼ ln�þ 3 lnSbh; (17)

where Sbh is identified with the area of the BTZ black hole.
Hence we see that in the grand canonical ensemble, the
entropy is proportional to lnS but with a prefactor of 3,
instead of 32 in the canonical ensemble, calculated in [9,10].

Inclusion of the Jacobian factor in Eq. (11) alters the result.
Following [12], for the BTZ black hole, this is given by

K�1 ¼
�
@E

@x

��
@J

@y

�
¼

�
@E

@A

��
@A

@x

��
@J

@y

�
: (18)

Assuming that the spectra of the area and the angular
momentum are linear in the quantum numbers x and y,
we obtain, apart from multiplicative constants,7

K ¼ 8l2�2

Sð1��2l2Þ : (19)

Inclusion of this factor thus implies that the final form of
the corrected entropy for the BTZ black hole is

Sg ¼ ln�þ 2 lnSbh: (20)

It is also to be noted that for the BTZ black hole,

�0 ¼ �G3

�2
; (21)

where G is the Gibbs free energy given by

G ¼ M� TS��J: (22)

This ensures that the determinant �0 is always positive in
the region of global stability where G is negative.
Finally, a few words about the fluctuation moments. It

follows from Eq. (3) that the relative fluctuations are

h�M2i
M2

¼ 4ð1þ 3�2l2Þ
Sð1þ�2l2Þ

h�J2i
J2

¼ 1þ 3�2l2

S�2l2

h�M�Ji
MJ

¼ 2ð3þ�2l2Þ
Sð1þ�2l2Þ :

(23)

Equation (23) shows the qualitative difference between
mass and angular momentum fluctuations for BTZ black
holes. In the limit of small �l, the relative fluctuation of

the mass �M2

M2 � S�1, as does the cross correlation term.

The relative angular momentum fluctuation however goes

as �J2

J2
� S�1ð�lÞ�2. This illustrates the difference in the

behavior of relative fluctuations of the energy and the
angular momentum.

IV. D ¼ 4 ADS BLACK HOLES
IN VARIOUS ENSEMBLES

We now turn to the example of AdS black holes in four
dimensions. The generalized Smarr formula for KN-AdS
black holes is well known [16]

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�2 þ 4�4j2 þ �4q4 þ 2q2�3sþ 4j2�3sþ 2q2s2�2 þ 2s3�þ s4

p
2�3=2

ffiffiffi
s

p : (24)

7For determining leading order corrections, it is enough for us to use the equilibrium values of the energy and the area.
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Here, we have conveniently rescaled the entropy, mass,
charge and angular momentum of the black hole by the
AdS radius as

s ¼ S

l2
; m ¼ M

l
; q ¼ Q

l
; j ¼ J

l2
: (25)

Equivalently, one could set the AdS radius l to be unity and
work with the unscaled parameters.8

Let us begin with the Kerr-AdS black hole, obtained by
setting q ¼ 0 in Eq. (24). In this case, it is convenient to
express the angular momentum in terms of the angular
velocity9 as

j ¼ !s3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ �

p

2�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ s�!2s

p : (26)

In terms of the angular velocity, the temperature can be
expressed as

t ¼ �2 þ 4s�� 2�!2sþ 3s2 � 3s2!2

4�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð�þ sÞð�þ s�!2sÞp : (27)

The Massieu transform of the entropy is obtained as

lnZ ¼ sðs2 � s2!2 � �2Þ
�2 þ 4s�� 2�!2sþ 3s2 � 3s2!2

; (28)

where, as usual, the right hand side of Eq. (28) has to be
thought of as a function of � and � ¼ ��!, where

� ¼ 1

t
; � ¼ � 4�3=2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ �Þ½sð1�!2Þ þ ��p

3s2ð1�!2Þ þ 2s�ð2�!2Þ þ �2

(29)

and ! is the angular velocity given by

! ¼ 2�3=2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ �

p
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3 þ s2�þ 4j2�3

p : (30)

The exact expression for the determinant in Eq. (5) [or
equivalently Eq. (8)] is somewhat lengthy and will not be
reproduced here. We simply state that in the limit of small
angular velocities, we obtain the result

�0 ¼ sð�þ 3sÞ4
64�6ð3s� �Þ : (31)

Hence, the corrected grand canonical entropy is, in this
case, for continuous distributions of the area and angular
momentum,

sg ¼ ln�þ 2 lnsbh : (32)

The relative fluctuations can be calculated for the Kerr-
AdS (KAdS) black hole as in the BTZ example, and we

find that similar to the latter, h�m
2i

m2 and h�m�ji
mj goes as s�1,

whereas h�j2i
j2

� s�1!�2.

Before moving on, a word about the stability of the
system for different values of the black hole parameters.
Calculation of the Gibbs free energy in this case shows that
for a given value of !, the free energy becomes negative

for s ¼ �ð1�!2Þ�ð1=2Þ. For ! ¼ 1
2 , this implies that

s ¼ 3:63. This signals the Hawking-Page phase transition,
with thp ¼ 0:297. On the other hand, the Davies tempera-

ture td of the black hole (where the specific heat div-
erges) can be calculated for ! ¼ 1

2 to be at td ¼ 0:257

(for s ¼ 1:208). This is the temperature for which �0

diverges as well, via a change of sign. Thus, positive
regions of �0 denotes a locally stable black hole, which
remains metastable till the Hawking-Page point before
becoming globally stable.10 These results are graphically
depicted in Fig. (1), where the blue, green, and red curves
are the plots of the temperature, the Gibbs free energy, and
�0 for various values of the entropy.
We now calculate the Jacobian factor of Eq. (11).

Assuming again that the spectra of the area and the angular
momentum are linear in their respective quantum numbers,
we obtain

K ¼ 4�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð�þ sÞð�þ sð1�!2ÞÞp

3s2ð1�!2Þ þ 2�sð2�!2Þ þ �2
: (33)

For small values of !s ,K � s�ð1=2Þ, and the final form of the

corrected entropy in the grand canonical ensemble is

sg ¼ ln�þ 3

2
lnsbh: (34)

A similar analysis can be carried out for RN-AdS black
holes, obtained by setting j ¼ 0 in Eq. (24). These have
been previously studied in the grand canonical ensemble in
[18] (see also [19]). We will simply state the main result
here. Expressing the charge in terms of the potential as

q ¼ �
ffiffi
s

pffiffiffi
�

p , we obtain

� ¼ � 4��3=2
ffiffiffi
s

p
3sþ �ð1��2Þ : (35)

The Massieu transform of the entropy, given by the loga-
rithm of the grand canonical partition function, is

8In this section and the next, we will use lower case letters to
denote the thermodynamic parameters, with the understanding
that these are scaled parameters in the sense just mentioned. This
is done to simplify the algebra, and factors of the AdS radius can
be included at any stage.

9Note that the angular velocity that enters in the formulae is
the one measured with respect to a nonrotating frame at infinity
[16,17], i.e. it is the difference of the angular velocity at the
horizon and that at the boundary of spacetime.

10A similar conclusion can be reached by calculating the
eigenvalues of the Hessian of the entropy, as in standard
thermodynamics.
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lnZ ¼ s½s� �ð1��2Þ�
3sþ �ð1��2Þ ; (36)

where, as usual, the right-hand side (rhs) of Eq. (36) has
to be considered as a function of � and �. Finally, �0 is
given by

�0 ¼ 1

32

ð3sþ �ð1��2ÞÞ4
�5ð3s� �ð1��2ÞÞ : (37)

In the limit s � �, the correction to the entropy is

sg ¼ ln�þ 3

2
lnsbh : (38)

Whereas this is true for the case of continuous energy and
charge spectra, inclusion of the Jacobian factor of Eq. (11)
modifies the result to

sg ¼ ln�þ lnsbh ; (39)

as can be straightforwardly deduced from an analogue
of Eq. (18). This is in agreement with the result obtained
in [11].
For the RN-AdS black hole in the grand canonical

ensemble, one can calculate the relative fluctuations of
the mass and charge as before. Here, we find that whereas
the relative fluctuation in the mass and the cross correlation
term between the mass and the charge goes as s�1, as for

rotating black holes, the relative fluctuation h�q2i
q2

���2.

This is different from the result obtained in [12] and needs
to be investigated further.11

The entropy of the general KN-AdS black hole in four
dimensions in the grand canonical ensemble can be simi-
larly determined, although the formulae are too long to
reproduce here. We state the final result that in the limit of
small potentials (electric potential or angular velocity), the
entropy of the KN-AdS black hole is given by

sg ¼ ln�þ 5

2
lnsbh (40)

for the case of continuous energy electric charge and
angular momentum distributions. Including the Jacobian
factor modifies the coefficient 5

2 to 2. The relative fluctua-

tions of the angular momentum and the charge follow the
same behavior as in the KAdS and RN-AdS cases. All the
cross correlation terms fall off as s�1. The behavior of
the relative charge fluctuation, which again goes as 1

�2

needs to be studied further.12

It is interesting to further study the KN-AdS black hole
in the mixed ensembles [8] alluded to in the introduction.
These are defined to be ensembles in which one thermody-
namic charge (i.e. the electric charge or the angular mo-
mentum) and the potential conjugate to the other (the
electric potential or the angular velocity) are held fixed.
We start with the fixed (electric) charge ensemble. In this
case, the angular momentum can be solved in terms of the
angular velocity as

j ¼ !ð�sþ s2 þ �2q2Þ ffiffiffi
s

p

2�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ sÞð�þ s�!2sÞp : (41)

The Massieu transform of the entropy yields the logarithm
of the partition function in the fixed charge ensemble

lnZ ¼ sðs4 � s4!2 þ �s3 � �!2s3 þ 3�2!2s2 � 4�2s2 � 7�3sþ 2�3!2s� 3�4Þ
3s4 � 3s4!2 þ 7s3�� 5�!2s3 þ 4s2�2 � �2!2s2 � �3s� �4

: (42)

11Using � ¼ 3
2 and � ¼ 1

2 in Eq. (27) of [12], we seem to reach the same conclusion, i.e. the relative fluctuation of the charge ���2

12We postpone further discussions on this to the final section.
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FIG. 1 (color online). Plots of various parameters (denoted by
F) of the Kerr-AdS black hole with entropy for ! ¼ 1

2 . The blue

curve denotes the temperature, the green denotes the Gibbs free
energy, and the red curve is for �0.
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The determinant �0 (for the case q ¼ 1) is given, in the
limit of small !, by

�0;q¼1 ¼ ðs2 þ s�þ �2Þð3s2 � s�� �2Þ4
64�6s3ðsþ �Þð3s2 � s�þ 3�2Þ ; (43)

from which it can be seen that the correction to the entropy
follows the same equation as the Kerr-AdS black hole of
Eq. (34), as expected. The fixed angular momentum case
can be similarly studied and the expression for the entropy
is found to be the same as in Eq. (39).

We end this section with a couple of comments about the
mixed ensembles. It is known that in the fixed charge
ensemble, the black hole exhibits phase coexistence of
large and small black hole branches and also shows first
order phase transitions akin to van der Waals systems
(which is also seen in the canonical ensemble of the RN-
AdS or Kerr-AdS black holes) [8]. This happens below a
critical value of the (fixed) charge, i.e. q ¼ 1

6 .
13 Although

we are mainly interested in the large black hole regime, it is
nevertheless interesting to explore the behavior of�0 in the
regions of phase coexistence. We find that �0 remains
positive in the physical regions of an isotherm (where the
specific heat c! is positive), remains negative in the un-
physical region (where the specific heat is negative),
changing sign through divergences at the turning points
of the isotherm (where the specific heat diverges). For
q > 1

6 , no phase coexistence exist (for !< 1) and �0 is

always positive, starting from zero at extremality. A similar
analysis can be done for the fixed j ensemble as well.

V. R-CHARGED BLACK HOLES
IN VARIOUS DIMENSIONS

Finally, as an illustration of the generality of our method,
we briefly address the issue of entropy of string theoretic
black holes in dimensions D ¼ 5, 7, and 4, corresponding
to rotating D3, M5, and M2 branes in the grand canonical
ensemble. These are familiar examples of R-charged black

holes [20,21]. For example, the D ¼ 5 case corresponds to
a spinning D3-brane configuration in which rotations in
planes orthogonal to the brane is characterized by the
group SOð6Þ. Upon a Kaluza Klein reduction of the spin-
ning D3-brane on S5, the three independent spins on the
D3-brane world volume (which are the three independent
Cartan generators of SOð6Þ) reduce to three Uð1Þ gauge
charges of the corresponding AdS5 black hole. We will
only deal with the compact horizon case here, and our
notations will follow [21] (see also [22]). The analysis
proceeds entirely in the same manner as that outlined
previously. For the single R-charged black hole in D ¼ 5
(case 1 of [22]), the mass is given by

m ¼ 3

2
r4þ þ 3

2
r2þ þ 3

2
r2þaþ a (44)

and the entropy is

s ¼ 2�r2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a

q
; (45)

where rþ denotes the position of the horizon, the charge
parameter a is related to the physical charge by

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðr2þ þ aÞðr2þ þ 1Þ

q
: (46)

It is useful to solve for the charge parameter a in terms of
the electric potential [22],

a ¼ r2þ�2

r2þ þ ð1��2Þ : (47)

Then, the calculation of the Massieu transform of the
entropy is standard, and this is given by

lnZ ¼ �r3þðr4þ � 1þ�2Þ
ð2r2þ þ 1��2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ 1��2

q ; (48)

from this, we can calculate, as before,

�0 ¼ r2þðr2þ þ 1Þ3ð2r2þ þ 1��2Þ4ð3r4þ þ 6r2þ þ 3þ�2Þ
4�2ðr2þ þ 1��2Þ3½2r6þ þ 3r4þð1��2Þ � 1þ 2�2 ��4� : (49)

In the grand canonical ensemble, where � is fixed to a
small value compared to the horizon radius, s� r3þ, and
�0 � r8þ, and hence

sg ¼ ln�þ lnsbh ; (50)

where we have used the fact that the Jacobian of Eq. (8)
goes, in this case, as K � s�ð1=3Þ. For single R-charged
black holes in D ¼ 4 and 7, we find that the correction to

the entropy follows the same rule as in Eq. (50). Note
further that this is the same as Eq. (39). This observation
is indicative of the fact that charged AdS black holes in any
dimension might have a universal logarithmic correction to
the entropy in the grand canonical ensemble, with unit
coefficient. The evidence presented in this paper towards
this is, however, not exhaustive, and it would be interesting
to study this issue further, to see if it can be conclusively
established. For rotating AdS black holes, our results in-
dicate that there is possibly no universal nature of such
entropy corrections.13The reader is referred to Fig. (31) of [8] for a quick reference.
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VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied the effect of thermal
fluctuations on the entropy for a wide class of AdS black
holes in the grand canonical ensemble and a couple of
mixed ensembles. We have argued that the Smarr formula
can be effectively used to calculate corrections to the
Beckenstein-Hawking area law in these ensembles, by
using standard tools of thermodynamics, and are expres-
sible entirely in terms of the black hole response coeffi-
cients. Further, we have derived a generalized stability
condition for black holes in the grand canonical ensemble,
where all the black hole extensive parameters are allowed
to fluctuate. The generalized Massieu transform of the
entropy has also been used to calculate moments of charge,
mass and angular momentum fluctuations. Our results
highlight the difference between charge and angular mo-
mentum fluctuations. Such differences are also seen in the
study of the state space scalar curvature of thermodynamic
geometries [8]. As mentioned in the text, the case of
relative charge fluctuations in the grand canonical en-
semble needs to be investigated further. For the RN-AdS
as well as the KN-AdS black hole, we find that this is
proportional to the inverse square of the potential.

For R-charged black holes, a similar analysis can be

done. Here, we find that h�m2i
m2 and h�m�qi

mq � s�1 in D ¼ 5,

7. and 4. Interestingly, whereas forD ¼ 5 and 7 the relative

fluctuation h�q2i
q2

falls off as a fractional power of s, in

D ¼ 4, we find h�q2i
q2

� 1
�2 , similar to the RN-AdS and

KN-AdS cases. This merits further discussion which we
leave for a future work.
In this work, we have ignored the quantum corrections

to the black hole entropy [23] as appears in the micro-
canonical ensemble. It should be possible, however, to
incorporate these in our analysis, at least in a class of
examples. It would also be interesting to understand the
role of thermal fluctuations for multiply charged string
theoretic black holes in the canonical ensemble, especially
since the latter exhibit rich phase structure and liquid
gas like first order phase transitions. Finally, the role of
thermal fluctuations in string theoretic black holes should
lead to interesting results in the dual gauge theory side
initially studied in [24]. This is left for a future
investigation.
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