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We show that the Hartle-Hawking vacuum for any theory of interacting massive scalars on a fixed

de Sitter background is both perturbatively well defined and stable in the IR. Correlation functions in this

state may be computed on the Euclidean section and Wick rotated to Lorentz signature. The results are

manifestly de Sitter-invariant and contain only the familiar UV singularities. More importantly, the

connected parts of all Lorentz-signature correlators decay at large separations of their arguments. Our

results apply to all cases in which the free Euclidean vacuum is well defined, including scalars with masses

belonging to both the complementary and principal series of SOðD; 1Þ. This suggests that interacting

Quantum Field Theories in de Sitter—including higher spin fields—are perturbatively IR stable at least

when i) the Euclidean vacuum of the zero-coupling theory exists and ii) corresponding Lorentz-signature

zero-coupling correlators decay at large separations. This work has significant overlap with a paper by

Stefan Hollands, which is being released simultaneously.

DOI: 10.1103/PhysRevD.84.044040 PACS numbers: 04.62.+v

I. INTRODUCTION

While free quantum fields in de Sitter space (dSD) have
been well understood for some time (see [1] for scalar
fields), interacting de Sitter quantum field theory continues
to be a topic of much discussion. In particular, there has
been significant interest in the possibility of large infra-red
(IR) effects in interacting de Sitter quantum field theories
[2–26], both with and without dynamical gravity.

In [27] we began to address the specific class of such
concerns associated with (IR) divergences of the naive
Lorentz-signature de Sitter Feynman diagrams or more
generally those concerns that can be addressed in the
context of minimally-coupled scalar fields with mass
M2 > 0 on a fixed de Sitter background, i.e., in a context
where gravity is nondynamical. There we computed one-
loop corrections to propagators on Euclidean de Sitter
(which is just the D-sphere SD) and analytically continued
the results to Lorentz-signature. This procedure defines the
so-called Hartle-Hawking vacuum of the Lorentzian theory
[28], which on general grounds should be a good quantum
state (see Sec. V). In particular, the analytically continued
correlators are expectation values of products of operators
in a single state as opposed to matrix elements between an
‘‘in-vacuum’’ and a potentially different ‘‘out-vacuum.’’
We do not attempt to define any notion of S matrix.

Because SD is compact, it is a priori clear that Euclidean
correlators do not suffer infra-red divergences. We showed
in [27] that, to one-loop order, the analytically continued
Lorentz-signature correlators were also finite and decayed
at a rate determined by the lightest relevant mass.1

The purpose of the current paper is to extend these results
to arbitrary N-point functions and to all orders in pertur-
bation theory, again showing that connected correlators
decay rapidly as the separation between points becomes
large. As in [27], our results will apply to all masses for
which the free Euclidean de Sitter vacuum is well-defined,
i.e. for all M2 > 0, including values in both the compli-
mentary series and the principal series of SOðD; 1Þ. We
again emphasize that we consider massive scalar quantum
field theories on a fixed de Sitter background, taking
gravity to be nondynamical. Because of the growth of the
graviton propagator at large distances, introducing a dy-
namical graviton could lead to radically different results
than those reported below.
Nevertheless, we also emphasize that the decay of con-

nected correlators found below demonstrates that the
Hartle-Hawking vacuum of any massive scalar field theory
is perturbatively stable, and that the Hartle-Hawking
vacuum is an attractor state for local operators in the sense
defined in [27]. To explain this point in detail, let us
consider a state constructed from the Hartle-Hawking
vacuum j0iHH with appropriately smeared operators:

j�i :¼
Z
Y1

� � �
Z
Yn

fðY1; . . . ; YnÞ��ðY1Þ � � ���ðYnÞj0iHH:

(1)

Here the Yi are points in dSD,
R
Y � � � denotes an

integral over de Sitter, and fðY1; . . . ; YnÞ is a smearing
function which we assume to be supported in a compact
domain D. Now examine the correlation function
h�j��ðX1Þ � � ���ðXNÞj�i with all Xi at large separations
from D. In this configuration the correlator is simply a
smeared correlation function between 2n operators located
within D and N operators with large (say, roughly equal)
separations jZj from D evaluated in the Hartle-Hawking
vacuum. Since the associated connected correlators decay
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1In addition, the one-loop calculations reported in [29] estab-

lish that correlators of free-field stress tensors decay at large
separations.
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rapidly at large separations, this function approximately
factorizes into a product of two correlators: one for the
points in D and one for the other points. The former
factor is just the norm of j�i, so we have
h�j��ðX1Þ � � ���ðXNÞj�i ! h�j�i � HHh0j��ðX1Þ � � �
��ðXNÞj0iHH. This means that, as probed by local opera-
tors, the excited state j�i becomes indistinguishable from
the Hartle-Hawking vacuum. Thus, despite concerns raised
in [30–33] associated with the lack of a conserved positive-
definite energy and other issues in de Sitter space, our
results below provide a very physical sense in which the
Hartle-Hawking vacuum of any massive scalar field theory
is stable. Note that, although the above argument was
phrased in terms of the elementary field ��, the fact that
composite operators can be defined by the operator product
expansion with respect to geodesic distance [34] implies
that the same conclusion immediately follows for all com-
posite local operators built from such fundamental fields.

We begin by briefly reviewing free de Sitter quantum
field theory in Sec. II. We then address simple tree dia-
grams in Sec. III, which also serves to introduce some
useful Mellin-Barnes techniques and our choice of
(Pauli-Villars) regularization scheme. We address general
diagrams in Sec. IV, where we establish the desired results
for finite Pauli-Villars regulator masses (so that all dia-
grams are finite). Since the infra-red asymptotics are inde-
pendent of the regulator masses, it is straightforward to
take the limit where such regulators are removed.2 Some
technical material is relegated to the Appendices. We close
with some discussion in Sec. V.

Remark: While paper was being prepared, we received a
draft of [36] which reports similar results.

II. FREE DE SITTER QFT

This brief section serves as a review of scalar quantum
field theory in de Sitter and allows us to establish our
notation. We consider D-dimensional de Sitter space dSD
with radius ‘, which may be defined as the single-sheet
hyperboloid in a Dþ 1-dimensional Minkowski space
MDþ1. Points on de Sitter satisfy [37]

�ABX
AXB ¼ ‘2; (2)

where XA is a vector in the embedding space and �AB ¼
diagð�1; 1; . . . ; 1Þ is the usual Minkowski metric.
Henceforth we will drop the index notation and denote the
inner product of two embedding space vectors X1 and X2

simply by X1 � X2. For two points on de Sitter located at
X1 and X2 the inner product X1 � X2=‘

2 provides a conve-
nient measure of distance which we loosely call the embed-
ding distance between X1 and X2 [1]. The embedding
distance is related to the length of the chord between
X1 and X2 in the embedding space (with the length being
proportional to 1� X1 � X2) and is clearly invariant under
the full de Sitter isometry group SOðD; 1Þ. The embedding
distance satisfies
(i) X1 � X2=‘

2 2 ½�1; 1Þ for spacelike separation,
(ii) X1 � X2=‘

2 ¼ 1 for null separation, and
(iii) jX1 � X2=‘

2j> 1 for timelike separation.

The antipodal point of X1 is simply �X1; clearly the
embedding distance between antipodal points is �1. See
Fig. 1.
In this work we restrict attention to massive scalar fields

��ðXÞ. It is convenient to keep track of the spacetime
dimension with the parameter � ¼ ðD� 1Þ=2; the mass
parameter � is then defined by the equation

� �ð�þ 2�Þ ¼ M2‘2; (3)

whereM2 is the bare mass squared of the field if we assume
minimal coupling to the metric. There is a redundancy in
this definition as (3) is invariant under � ! �ð�þ 2�Þ;
for clarity we choose to define � as the positive root

� :¼ ��þ ð�2 �M2‘2Þ1=2; (4)

but all expressions involving � must necessarily be invari-
ant under � ! �ð�þ 2�Þ. Free scalar fields form irre-
ducible representations of the de Sitter group SO0ðD; 1Þ
and fall into three series [38]:
(1) complementary series: ��< �< 0,
(2) principal series: � ¼ ��þ i�, � 2 R, � � 0,
(3) discrete series: � ¼ 0; 1; 2; . . . .

FIG. 1 (color online). The conformal diagram of global
de Sitter. The dashed ends are identified. Shown are the points
X and the corresponding antipodal point �X. Values of the
embedding distance Z :¼ XY=‘2 in different regions of
de Sitter are labeled; in addition, the dashed red lines denote
the light cone with Z ¼ 1 and the dotted green lines denote the
light cone with Z ¼ �1 [1].

2After subtracting regulator-dependent local counterterms in
order to obtain a finite result. We consider theories can be
renormalized in this way. One would expect this procedure to
be equivalent (up to finite local counterterms) to the renormal-
ization prescription given in [35] and thus to define a fully
covariant renormalized quantum field theory in the sense of
[34] whenever the flat-space limit is power-counting renorma-
lizable. However, we have not analyzed this question in detail
and save any investigation for future work.
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We plot � and �ð�þ 2�Þ as a function of M2 > 0 in
Fig. 2. Relatively light massive fields belong to the com-
plimentary series while heavier fields belong to the princi-
pal series. It is useful to note that �cc ¼ 1

2 � � corresponds

to an otherwise massless conformally coupled free field.
This value lies in the complimentary series so long as
D> 2. Discrete series fields correspond to massless and
tachyonic scalars and we will not consider them here.

Free massive scalar fields admit a unique de Sitter-
invariant Hadamard vacuum j0ifree, commonly referred to
as the Euclidean vacuum (it is also the Bunch-Davies
vacuum) [1,3]. Since the theory is free, the vacuum is
completely characterized by its 2-point functions. Let us
define the function

��ðZÞ :¼ ‘2�D

ð4�Þ�þ1=2

�ð��Þ�ð�þ 2�Þ
�ð12 þ �Þ

� 2F1

�
��;�þ 2�;

1

2
þ �;

1þ Z

2

�
: (5)

Here 2F1ða; b; c; zÞ is the Gauss hypergeometric function.
In general this function has a branch point at Z ¼ 1 and is
cut along the positive real axis Z 2 ½1;þ1Þ. The time-
ordered and Wightman correlation functions of a massive
scalar field ��ðXÞ are given by

h0jT��ðX1Þ��ðX2Þj0ifree ¼ ��ðX1 � X2 � i�Þ; (6)

h0j��ðX1Þ��ðX2Þj0ifree¼��ðX1 �X2� i�sðX1;X2ÞÞ; (7)

where in (7) the operator ordering is enforced by
sðX1; X2Þ ¼ þð�Þ if X1 is in the future (past) of X2 (see,
e.g., [39]).

At the level of free fields, one may in fact use any
member of the one-parameter family of 2-point functions
found in [1,3] to define a de Sitter-invariant vacuum state.
These other vacua are usually called Mottola-Allen (MA)
or � vacua. However, the nontrivial MA vacua do not

satisfy the Hadamard or Bunch-Davies criteria; in particu-
lar, their 2-point functions i) have an additional singularity
at antipodal points and ii) have an additional negative
frequency contribution to the singularity at coincident
points [40]. As a result, only the Euclidean vacuum ex-
trapolates to the usual Minkowski vacuum in the flat-space
limit [41]. It has been difficult to find consistent extensions
of MA vacua to interacting theories—see e.g. [39,42–46].
For these reasons we will discuss only the Euclidean
vacuum in this work.

III. SIMPLE TREE DIAGRAMS

We now proceed to analyze simple connected tree dia-
grams. As noted in the introduction, we compute diagrams
on Euclidean SD and analytically continue the results to
de Sitter. In particular, the Mellin-Barnes (MB) techniques
used below provide representations of connected diagrams
V NðX1; . . . ; Xn; XNÞ on SD in terms of the NðN � 1Þ=2
embedding distances Zij ¼ Xi � Xj relating the external

points. While the Zij are not all independent for general

N, D, it will often be convenient to use our Mellin-Barnes
representation to extend the definition ofV N to a function
of NðN � 1Þ=2 independent variables Zij. The analytic

continuation can then be performed by analytically con-
tinuing in each Zij and evaluating Zij ¼ Xi � Xj for N

points Xi in Lorentz-signature de Sitter space.
The only subtlety in the analytic continuations will be

the presence of branch cuts. As noted in Sec. II, for the
two-point function this amounts to choosing the appropri-
ate i� prescription to construct time-ordered or Wightman
correlators as desired. Much the same is true of higher
N-point correlators, though the specifics are more compli-
cated to state. However, since our only goal is to extract the
asymptotics at large Zij, we need not be concerned with

such details here. The large Z asymptotics are identical on
both sides of each cut so that all analytic continuations
satisfy the fall-off properties derived below. This means, in
particular, that our results hold for both Wightman and
time-ordered correlators.

A. The Green’s function

It is convenient for our analysis to use a Mellin-Barnes
integral representation of the scalar Green’s function on
SD. Mellin-Barnes representations have proved to be quite
useful in evaluating Feynman diagrams in flat-space QFT
(see, e.g., [47] for an introduction). They are especially
convenient for deriving asymptotic expansions (see
Sec. 4.8 of [47]), and it is for this reason that we choose
to use them here. We review some essential information
about Mellin-Barnes integrals in Appendix A; further de-
tails can be found an any standard text on mathematical
methods.
Starting with the case �<�cc ¼ 1

2 � � and � � 1
2 , we

may write the scalar Green’s function

FIG. 2 (color online). On shell values of � and �ð�þ 2�Þ in
the complex plane for massive scalar fields. The red dashed line
denotes the path of � for increasing M2 starting from at � ¼ 0
for M2 ¼ 0. The green doted line shows the path of �ð�þ 2�Þ
for increasingM2 starting from�ð�þ 2�Þ ¼ �2� forM2 ¼ 0.
Relatively light fields with 0<M2‘2 <�2 correspond to values
of � and �ð�þ 2�Þ on the negative real axis and belong to the
complementary series. Heavier fields with M2‘2 � �2 corre-
spond to complex values of � and�ð�þ 2�Þ on the line defined
by Re� ¼ Reð��� 2�Þ ¼ ��.
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��ðZÞ ¼ 1

ð4�Þ�þ1=2�½12 þ �þ �; 12 � �� ��
�

Z
�
�

�
��þ �;�þ 2�þ �;��;

1

2
� �� �

�

�
�
1� Z

2

�
�
; (8)

where we use a condensed notation for products and ratios
of �-functions:

�
a1; a2; . . . ; aj
b1; b2; . . . ; bk

� �
:¼ �ða1Þ�ða2Þ � � ��ðajÞ

�ðb1Þ�ðb2Þ � � ��ðbkÞ (9)

or merely �½a1; a2; . . . ; aj� for just a product. In (8) the

symbol
R
� . . . denotes a contour integral in the complex

� plane. We take as implicit the measure d�=2�i. The
contour of integration is a straight line parallel to the
imaginary axis traversed from �i1 to þi1 anywhere
within a region called the ‘‘fundamental strip’’ (FS). In
general we denote a fundamental strip by its left and right
boundaries hl; ri. For the Green’s function (8) the funda-
mental strip is h�; 12 � �i, which is nonempty due to the

restriction �< 1
2 � �. The integrand is analytic in �within

the FS; beyond the FS it has an infinite number of poles due
the Gamma functions. By convention we call poles gen-
erated by Gamma functions �ð� � � þ �Þ left poles; like-
wise, we call poles generated by Gamma functions
�ð� � � � �Þ right poles. The fundamental strip is the region
between the left and right poles. For this reason we do not
generally need to write the FS explicitly as it may be
inferred from the Gamma functions of the integrand.

The asymptotic behavior of ��ðZÞ at large jZj � 1may
be determined by moving the contour to the left. The first
of the two series of left poles give the leading asymptotic
terms:

��ðjZj> 1Þ ¼ 1

4��þ1
f�½��;�þ ��ð�2ZÞ�

þ �½�þ 2�;��� ��ð�2ZÞ���2�g
� ½1þOðZ�2Þ�: (10)

The asymptotic behavior for jZj near 1 is determined by
moving the contour to the right. When D is odd, � is an
integer greater than or equal to 1 and the leading behavior
is given by

��ðjZj< 1Þ ¼ 1

ð4�Þ�þ1=2

8<
:�

�
�� 1

2

��
1� Z

2

�
1=2��

þ �
1
2 � �;��;�þ 2�

1
2 � �� �; 12 þ �þ �

" #9=
;

� ½1þOð1� ZÞ�: (11)

When D is even � ¼ 1
2 þ n, n 2 N0 (where N0 are the

non-negative integers) and the two sets of poles overlap at

� 2 N0 yielding double-poles. As a result the pole at
� ¼ 0 gives a term with logarithmic behavior:

��ðjZj< 1Þ ¼ �ðnÞ
ð4�Þnþ1

�
1� Z

2

��n½1þOð1� ZÞ�

� 1

ð4�Þnþ1
�

1þ �þ 2n

1þ �; 1þ n

" #

� logð1� ZÞ þOð1Þ (12)

(the first term is omitted when n ¼ 0).
When �>�cc the left-most right pole in (8) lies to the

left of the right-most left pole so that there are can be no
straight contour in between. To arrive at an expression
valid for all masses, consider again the case �<�cc and
move the contour in (8) to the right past the first right pole
at � ¼ 1

2 � � to obtain the expression

��ðZÞ¼ �1

ð4�Þ�þ1=2

Z
�
�

��þ�;�þ2�;��;32����

1
2þ�þ�;12����

" #

� 1

ð�� 1
2þ�Þ

�
1�Z

2

�
�þ �ð�� 1

2Þ
ð4�Þ�þ1=2

�
1�Z

2

�
1=2��

:

(13)

In the integral in the first line the contour lies in the interval
ðmaxf�; 12 � �g;minf0; 32 � �gÞ. This interval is nontrivial
for �< 3

2 � � (since �< 0), and (13) is a valid represen-

tation of the propagator for any such�. This process can be
repeated as needed so that one can then increase � as far
into the complementary series as desired. The asymptotic
properties when �> 1

2 � � are again given by (10)–(12).

At conformal coupling� ¼ 1
2 � �, only the residue term in

(13) survives:

�ccðZÞ ¼
�ð�� 1

2Þ
ð4�Þ�þ1=2

�
1� Z

2

�
1=2��

: (14)

The behavior of the Green’s function at large M2 � 1
will be important to our analysis. Starting with (8) we
define

c �ð�Þ :¼ 1

ð4�Þ�þ1=2
�

��þ�;�þ2�þ�;12����
1
2þ�þ�;12����

" #
;

(15)

so that the Green’s function may be written

��ðZÞ ¼
Z
�
c �ð�Þ�ð��Þ

�
1� Z

2

�
�
: (16)

At large M2 � 1 the function c �ð�Þ has the asymptotic
behavior

c �ð�Þ ¼ M2��1þ2�

ð4�Þ�þ1=2
�

�
1

2
� �� �

�
ð1þOðM�2ÞÞ; (17)

and as a result the Green’s function has the asymptotic
behavior
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��ðZÞ ¼ M2��1

ð4�Þ�þ1=2

Z
�
�

�
��;

1

2
� �� �

�
M2�

�
1� Z

2

�
�

� ð1þOðM�2ÞÞ: (18)

Note that (18) contains no left poles; the left poles of the
original expression (15) do not appear at any finite order
in the expansion in inverse powers of M2. In the limit
M2 ! 1 the inequality jM2ð1� ZÞ=2j> 1 holds for any
fixed Z � 1, and in this limit the contour in (18) may be
closed in the left half-plane giving ��ðZ � 1Þ ¼ OðM�4Þ.
By examining the action of (18) integrated against a test
function (represented as an MB integral) one may deter-
mine that (18) is equivalent to

��ðZÞ ¼ 1

M2

1

volðS2�Þ
	ðZ� 1Þ

ð1� Z2Þ��1=2
þOðM�4Þ; (19)

the first few subleading terms are

��ðZÞ ¼ 1

M2

1

volðS2�Þ
	ðZ� 1Þ

ð1� Z2Þ��1=2

þ 1

M4

1

volðS2�Þ
@

@Z

�
	ðZ� 1Þ

ð1� Z2Þ��1=2

�

þ 1

M6

1

volðS2�Þ
@2

@Z2

�
	ðZ� 1Þ

ð1� Z2Þ��1=2

�
þOðM�8Þ:

(20)

Of course, the expansion (20) follows from the fact
that the Green’s function is the inverse of the Klein-
Gordon operator using 1

r2�M2¼�M�2 1
1�r2=M2¼�M�2ð1þ

r2=M2þ...Þ1.

B. Pauli-Villars regularization

Feynman diagrams containing loops in general contain
UV divergences which must be dealt with through the
process of perturbative renormalization. For our purposes
it is convenient to use Pauli-Villars (PV) renormalization
[48]. In PV regularization we replace the original scalar
Green’s function ��ðZÞ with the regularized function

�
reg
� ðZÞ :¼ ��ðZÞ þ

X½D=2�

i¼1

Ci��i
ðZÞ: (21)

Here ½� � �� denotes the integer part. This function is nothing
more than the original Green’s functions plus Green’s
functions of heavy particles with masses M2

i ¼ ��ið�i þ
2�Þ. We take the masses M2

i to belong to the principal
series so that �reg

� ðZÞ will decay for large jZj> 1 at the
same rate as ��ðZÞ. The coefficients Ci are bounded
functions of the M2

i chosen to make �
reg
� ðZÞ finite at

Z ¼ 1, i.e., to cancel the UV-divergent terms in ��ðZÞ
(including the logarithmic divergences that occur for
even dimensions). For example, for D ¼ 2, 3 the PV-
regularized Green’s function is

�reg
� ðZÞ ¼ ��ðZÞ � ��ðZÞ; for D ¼ 2; 3 (22)

while for D ¼ 4, 5 it is

�
reg
� ðZÞ :¼ ��ðZÞ þ C1��1

ðZÞ þ C2��2
ðZÞ;

for D ¼ 4; 5
(23)

where the coefficients satisfy

C1 þ C2 ¼ �1; C1M
2
1 þ C2M

2
2 ¼ �M2: (24)

One may write similar expressions for any dimension (see
e.g. [48]), and, if desired, one may make further PV sub-
tractions to ensure that �reg

� ðZÞ is differentiable to any
desired order at Z ¼ 1. Such additional subtractions are
useful in dealing with either field-renormalization counter-
terms or derivatively-coupled theories. Below, we assume
for simplicity of notation that neither of these is present in
our theory. However, the analysis is identical in the pres-
ence of derivative couplings so long as one assumes suffi-
cient PV subtractions to have been made to render all
diagrams finite at the desired order of perturbation theory.3

In particular, detailed specification of these subtractions is
not needed.
The cancellation of UV singularities has immediate

implications for the Mellin-Barnes representation of the
regulated propagators. Since the short-distance expansion
is determined by the location of the right poles, and, since
right poles with Re� < 0 give terms divergent at Z ¼ 1
(where the character of the divergence depends on the
location of the pole), all such right poles must cancel;
i.e., the fundamental strip for the regularized propagators
may be extended to h�; 0i without picking up any explicit
pole terms of the sort that appeared in (13). It follows that
for any �< 0 we may write the regularized Green’s func-
tion as

�reg
� ðZÞ ¼

Z
�
c reg

� ð�Þ�ð��Þ
�
1� Z

2

�
�

(25)

with

c reg
� ð�Þ :¼ c �ð�Þ þ

X½D=2�

i¼1

Cic �i
ð�Þ: (26)

The function c reg
� ð�Þ is analytic on the interval ðRe�; 12Þ in

odd dimensions and ðRe�; 1Þ in even dimensions. Using
the results in Appendix A one may readily show that the
function c �ð�Þ—and therefore c reg

� ð�Þ as well—has the
asymptotic behavior

jc �ðxþ iyÞj ¼ e�3jyj=2jyj�1þx½1þOðjyj�1Þ�
for jyj � 1:

(27)

3For theories that are power-counting renormalizable, one may
fix the set of PV subtractions independent of the order in
perturbation theory. On the other hand, nonrenormalizable theo-
ries should be treated as effective theories. In this case, there is
no harm in taking the regularization scheme (i.e., the set of PV
subtractions) to depend on the order in perturbation theory to
which one works.
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Furthermore, the integrand in (25) has only a simple pole at
� ¼ 0 which insures that there is no logarithmic UV
divergence.

The PV-regularized Green’s function �reg
� ðZÞ is a

bounded function of Z. Because the sphere is compact it
follows that using the regularized Green’s function to
compute correlation functions yields regularized correla-
tion functions that are bounded functions of the embedding
distances. The UV divergences of the original perturbation
series are recovered in the limit M2

i ! þ1. We consider
theories which can be renormalized by subtracting local
counterterms with coefficients depending on the regulator
masses Mi. As remarked in footnote 2 above, one would
expect this procedure to be equivalent (up to finite local
counterterms) to the renormalization prescription given in
[35], and thus to define a fully covariant renormalized
quantum field theory in the sense of [34] whenever the
flat-space limit is power-counting renormalizable.

C. Single-vertex diagrams

In this section we compute the connected, single-vertex
tree-level Feynman diagram that arises lowest order in
perturbation theory; see Fig. 3. As stated in Sec. III B, for
simplicity of notation we assume below that there are
derivative couplings. However, the analysis in the presence
of derivative couplings is essentially identical.

We find it convenient to first use the PV-regulated
Green’s functions �

reg
� ðZÞ for our computation and then

to take the limit where the regulators are removed. While
such regularization is not in fact necessary for tree dia-
grams, it has the convenient property that it allows us to use
the MB representation (25) which treats all masses uni-
formly. Our discussion below involves a set of fields with
mass parameters �i. Note that each �i requires its own set
of regulator masses Mij, so removing the regulators is the

limit Mij ! 1 (or �ij ! 1).

The diagram in Fig. 3 is given by the expression

V NðX1; . . . ; Xn; XNÞ ¼
Z
Y
�

reg
�1
ðX1 � YÞ � � ��reg

�n
ðXn � YÞ

� �reg
�N
ðXN � YÞ: (28)

Here Y is a unit vector and
R
Y . . . denotes an integral

over SD. To compute the right-hand side we first expand
the Green’s functions �reg

�i
ðXi � YÞ according to (25):

�reg
�i
ðXi � YÞ ¼

Z
�i

c reg
�i
ð�iÞ�ð��iÞ

�
1� Xi � Y

2

�
�i

: (29)

After insertingN copies of this into (28) the integral over Y
becomes

M N :¼
Z
Y

�
1� X1 � Y

2

�
�1 � � �

�
1� Xn � Y

2

�
�n

�
�
1� XN � Y

2

�
�N

: (30)

This master integral is performed in Appendix B; the
result is

MN ¼ ð4�Þ�þ1=2

�½��1; . . . ;��n;��N; 1þ 2�þP
�i�

�
Z
ðaÞ

(�
1� X1 � X2

2

�
a12 � � �

�
1� Xn � XN

2

�
anN

� �½�a12; . . . ;�anN; A1 � �1; . . . ; AN � �N�

� �

�
1

2
þ �þX

�i �
X

aij

�)
: (31)

Here
R
ðaÞ . . . denotes an integral over NðN � 1Þ=2 integra-

tion variables aij. The aij are labeled according to the

corresponding embedding distance Xi � Xj. We use the

shorthand Ai ¼
P

N
j¼1 aij. The integration contours lie be-

tween their respective left and right poles. After perform-
ing the shift of variables �i ! �i þ Ai we obtain

h��1
ðX1Þ � � ���n

ðXnÞ��N
ðXNÞi

¼
Z
ðaÞ

��
1� X1 � X2

2

�
a12 � � �

�
1� Xn � XN

2

�
anN

� �½�a12; . . . ;�anN�VNðaÞ
�

(32)

with

VNðaÞ ¼ ð4�Þ�þ1=2
Z
½��

8<
:�½��1; . . . ;��N�

� c reg
�1
ðA1 þ �1Þ � � � c reg

�N
ðAN þ �NÞ

� �
1
2 þ �þP

�i þ
P

aij

1þ 2�þP
�i þ 2

P
aij

" #9=
;: (33)

Our main task is to determine the fundamental strip of
each aij variable. The Gamma functions in (32) restrict the

fundamental strip of each aij variable to satisfy Reaij < 0.

To further determine the FS we must determine where the
function VNðaÞ ceases to be analytic in the aij. When all aij
satisfy Reaij � 0 the function VNðaÞ imposes no further

restriction on the right side of the fundamental strips.
Because of the symmetry of the diagram we need only
study one variable in detail, say a12. As a function of a12
the function VNðaÞ has left poles atFIG. 3. The single-vertex tree Feynman diagram.
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a12 ¼ �1 � A0
1 � n; a12 ¼ �2 � A0

2 � n;

a12 ¼ � 1

2
� ��X0

aij � n:
(34)

In this expression n 2 N0, A0
1 ¼ A1 � a12, etc., andP0

aij ¼ P
aij � a12. We conclude that the FS of a12 is

a12:

�
max

�
�1 � A0

1; �2 � A0
2;�

1

2
� ��X0

aij

�
; 0

�
:

(35)

Analogous statements hold for the remaining aij. In (35)

and below we take the operation max to select the greatest
real part of any of its arguments. Note, in particular, that
since the regulator massesMij lie in the principle series (so

that Re�ij ¼ �� is fixed) the allowed strip (35) is inde-

pendent of the values chosen for the regulator masses Mij,

though it does depend on the precise locations chosen for
the other contours.

We can use our knowledge of the fundamental strips of
the aij variables to bound the behavior of the diagram V N

at large embedding distances Zij. For example, consider

the case jZ12j � 1 and all other Zij � 1. We are free to

arrange the aij integration contours such that all aij except

a12 are fixed satisfying Reaij ¼ ��, where � is an infini-

tesimal positive constant. In this configuration the FS of
a12 becomes

a12: hmaxf�1; �2g þOð�Þ; 0i: (36)

We can therefore move the a12 integration contour to a12 ¼
maxf�1; �2g þOð�Þ. In this configuration it becomes
clear that the diagram decays at least as fast as

jZ12jmaxf�1;�2gþOð�Þ. More generally we may say that
when any embedding distance satisfies jZijj � 1 the dia-

gram decays at least as fast as jZijj�maxþOð�Þ, where �max ¼
maxf�1; . . . ; �Ng and infinitesimal � > 0.

The diagramV N provides the connected part of the PV-
regulated N-point correlation function h��1

ðX1Þ � � �
��n

ðXnÞ��N
ðXNÞi to lowest order in perturbation theory.

Our primary goal is to determine the behavior of such
connected correlators when the operators are taken to large
separations, so that several embedding distances Zij be-

come large. From the discussion above it follows that the
connected PV-regulated correlator decays at least as fast as

jZj�maxþOð�Þ, where jZj is the largest embedding distance
between operators. In practice the diagram may decay
much more rapidly.

In order to show that the unregulated diagrams have the
same IR behavior, we must take the limit M2

i ! 1 where
the regulator masses become large. The key step is to
recall, as noted below (35), that the allowed locations of
the aij contours are independent of the regulator masses

Mij. We may therefore investigate the large Mij behavior

by inserting the asymptotic expansion (17) for the

c �ij
ðAi þ �iÞ, associated with the propagators for the PV

regulator masses, into (33) with the a12 contour fixed at any
location allowed by (35) (and analogously for the other
aij). To leading order, all dependence on the regulator

masses is in factors of the form ð�1Þ2��1þ2A1þ2�1 . The
particular power law depends on the location of the �i

contours, and the most favorable behavior is obtained by
taking the �i contours to be as far to the left as possible.
With this in mind, taking into account certain relevant
poles, it is straightforward to analyze the large Mij behav-

ior. The leading term is independent ofMij and is obtained

by simply replacing every c reg
� with the unregulated c �,

i.e., just by the unregulated expression. Subleading terms
are suppressed by powers of M�2

ij and can be neglected.

Since the unregulated c � also satisfy (27) at large imagi-
nary �i, theOð1ÞMellin-Barnes integral can be analyzed in
the usual way to find asymptotic behaviors at large jZijj
dictated by the locations of the aij contours, i.e., by (35)

and its analogues. Thus the large jZijj behavior of the

Mij ! 1 limit satisfies the same bounds we derived at

finiteMij. In particular, the limiting diagram decays at least

as fast as jZj�maxþOð�Þ, where jZj is the largest embedding
distance between operators.

IV. GENERAL DIAGRAMS

In this section we analyze connected Feynman diagrams
containing loops. We again use the PV-regulated propaga-
tors of Sec. III B. For simplicity of notation we again
assume that there are no derivative couplings or field-
renormalization counterterms. However, the analysis with
derivative couplings or field-renormalization counterterms
is essentially identical so long as sufficient PV subtractions
have been made as described in Sec. III B.
At the technical level, the key step will be to show in

Sec. IVB that all diagrams have a Mellin-Barnes repre-
sentation of the following form:

V NðX1;...;Xn;XNÞ¼
Z
ðaÞ

��
1�X1 �X2

2

�
a12 ���

�
1�Xn �XN

2

�
anN

��½�a12;...;�anN�VNðaÞ
�
; (37)

where the function VNðaÞ satisfies the following require-
ments:
(1) VNðaÞ is analytic when all aij are contained within

the region given by the set of restrictions

Re aij 2 ð�max � P ijða0Þ; 0�: (38)

Here �max is the real part of the mass parameter of
the lightest field participating in the diagram, and
P ijða0Þ is a polynomial function of all the Reakl
variables except Reaij (hence the prime) and has

non-negative coefficients.
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(2) When the aij are contained in the region (38) the

function VNðaÞ decays at large jIma12j � 1 at least
as rapidly as

jVNðxþ iy; a13; . . . ; anNÞj / e��jyj=2jyj�1þx;

for jyj � 1;
(39)

and likewise for the other aij.

However, let us first discuss the implications of this form
and show that it leads to exponentially decaying correlators
as desired.

A. Implications of our Mellin-Barnes representation

To begin, note that the requirement (39) ensures that
each integral in (37) converges so long as no embedding
distance is equal to unity, i.e. when the diagram is eval-
uated away from coincident points. For any aij ¼ xþ iy

the integrand in (37) is comparable at large jyj � 1 to

e��jyjþi�yjyj3=2
								1� Xi � Xj

2

								x

(40)

and thus converges absolutely. To evaluate V ðX1; . . . ;
Xn; XNÞ at coincident points we must move some of the
contours into the right half plane. For example, suppose we
wish to evaluateV NðX1; . . . ; Xn; XNÞ at X1 ¼ X2. To do so
we first move the a12 contour into the right half-plane. In
doing so we pick up a residue from the pole at a12 ¼ 0.
From (38) it follows that VNða12 ¼ 0; . . .Þ is regular, and so
this pole is a simple pole. Upon setting X1 � X2 ¼ 1 the
remaining contour integral, with a12 (slightly) in the right
half-plane, vanishes, leaving just the residue

V NðX2; X2; . . . ; Xn; XNÞ
¼

Z
ða0Þ

��
1� X2 � X3

2

�
a13þa23 � � �

�
1� X2 � XN

2

�
a1Nþa2N

�
�
1� X3 � X4

2

�
a34 � � �

�
1� Xn � XN

2

�
anN

� �½�a13; . . . ;�anN�VNð0; a13; . . . ; anNÞ
�
: (41)

Here
R
ða0Þ . . . denotes that there is no a12 integral.

In fact, it turns out that the term on the right-hand side of
(41) may be written in form (37), i.e. V N�1ðX2; . . . ; XNÞ.
Said differently, a function V NþKðX1; . . . ; XN; XNþ1;
. . . ; XNþKÞ when evaluated at XNþ1 ¼ � � � ¼ XNþK ¼ Y
is itself a function of the form V Nþ1ðX1; . . . ; XN; YÞ. For
example, let us consider when K ¼ 2. Following the pro-
cedure outlined above Eq. (41) we have

V Nþ2ðX1; . . . ;XN;Y;YÞ
¼
Z
ða0Þ

��
1�X1 �X2

2

�
a12 ���

�
1�Xn �XN

2

�
anN

�
�
1�X1 �Y

2

�
a1;Nþ1þa1;Nþ2 ���

�
1�XN �Y

2

�
aN;Nþ1þaN;Nþ2

��½�a12; . . . ;�aN;Nþ2�VNþ2ða12; . . . ;aN;Nþ2;0Þ
�
:

(42)

In this expression the prime in the ða0Þ below the
integral means that there is no aNþ1;Nþ2 integration. The

integrand in (42) is still analytic with respect to the remain-
ing aij in the region given by (38). It follows that after a

few cosmetic changes we may write (42) in the form
of (37). Let us relabel the variables ai;Nþ2 ! ci (here

i ¼ 1; . . . ; N), then shift variables ai;Nþ1 ! ai;Nþ1 � ci;
(42) becomes

V Nþ2ðX1; . . . ; XN; Y; YÞ
¼

Z
ðaÞ

��
1� X1 � X2

2

�
a12 � � �

�
1� Xn � XN

2

�
anN

�
�
1� X1 � Y

2

�
a1;Nþ1

�
1� XN � Y

2

�
aN;Nþ1

� �½�a12; . . . ;�aN;Nþ1�Vnew
Nþ1ðaÞ

�
: (43)

In this expression the integral is over the variables
a12; . . . ; aN;Nþ1 and Vnew

Nþ1ðaÞ is given by

Vnew
Nþ1ðaÞ :¼

1

�½�a1;Nþ1; . . . ;�aN;Nþ1�
Z
½c�
f�½c1 � a1;Nþ1; . . . ; cN � aN;Nþ1;�c1; . . . ;�cN�

� VNþ2ða12; . . . ; anN; c1 � a1;Nþ1; . . . ; cN � aN;Nþ1; c1; . . . ; cN; 0Þg: (44)

In this expression
R
½c� . . . denotes contour integration over

c1; . . . ; cN . These integrals are guaranteed to converge so
long as the aij are within the region for which the integrand
of (42) is analytic. Although this expression is rather
complicated, it is easy to verify that this function satisfies

requirements (1) and (2) using the asymptotics described
in Appendix A. The same analysis may be performed for
any K > 1 with the same conclusion: the function
V NþKðX1; . . . ; XN; Y; . . . ; YÞ is of the form of a function
V Nþ1ðX1; . . . ; XN; YÞ given by (37).
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The last and most important consequence of the form
(37) is that the function V NðX1; . . . ; Xn; XNÞ decays ex-
ponentially when evaluated at large embedding distances.
For example, suppose jX1 � X2j � 1. A bound on the decay
ofV NðX1; . . . ; Xn; XNÞ can be found in the same manner as
in the previous section. Let all integration contours except
that of a12 be located at Reaij ¼ ��. From (38) it follows

that in this configuration a12 has a fundamental strip at
least as large as

a12: h�max þOð�Þ; 0i; (45)

so V NðX1; . . . ; Xn; XNÞ decays at least as fast as
ðX1 � X2Þ�maxþ� for any � > 0.

Furthermore, suppose that removing some vertex results
in a disconnected diagram, and suppose also that one of
the resulting connected components contains none of the
original external legs. Then this piece contributes only an
overall multiplicative constant (which is finite at finite
regulators masses Mij) to the diagram and does not affect

the large Z behavior. One may therefore remove such
pieces from the diagram when computing �max above.
We refer to this process as ‘‘trimming,’’ so that the trimmed
version of a given diagram has all such pieces removed.

Obviously, the same result also holds for the other
embedding distances. From this result it follows that the
connected part of a PV-regulated N-point function—which
may be described to any order in perturbation theory by
diagrams of the form V N—decays when any two opera-
tors are taken to be separated by a large distance Z at least

as fast as jZj�maxþOð�Þ, where �max is the (real part of the)
largest � that appears in any trimmed diagram that con-
tributes to the correlator.

B. Proof of the desired Mellin-Barnes representation

The proof that all diagrams can be written in the form
(37) is through induction. One constructs a diagram vertex
by vertex, beginning with a single-vertex tree diagram. We
have already seen that single-vertex diagrams have MB
integral representations of the required form. Thus one
simply needs to show that, upon adding a vertex to an
existing diagram with the form (37), the new diagram is
again of the form (37). We show this below.

The process of adding a new vertex to an existing
diagram is shown schematically in Fig. 4. Starting with

an (N þ K)-legged diagram V NþKðX1; . . . ; XN; XNþ1;
. . . ; XNþKÞ, one attaches a new vertex to the K � 1 exter-
nal legs XNþ1; . . . ; XNþK. One then attaches to the new
vertex (M� N) new external legs so that the new diagram
is an M-legged diagram:

VMðX1; . . . ; XMÞ ¼
Z
Y
V NþKðX1; . . . ; XN; Y; . . . ; YÞ

� �reg
�Nþ1

ðXNþ1 � YÞ � � ��reg
�M

ðXM � YÞ:
(46)

This procedure generates all diagrams in which no
propagator has both of its ends on the same vertex. But
adding such one-link loops simply multiplies any diagram
by factors of�

reg
� ðY � YÞ, which are just finite constants due

to our PV regularization, and which are readily absorbed
into the definition ofVM. It thus remains only to show that
the diagrams generated by the above process satisfy re-
quirements (1) and (2) associated with (37).
Note that K � 1 in order for the diagram to be con-

nected. Following the discussion in Sec. IVA, since K � 1
we know that V NþKðX1; . . . ; XN; Y; . . . ; YÞ can be written
in the form of some V Nþ1ðX1; . . . ; XN; YÞ. Inserting this
(46) becomes

VMðX1; . . . ; XMÞ ¼
Z
Y
V Nþ1ðX1; . . . ; XN; YÞ

� �
reg
�Nþ1

ðXNþ1 � YÞ � � ��reg
�M

ðXM � YÞ:
(47)

It is convenient to define n ¼ N � 1 and m ¼ M� 1.
The integral (46) can be computed in essentially the same
manner as the single-vertex diagram Sec. III. We begin
by expressing both V Nþ1ðX1; . . . ; XN; YÞ and the regu-
lated Green’s functions in terms of their MB integral
representations:

V Nþ1ðX1; . . . ; XN; YÞ
¼

Z
ðaÞ

Z
�1

� � �
Z
�N

��
1� X1 � X2

2

�
a12 � � �

�
1� Xn � XN

2

�
anN

�
�
1� X1 � Y

2

�
�1 � � �

�
1� XN � Y

2

�
�N

� �½�a12; . . . ;�anN;��1; . . . ;��N�
� VNþ1ða12; . . . ; anN; �1; . . . ; �NÞ

�
; (48)

�
reg
�i
ðXi � YÞ ¼

Z
�i

c reg
�i
ð�iÞ�ð��iÞ

�
1� Xi � Y

2

�
�i

: (49)

Here it is important to keep track of notation. In the first
equation we have relabelled ai;Nþ1 ! �i, i ¼ 1; . . . ; N, so

that the remaining NðN � 1Þ=2 aij variables run

a12; . . . ; anN . In the second expression i runs i ¼
N þ 1; . . . ;M. Inserting these into (47) we then integrate
over Y using the master integral MM [see (31)].

FIG. 4. The process of adding a new vertex to an existing
diagram.
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After performing a shift of integration variables �i ! �i þ
Bi (where Bi ¼

P
N
j¼1 bij) we arrive at

VMðX1; . . . ; XMÞ
¼

Z
ðaÞ

Z
ðbÞ

��
1� X1 � X2

2

�
a12þb12 � � �

�
1� Xn � XN

2

�
anNþbnN

�
�
1� X1 � XNþ1

2

�
b1;Nþ1 � � �

�
1� Xm � XM

2

�
bmM

� �½�a12; . . . ;�anN;�b12; . . . ;�bmM�VMða; bÞ
�
:

(50)

In this expression the bij run over all distinct pairs ij (i.e.,

b12; . . . ; bmM) and

VMða;bÞ¼
Z
½��

�
�

��1; . . . ;��M;
1
2þ�þP

�iþ
P
bij

1þ2�þP
�iþ2

P
bij

" #

�VNþ1ða12; . . . ;anN;B1þ�1; . . . ;BNþ�NÞ
�c reg

�Nþ1
ðBNþ1þ�Nþ1Þ���c reg

�M
ðBMþ�MÞ

�
:

(51)

It is now straightforward to determine the region for
which the integrand in (50) is analytic in the integration
variables. The simplest variables to analyze are the bij
variables withN < i, j � M. For these variables the analy-
sis is identical to that performed for the single-vertex
graph; the result is that the integrand is analytic in the
region

RebmM2
�
max

�
�m�B0

m;�M�B0
M;�

1

2
���X0

bij

�
;0

�
:

(52)

As usual here the prime denotes that bmM is omitted
from the sums. For variables bij with 1 � i � N and N <

j � M one finds

Reb1M 2
�
max

�
�max � P 1;Nþ1ða; bÞ; �M � B0

M;�
1

2

� ��X0
bij

�
; 0

�
: (53)

Finally, let us determine the region for which the integrand
is analytic with respect to aij while holding the bij contours

with 1 � i, j � N fixed to satisfy Rebij ¼ ��. In this

configuration it is easy to determine that the integrand is
analytic when

Re a12 2 ð�max � P 12ða; bÞ þOð�Þ; 0�: (54)

Therefore, we can perform the shift of variables aij !
aij � bij in order to get (50) in the form (37). We know

that the bij integrals with 1 � i, j � N will converge in the

region given by (52)–(54). We see that (52)–(54) satisfy
(38), and that all integrals converge sufficiently rapidly to

satisfy (39). Thus we have shown that VMðX1; . . . ; XMÞ is
of the form (37).

C. Removing the regulator: the limit M2
ij ! 1

Our analysis above is complete at the level of effective
theories. In that context, one keeps the regulators masses
Mij finite and is careful to ask questions only about physics

at energy scales much less thanMij. But for renormalizable

theories one would like to do more and to remove the
regulators by sending Mij ! 1 before taking the limit of

large jZijj.
Such questions are straightforward to address using our

Mellin-Barnes representations. Note that, as with the tree
diagrams discussed in Sec. III C, we may study the large
Mij limit holding fixed the locations of all contours, subject

only to the conditions (38) found above. Suppose for the
moment that we choose the couplings to be independent of
the regulators masses Mij. Then all of the regulator-

dependence lies in the functions c �ð�Þ associated with

the regulator Green’s functions and the coefficients Ci.
Note that each term in the asymptotic expansion (17) of
such functions at large Mij again decays exponentially

away from the real axis (now roughly as e��jyj) fast enough
for the arguments of Secs. IVA and IVBto hold.4 As a
result, inserting the expansion (17) into one of our Mellin-
Barnes integrals (and also expanding the Ci) produces an
asymptotic series in the masses Mij, each of whose coef-

ficients is again a Mellin-Barnes integral with the same
contours and convergence properties as the original
expression.
Of course, the above expansion will in general include

positive powers ofMij as well as negative powers; these are

just the expected ultraviolet divergences of the theory. But
let us suppose that by taking the coupling constants to
depend on Mij in an appropriate way the Mij ! 1 limits

of correlators become well-defined and finite, at least to
some fixed order in perturbation theory. This is precisely
the assumption that the divergences can be cancelled by
some set of Mij-dependent counterterms. Since coupling

constants are just overall multiplicative factors in each
diagram, it is straightforward to take this extra dependence
on the Mij into account. Expanding each coupling in an

asymptotic series generates a new series, where each term
is again a Mellin-Barnes integral of our standard form (and
with the same placement of the contours). This is true, in
particular, of the term that is independent of the Mij. But

this term gives the full Mij ! 1 limit, since all terms

involving positive powers of Mij must have cancelled in

order to obtain a finite result. The usual argument then

implies that this term decays as jZj�maxþOð�Þ at large jZj,
where �max is the (real part of the) largest � that appears in

4In fact, such arguments require decay only as e��jyj=2 times
an appropriate power law or faster.
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any trimmed diagram that contributes to the correlator at
this order. We will provide an explicit example of this
renormalization procedure in a future publication [49].

V. DISCUSSION

In the above work, we used Mellin-Barnes techniques to
determine the asymptotics of Pauli-Villars regulated dia-
grams for massive scalar quantum field theories in de Sitter
space. We found that connected correlators fall off at large
jZj at least as fast as does the Green’s function for the
lightest field in the (trimmed) diagram (up to corrections
that grow less strongly than powers laws; e.g., factors of
logjZj). Because of the simple way in which changing the
PV regulator masses interacted with the Mellin-Barnes
expressions, it was straightforward to show that the same
results hold in the Mij ! 1 limit in which the regulators

are removed, independent of the details of any counter-
terms required. An explicit example of this renormaliza-
tion procedure will appear in [49]. A similar analysis using
Mellin-Barnes techniques should also be possible in the
context of dimensional regularization.

As described in the introduction, for the (massive scalar)
QFTs considered it follows that, for any state obtained by
acting with appropriate smeared field operators on the
Hartle-Hawking vacuum, any correlation function will
approach that of the Hartle-Hawking vacuum at large
times; i.e., that the interacting Hartle-Hawking vacuum is
an attractor state in the sense of [27] for local correlators at
any order of perturbation theory. Since the above class of
states includes any perturbation of the Hartle-Hawking
vacuum created by a source of compact support, this
provides a sense in which this vacuum is stable despite
the possible concerns raised in e.g. [30,31,33].

Our results hold for all masses M2 > 0 for which a free
Euclidean vacuum exists and for arbitrary interactions,
with nonrenormalizable theories being treated as effective
theories. While for simplicity of notation the calculations
were presented only for nonderivative couplings, no sig-
nificant changes are required to analyze derivatively-
coupled theories and (as usual) derivatives can only
strengthen the fall off at large Z. It would be very interest-
ing if our results could be extended to the massless case
M2 ¼ 0 following e.g. the approach of [50], which intro-
duced a new form of perturbation theory on SD.

Some readers may be concerned by our use of Euclidean
techniques. But on general grounds the Hartle-Hawking
state should be a valid quantum state. In particular, the
analytically continued correlators satisfy the Lorentz-
signature Schwinger-Dyson equations. Furthermore, the
de Sitter analogue [51] of the Osterwalder-Schräder con-
struction implies that the Hartle-Hawking state lives in a
positive-definite Hilbert space whenever the Euclidean
correlators satisfy reflection positivity. This in turns
holds at least formally whenever the Euclidean action is
bounded below, and has been rigorously shown in D ¼ 2

dimensions for standard kinetic terms and polynomial
potentials; see e.g. [52]. In such cases, it remains only to
ask how the Hartle-Hawking state relates to other states of
interest; e.g, perhaps the state defined by the standard in-in
perturbation theory in the expanding cosmological patch of
dSD. This question will be investigated in detail in [53],
where it will be shown that these two states agree for
massive scalar fields.
It would be interesting to apply some version of these

tools to massless scalar fields, perhaps using the perturba-
tion scheme described in [50]. Although the natural propa-
gator of this scheme grows logarithmically at large Z due to
a double pole at the origin, it is possible that this behavior
will softened by higher order corrections. Finally, we
emphasize that we consider field theories on a fixed space-
time background in which the metric is nondynamical. As
the known propagators for gravitons do not fall off at large
separations, the situation for dynamical gravity may be
quite different.
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APPENDIX A: MELLIN-BARNES INTEGRALS

We write a generic Mellin-Barnes integral as5

fðZÞ¼
Z
�
�

a1þA1�;...;amþAm�;b1�B1;...;bn�Bn�

c1þC1�;...cpþCp�;d1�D1�;...;dq�Dq�

" #

�ðZÞ�; (A1)

where the measure d�=2�i is implicit and the contour is a
straight line parallel to the imaginary axis, traversed from
�i1 to þi1, lying between the left and right poles. The
convergence of the integral (A1) is governed by the be-
havior of the integrand at large jIm�j. This behavior can be
determined from the well-known asymptotic behavior of
the Gamma function:

lim
jyj!1

�ðxþ iyÞ ¼ ð2�Þ1=2e�ð�=2Þjyjjyjx�1=2½1þOðy�1Þ�:
(A2)

Let us assume that the all Ai, Bi, Ci, Di are positive and
define

E ¼ Xm
i¼1

Ai þ
Xn
i¼1

Bi �
Xp
i¼1

Ci �
Xq
i¼1

Di; (A3)

5This discussion follows closely the discussion in [54].
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F ¼ Xm
i¼1

Ai �
Xn
i¼1

Bi �
Xp
i¼1

Ci þ
Xq
i¼1

Di; (A4)

G ¼ Re

�Xm
i¼1

ai þ
Xn
i¼1

bi �
Xp
i¼1

ci �
Xq
i¼1

di

�

þ 1

2
ð�m� nþ pþ qÞ; (A5)

H ¼ Ym
i¼1

ðAiÞAi

Yn
i¼1

ðBiÞ�Bi

Yp
i¼1

ðCiÞ�Ci

Yq
i¼1

ðDiÞDi ; (A6)

and furthermore let Z ¼ Rei� and � ¼ xþ iy. With this
notation the absolute value of the integrand behaves like

exp

�
��y� E�

2
jyj

�
jyjFxþGðRHÞx (A7)

as jyj ! 1. From this we conclude that the integral (A1) is
absolutely convergent when

(1) j�j< E�=2. The integral (A1) defines an analytic
function of Z for j argZj<minð�; E�2 Þ.

(2) j�j ¼ E�=2 and FxþG<�1. The integral de-
fines an analytic function for all Z.

See [54] for further details.

APPENDIX B: CALCULATION OF MN

In this Appendix we compute the integral

MN :¼Mð�1; . . . ;�NÞ
¼
Z
Y

�
1�X1 �Y

2

�
�1 ���

�
1�Xn �Y

2

�
�n
�
1�XN �Y

2

�
�N

(B1)

with n ¼ N � 1. Rather than directly evaluating (B1) we
instead consider the integral

Að�1; . . . ; �nÞ :¼
Z
Y

�
�1

�
1� X1 � Y

2

�
þ � � �

þ �n

�
1� Xn � Y

2

�
þ

�
1� XN � Y

2

��


;

(B2)

where �i are arbitrary real parameters and 
 is a complex
number with Re
 < 0. The quantities A and M may be
related in a simple way. To do so we use a standard Mellin-
Barnes formula:

ðA1 þ � � � þ An þ ANÞ


¼ 1

�ð�
Þ
Z
u1

� � �
Z
un

�

�
�
þXn

i¼1

un;�u1; . . . ;�un

�

� ðA1Þu1 � � � ðAnÞunðANÞ
�
P

ui : (B3)

Inserting (B3) in (B2) yields

Að�1; . . . ; �nÞ ¼ 1

�ð�
Þ
Z
u1

ð�1Þu1 � � �
Z
un

ð�nÞun

�
�
�

�
�
þXn

i¼1

ui;�u1; . . . ;�un

�

�M
�
u1; . . . ; un; 
�Xn

i¼1

ui

��
: (B4)

Written this way M is one factor of the Mellin transform
of A.
Let us now return to (B2) and integrate over Y. We use

the formula

�
 ¼ i�


�ð�
Þ
Z 1

0
d���1�
e�i�� (B5)

to write A as

Að�1; . . . ; �nÞ ¼ ð2iÞ�


�ð�
Þ
Z 1

0
d���1�


� exp

�
�i�

�
1þXn

i¼1

�i

��Z
Y
eþi�VY;

(B6)

where V ¼ �1X1 þ � � � þ anXn þ XN . The integral over
Y can be written in terms of the Bessel function:

Z
Y
e�i�VY ¼ ð2�Þ�þ1 J�ð�jVjÞ

ð�jVjÞ� : (B7)

The Bessel function may be written as a Mellin-Barnes
integral

J�ðzÞ ¼
Z
�
�

��
1þ �þ�

� ��
z

2

�
�þ2�

; (B8)

inserting (B8) into (B7) yields

Z
Y
e�i�VY ¼ 2��þ1

Z
�
�

��
1þ �þ�

� ��
�2V2

4

�
�
: (B9)

After inserting (B9) into (B6) we may integrate over �
using the inverse of (B5)

Z 1

0
d���1�
e�i�� ¼ �ð�
Þ

i�

ð�� i0Þ
: (B10)

Convergence of the integral over � requires Reð
�
2�Þ< 0. The result is

Að�1; . . . ;�nÞ¼21�
��þ1

�ð�
Þ
Z
�
�

��;2��


1þ�þ�

" #

�ð2iÞ�2�ðV2Þ�
�
1þXn

i¼1

�i

�

�2�

: (B11)

Next we perform a number of manipulations in order to
tidy up (B11). First note that
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V2 ¼ �2
1 þ � � � þ �2

n þ 1þ �1�2X1X2 þ � � � þ �nXnXN

¼
�
1þXn

i¼1

�i

�
2 þ 2�1�2ðX1X2 � 1Þ þ � � �

þ 2�nðXnXN � 1Þ: (B12)

It is convenient to use (B3) to write

ðV2Þ�¼ 1

�ð��Þ
Z
w

�
�½��þw;�w�

�
1þXn

i¼1

�i

�
2ð��wÞ

�½2�1�2ðX1 �X2�1Þþ���þ2�nðXnXN�1Þ�w
�
:

(B13)

Inserting this into (B11) yields

Að�1; . . . ;�nÞ

¼21�
��þ1

�ð�
Þ
Z
�

Z
w

�
�

2��
;��þw;�w

1þ�þ�

" #

�ð2iÞ�2�

�
1þXn

i¼1

�i

�

�2w

�½2�1�2ðX1X2�1Þþ���þ2�nðXnXN�1Þ�w
�
: (B14)

We can now integrate over �. First, we use the Gamma
function duplication formula

�

�
x; xþ 1

2

�
¼ 21�2x

ffiffiffiffi
�

p
�ð2xÞ (B15)

on the Gamma function �ð2�� 
Þ; second, we use the
Gauss summation formula [54] written here as a Mellin-
Barnes integral:

Z
�
�

aþ�; bþ�; d��

cþ�

" #
e�i��

¼ e�i�d�
aþ d; bþ d; c� a� b� d

c� a; c� b

" #
; (B16)

valid for Reðc� a� b� dÞ> 0. Cleaning up we have

Að�1; . . . ;�nÞ

¼ 21þ2���þ1=2

�½�
;1þ2�þ
�
Z
w

�
�

�
2w�
;

1

2
þ�þ
�w;�w

�

�
�
1þXn

i¼1

�i

�

�2w

�
�
�1�2

�
1�X1 �X2

2

�
þ���þ�n

�
1�XnXN

2

��
w
�
:

(B17)

The next series of steps is simple but rather cumbersome
to transcribe. We expand both the term in parentheses and
the term in square brackets in (B17) using the Mellin-
Barnes expansion (B3). Within the parentheses there are
nþ 1 terms, so the Mellin-Barnes expansion of this quan-
tity has n integrations. Likewise, the term in square brack-
ets has NðN � 1Þ=2 terms so the Mellin-Barnes expansion
of this quantity has NðN � 3Þ=2 integrations. After per-
forming some shifts in the integration variables (taking
care not to shift a contour through a pole) and relabelling
we obtain the following expression:

Að�1; . . . ; �nÞ ¼ 21þ2���þ1=2

�½�
; 1þ 2�þ 
�
Z
�1

ð�1Þ�1 � � �
Z
�n

ð�nÞ�n

�Z
h12

� � �
Z
hnN

��
1� X1 � X2

2

�
h12 � � �

�
1� Xn � XN

2

�
hnN

� �½�h12; . . . ;�hnN��
�X

h1i ��1; . . . ;
X

hni ��n;
X

hNi � 
þXn
i¼1

�i;
1

2
þ �þ 
�X

hij

���
:

(B18)

In this expression there is a total of n integration variables
�1; . . . ; �n and NðN � 1Þ=2 variables hij. The latter are
labeled such that each factor of ð1� Xi � XjÞ=2 is raised to
the power hij.

The convergence of each Mellin-Barnes integral may be
evaluated using the technique described in Appendix A.
Each integral converges absolutely for all ð1� Xi �
XjÞ=2 � 1. The expression (B18) defines a single-valued

function of the inner products Xi � Xj for all complex

values of Xi � Xj away from the cuts Xi � Xj 2 ½1;1Þ.

Both (B4) and (B18) equate A with an n-fold Mellin
transform with parameters �i. It is easy to see that the
integration contours of the two expressions—those of the
ui in the former expression and�i in the latter expression—
may be taken to be traversed in the same places in their
respective complex planes. Now recall that theMellin in-
version theorem states that for a given choice of integration
contour the Mellin transform of a function is unique [54]. It
follows that we may identify the integrands and equate
u1 ¼ �1; . . . ; un ¼ �n. The final step is to relabel
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�i ¼ ui ! �i; for i ¼ 1; . . . ; n; 
 ! �N þXn
i¼1

�i; hij ! aij; (B19)

which yields

Mð�1; . . . ; �NÞ ¼ ð4�Þ�þ1=2

�½��1; . . . ;��N; 1þ 2�þP
�i�

Z
ðaÞ

��
1� X1 � X2

2

�
a12 � � �

�
1� Xn � XN

2

�
anN

� �

�
�a12; . . . ;�anN; A1 � �1; . . . ; AN � �N;

1

2
þ �þX

�i �
X

aij

��
: (B20)

In this expression Ai :¼
P

N
j¼1 aij.
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