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We present a concise new definition of Finsler spacetimes that generalizes Lorentzian metric manifolds

and provides consistent backgrounds for physics. Extending standard mathematical constructions known

from Finsler spaces, we show that geometric objects like the Cartan nonlinear connection and its curvature

are well defined almost everywhere on Finsler spacetimes, including their null structure. This allows us to

describe the complete causal structure in terms of timelike and null curves; these are essential to model

physical observers and the propagation of light. We prove that the timelike directions form an open convex

cone with a null boundary, as is the case in Lorentzian geometry. Moreover, we develop action integrals

for physical field theories on Finsler spacetimes, and tools to deduce the corresponding equations of

motion. These are applied to construct a theory of electrodynamics that confirms the claimed propagation

of light along Finsler null geodesics.
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I. MOTIVATION

Dynamical physical processes could not be described
without using clocks. Independently of how precisely
clocks are realized in experiment, it is absolutely essential
to model them in theory. In relativistic theories this is
facilitated by a geometric clock postulate that provides
the proper time along the worldline � � xð�Þ of an ob-
server, or massive particle, moving through the spacetime
manifold M. The most general geometric clock postulate
for which proper time T½x� depends locally on the position
and four-velocity is a reparametrization-invariant func-
tional of the form

T½x� ¼
Z

d�Fðxð�Þ; _xð�ÞÞ: (1)

For time measurements in general relativity the function F

is determined by a Lorentzian metric ~gab as Fðx; _xÞ ¼
j~gabðxÞ _xa _xbj1=2. More general F’s are the basic ingredients
of Finsler geometry [1–3], which generalizes Riemannian
geometry so that all geometric objects and fields depend
not only on the points of the manifold but also on its
tangent directions.

In physics, the integral T½x� in (1) plays a fundamental
role. On the one hand, it provides a definition of proper
time that is independent of the actual clock used; on the
other hand, the worldlines of observers and massive parti-
cles are determined as the curves that extremize the
integral.

Because of the generality of the Finsler clock postulate,
it is no surprise that Finsler geometry has emerged in a

number of different physical contexts in recent years. From
the perspective of fundamental physical theory, the impor-
tance of Finsler geometry was realized: in various ap-
proaches to quantum gravity to describe the effective
classical geometry of Planck scale modified dispersion
relations and the breaking of local Lorentz invariance,
e.g. in [4–7]; for generalized backgrounds defined by
hyperbolic polynomials [8]; and for covariant formulations
of electrodynamics in very general linear and nonlinear
optical media [9–11]. On a more phenomenological level,
simple Finsler backgrounds allow fits of astronomical and
cosmological data that are not satisfactorily explained by
general relativity: the Pioneer anomaly, dark matter, and
dark energy [12–14].
This appears very promising; a closer inspection, how-

ever, reveals that it is not at all straightforward to describe
the fundamental geometric structure of spacetime by
Finsler geometry. In order to do so a number of basic
conceptual issues need to be resolved first:
(i) The mathematical foundations, including the con-

struction of connections, covariant derivatives, and
curvature, are tailored for the case of definite Finsler
metrics that are a direct generalization of definite
Riemannian geometry. These constructions are not
directly applicable to generalize the Lorentzian sig-
nature case. Previous work to remedy this situation
turns out not to be sufficient: Finsler metrics with
globally Lorentzian signature, e.g. in [3], do not
include the metric limit; in certain Finsler spaces
[1] it is not possible to discuss the motion of light;
other definitions [15] exclude too many interesting
applications like that to electrodynamics in optical
media.

(ii) The causal structure of a Finsler spacetime needs to
be clarified, as has been observed in [15,16]. A good

*christian.pfeifer@desy.de
†mattias.wohlfarth@desy.de

PHYSICAL REVIEW D 84, 044039 (2011)

1550-7998=2011=84(4)=044039(14) 044039-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.044039


definition must provide a precise notion of timelike
vectors, and hence a clear definition of observers. At
the same time, it must allow the discussion of null
motion, which is essential to describe the effective
propagation of light.

(iii) Action principles for the formulation of field theo-
ries on Finsler spacetime should be available.
Previous work on this topic includes the osculating
formalism [1] which, however, does not allow the
full reconstruction of the fields from solutions of
the equations of motion. Other approaches use
actions with divergency problems [17,18] that tech-
nically are not suited to derive equations of motion,
or are not immediately related to standard Finsler
geometry formulations over the manifold and its
tangent bundle [19].

In this article we will develop solutions for these concep-
tual problems. Through our results it becomes possible
to use Finsler spacetimes, instead of Lorentzian manifolds,
as consistent generalized geometric backgrounds for
physics.

In Sec. II we will provide a concise new definition of
Lorentzian Finsler spacetimes, along with a discussion of
the immediate physical implications. The standard mathe-
matical technology used in Finsler geometry is reviewed in
Sec. III, before we prove the important result that Finsler
spacetimes, in our sense, allow a clean extension of
the definition of connections, covariant derivatives, and
curvature to their null structure. In Sec. IV we will dem-
onstrate the existence of open convex cones of timelike
vectors with null boundaries as in Lorentzian metric ge-
ometry. We will then employ these results to describe the
motion of observers and the effective motion of light by
means of timelike and null Finsler geodesics. The impact
of our definition and the proven theorems on the causal
structure will be illustrated by means of two examples in
Sec. V. The first example discusses standard Lorentzian
metric spacetimes as a special case of Finsler spacetimes.
The second example goes beyond metric geometry; it has a
more complicated null structure with two cones of light
propagation and is relevant for the description of birefrin-
gent optical media. In Sec. VI we will present a new
method for the formulation of well-defined action integrals
on Finsler spacetime. This method is based on the restric-
tion of the tangent bundle to a subbundle on which homo-
geneous Lagrangians can be integrated. With this
formalism we will explicitly construct a generalized theory
of electrodynamics on Finsler spacetimes in Sec. VII. We
will study the propagation of singularities through the
corresponding partial differential equations. As a result
we can justify, for the first time, that light in a Finsler
spacetime indeed propagates along Finsler null geodesics.
We will conclude with a discussion and an outlook in
Sec. VIII.

II. FINSLER SPACETIMES

As discussed above, the description of spacetime by
Finsler geometry is not straightforward and it poses a
number of open questions. In this section we will propose
a new definition for Finsler spacetimes to answer these.
We will comment on the physical motivation and the
immediate consequences of our definition, and on the
interpretation of physical fields on Finsler spacetime.
Then, in Sec. III, we will introduce the mathematics of
the Cartan nonlinear connection and curvature, before we
exhibit the causal structure of Finsler spacetimes in
Sec. IV.

A. Definition and properties

Recall that the tangent bundle TM ¼ [p2MTpM of a

four-dimensional manifoldM is the union of all its tangent
spaces, and is a fiber bundle of dimension eight over M.
Coordinates x on M induce coordinates ðx; yÞ on TM. Any
point Y 2 TM is a tangent vector in some TpM, where p

has coordinates ðxaÞ, and can be expressed as Y ¼ ya @
@xa jx.

The induced coordinates of Y are then defined by ðxa; yaÞ.
For simplicity, we will use induced coordinates throughout
this article. The coordinate basis of TTM will be written
with the shorthand notation

�
@a ¼ @

@xa
; �@a ¼ @

@ya

�
: (2)

We will now state our new definition for Finsler space-
times before commenting on the details and discussing its
advantages in comparison to various known formulations.

Definition.—A Finsler spacetime ðM;L; FÞ is a four-
dimensional, connected, Hausdorff, paracompact, smooth
manifold M equipped with a continuous function
L: TM ! R on the tangent bundle which has the following
properties:
(a) L is smooth on the tangent bundle without the zero

section TM n f0g;
(b) L is positively homogeneous, of real degree r � 2,

with respect to the fiber coordinates of TM,

Lðx; �yÞ ¼ �rLðx; yÞ 8 � > 0; (3)

(c) L is reversible in the sense

jLðx;�yÞj ¼ jLðx; yÞj; (4)

(d) the Hessian gLab of L with respect to the fiber coor-

dinates is nondegenerate on TM n A, where A has
measure zero and does not contain the set fðx; yÞ 2
TMjLðx; yÞ ¼ 0g,

gLabðx; yÞ ¼ 1
2
�@a �@bL; (5)
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(e) the unit timelike condition holds—i.e., for all
x 2 M the set

�x ¼
�
y 2 TxM

��������jLðx; yÞj ¼ 1;

gLabðx; yÞ has signature ð�;��;��;��Þ;

� ¼ jLðx; yÞj
Lðx; yÞ

�
(6)

contains a nonempty closed connected component
Sx � �x � TxM.

The Finsler function associated with L is defined as

Fðx; yÞ ¼ jLðx; yÞj1=r.
The Finsler function F describes important physical

aspects of Finsler spacetimes ðM;L; FÞ via the length in-
tegral (1). We will now derive certain consequences for F
from the definition above. Then we will be in the position
to discuss the physical properties of Finsler spacetimes.

Corollary.—The Finsler function F of a Finsler space-
time ðM;L; FÞ is a continuous function F: TM ! R and
satisfies the following conditions:

(A) F is smooth on the tangent bundle where L is non-
vanishing, TM n fL ¼ 0g;

(B) F is non-negative, Fðx; yÞ � 0;
(C) F is positively homogeneous, of degree 1, in the

fiber coordinates and reversible, i.e.,

Fðx; �yÞ ¼ j�jFðx; yÞ 8 � 2 R; (7)

(D) the Finsler metric of F,

gabðx; yÞ ¼ 1
2
�@a �@bF

2; (8)

is defined on TM n fL ¼ 0g, and is nondegenerate
on TM n ðA [ fL ¼ 0gÞ.

Proof.—(A) and (B) immediately follow from the

definition F ¼ jLj1=r and property (a) of Finsler space-

times. We remark that F ¼ jLj1=r is nondifferentiable at
all tangent bundle points where L changes sign. (C) is a
consequence of properties (b) and (c).

[Observe that we do not have to require absolute homo-
geneity Lðx; �yÞ ¼ j�jrLðx; yÞ for L in order to obtain this
property for F, but only the weaker assumptions (b), (c);
this, in principle, allows a larger class of Finsler space-
times: for instance, L could be a homogeneous polynomial
of degree 3 in y.]

The domain of definition of the Finsler metric defined in
(D) is TM n fL ¼ 0g because this is where derivatives of F
are defined. To see where gab is nondegenerate we observe
that it is related to the Hessian gLab and its inverse by the

formulas

gab ¼ 2jLj2=r
rL

�
gLab þ

ð2� rÞ
2rL

�@aL �@bL

�
;

gab ¼ rL

2jLj2=r
�
gLab � 2ð2� rÞ

rðr� 1ÞLyayb
�
:

(9)

Using the homogeneity properties of L, the determinant of
the Finsler metric can be calculated as

detg ¼ 16jLj8=r�4

r4ðr� 1Þ detgL; (10)

hence the Finsler metric is nondegenerate on
TM n ðA [ fL ¼ 0gÞ. j

From the physical point of view, Finsler spacetimes
guarantee the following desirable features:
A geometric clock postulate along the observers’ world-

lines can be defined by the Finsler length integral (1). This
proper time measurement will be positive because of (B).
Moreover, the Finsler length is reparametrization invariant
due to (C), which ensures that proper time is an intrinsic
geometric quantity.
Finsler spacetimes are symmetric under time reversal

because proper time is, in particular, invariant under rep-
arametrizations with orientation reversal. To see this, con-
sider a worldline � � xð�Þ in M and a reparametrization
�ð�Þ with d�=d� < 0; then

Z �2

�1

d�Fðxð�Þ; _xð�ÞÞ¼�
Z �ð�1Þ

�ð�2Þ
d�

�
sign

d�

d�

�
Fðxð�Þ;x0ð�ÞÞ

¼
Z �ð�1Þ

�ð�2Þ
d�Fðxð�Þ;x0ð�ÞÞ: (11)

So the proper time of a curve is indeed independent of the
choice of orientation.
We will see in Sec. III that we can use F to construct a

connection, a covariant derivative, and the associated cur-
vature on TM n ðA [ fL ¼ 0gÞ. This construction uses the
standard mathematical tools of Finsler geometry which are
based on (A) and (D).
The relevance of L and gLab in the definition of Finsler

spacetimes ðM;L; FÞ is that they allow us to extend all
necessary geometric objects to the larger domain TM n A.
This extension covers the complete null structure of space-
time, which is of particular importance for physics.
All types of null and non-null Finsler geodesics can be

discussed on a Finsler spacetime, so that we may obtain a
clear understanding of its causal structure.
As part of the causal structure, Finsler spacetimes admit

a clear definition of timelike vectors. These are needed as
tangents of the observer’s worldlines. Their existence at
every point x 2 M is guaranteed by the unit timelike
condition (e) that provides a shell Sx of unit timelike
vectors. Indeed, y 2 Sx is normalized by jLðx; yÞj ¼ 1
and is timelike with respect to the metric gLab. This follows
from1

gLabðx; yÞyayb ¼ 1
2rðr� 1ÞLðx; yÞ (12)

1Equation (12) is a consequence of Euler’s theorem for
n-homogeneous functions fðyÞ. This theorem is used in several
calculations in this article, and states that ya �@afðyÞ ¼ nfðyÞ.
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which implies signðgLabðx; yÞyaybÞ ¼ L=jLj ¼ �. On Sx,
the signature of gLab is ð�;��;��;��Þ and so the sign �
indeed defines the timelike direction. In Sec. IV we will
prove that the unit timelike condition implies that the
timelike observer directions on a Finsler spacetime form
open convex cones.

In Sec. V we will demonstrate in detail that a Lorentzian
metric manifold satisfies all requirements of our definition,
and so is a special case of a Finsler spacetime. We will see
that it is not possible to model such a manifold using a
Finsler metric of globally constant signature, as prescribed
in earlier definitions, e.g. in [3,15]. In the same section we
will also discuss a more complicated example of a Finsler
spacetime where the full power of our new definition
comes into play. This example could be of relevance for
a covariant spacetime description for crystal optics; it has
r ¼ 4 and multiple signature changes in the Finsler metric.
Again, this is excluded by earlier definitions. Finsler space-
times, in our sense, are generalizations of Lorentzian
spacetimes.

It is important to note that not all Finsler functions
discussed in the literature which have indefinite Finsler
metrics are covered by our definition of Finsler spacetimes.
As a specific example, consider the Randers-type Finsler
function

Fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gabðxÞyayb

q
þ baðxÞya (13)

which is often presented as a small departure from
Lorentzian metric geometry ðM; ~gÞ with a nonvanishing
one-form b. It is clear that no smooth function L on

TM n f0g and no real r � 2 exist, so that jLj1=r ¼ F.
Hence the above Finsler function does not define a
Finsler spacetime in our sense. However, we cannot regard
this as a problem, because the Finsler metric of the Randers
Finsler function does not exist on the null cones of ~g; there,
any Finsler geometric description of physics, in particular,
of geodesic motion, will break down.

In contrast, the results of this paper will show that our
definition of Finsler spacetimes only admits those Finsler
functions for which we can control the physically relevant
geometry. Before we discuss this in detail in the following
sections, wewish to comment on the interpretation of fields
on Finsler spacetime.

B. Interpretation

From the definition of Finsler spacetimewe immediately
realize that the metric gLab that appears as a generalization

of the Lorentzian metric depends on all tangent bundle
coordinates ðx; yÞ, not only on the coordinates of the mani-
fold. Thus, in order to obtain consistent equations for
physical fields � on Finsler spacetime, it is necessary
that these fields also depend on all tangent bundle coor-
dinates. We interpret �ðx; yÞ as the field � measured by an
observer at the point x 2 M with four-velocity y 2 TxM

(see Fig. 1). How fields�ðx; yÞ are constructed as lifts from
standard fields over M is discussed in more detail in
Sec. VI.
On Lorentzian metric manifolds the observer’s four-

velocity is responsible for the time-space split seen by
the observer. With respect to this split the matter tensor
field components are interpreted; in electrodynamics, for
instance, the components of the field strength are inter-
preted as the electric and magnetic fields.
On Finsler spacetimes the role played by the observer’s

four-velocity is more complicated: though it may still be
responsible for a time-space split (using orthogonality with
respect to gLab), there is an additional dependence in the

tensor field components. This implies a deformation of
the definitions of fields for differently moving observers
at the same spacetime point.

III. GEOMETRY OF FINSLER SPACETIMES

In order to formulate physical theories on Finsler space-
times ðM;L; FÞ, we need geometric objects such as the
connection, covariant derivative, curvature, and tensor
fields; in this section we will briefly review the standard
construction of these in Finsler geometry [2,3]. These
objects are immediately available on Finsler spacetimes
wherever the Finsler metric exists and is nondegenerate;
according to our definition in the previous section, this is
the case on TM n ðA [ fL ¼ 0gÞ. The most important new
result that we will prove here shows that all standard
constructions can in fact be extended to the larger domain
TM n A, which is a consequence of the existence of the
smooth function L with Fr ¼ jLj. In particular, this im-
plies that all geometric objects are well defined where
F ¼ 0, which will allow us to discuss null geodesics and
light propagation.
The Finsler function F is a function on the tangent

bundle TM, but is supposed to describe the geometry of
the manifold M. We now wish to define distinguished
tensor fields over TM, so-called d tensors, that transform
precisely like tensor fields over M under induced coordi-
nate transformations

(x,z)(x,y)
(x)

~

zy

(M,L,F)(M,g)

FIG. 1 (color online). Interpretation of fields in Lorentzian
metric (dependence on position) and Finsler spacetimes (depen-
dence on position and four-velocity).
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~x aðx; yÞ ¼ ~xaðxÞ; ~yaðx; yÞ ¼ @~xa

@xb
yb: (14)

A d tensor T takes the general form

T ¼ Ta1...b1...
c1...d1...

ðx; yÞ�a1 � . . .�
� �@b1 � . . . � dxc1 � . . . � �yd1 � . . . (15)

in terms of the Berwald basis of TTM and the correspond-
ing dual basis of T�TM,

f�a ¼ @a � Nb
a
�@b; �@ag; fdxa; �ya ¼ dya þ Na

bdx
bg:

(16)

These bases split TTM ¼ h�ai � h �@ai and T�TM ¼
hdxai � h�yai into horizontal and vertical parts, respec-
tively. In the definition of the Berwald bases appear the
coefficientsNa

bðx; yÞ of some nonlinear connection. Under

induced coordinate transformations (14) these change as

~N a
b ¼

@~xa

@xp
@xq

@~xb
Np

q þ @~xa

@xp
@yp

@~xb
: (17)

This guarantees that the components of a d tensor T trans-
form as required:

~Ta1...b1...
c1...d1...

¼@~xa1

@xp1
. . .
@~xb1

@xq1
. . .

@xr1

@~xc1
. . .

@xq1

@~xd1
. . .Tp1...q1...

r1...s1...: (18)

An important example for a d tensor is the curvature tensor
associated with a nonlinear connection; its components
Rc

abðx; yÞ are defined by

Rc
ab ¼ �2�½aNc

b�
¼ �@aN

c
b þ @bN

c
a þ Np

a
�@pN

c
b � Np

b
�@pN

c
a:

(19)

Wherever the Finsler metric of our Finsler spacetime
ðM;FÞ is nondegenerate, we may now apply a standard
construction to specify a unique nonlinear connection in
terms of F. This connection is called the Cartan nonlinear
connection and has coefficients

Na
bðx; yÞ ¼ 1

2
�@bð�a

pqðx; yÞypyqÞ; (20)

where �a
pqðx; yÞ are the Christoffel symbols calculated

from the components gabðx; yÞ of the Finsler metric, using
x derivatives as usual. The Cartan nonlinear connection is
the unique connection for which the Finsler metric is
covariantly constant in the sense

yp�pgab � Np
agpb � Np

bgap ¼ 0 (21)

and for which the Cartan two-form ! ¼ 1
2dð �@aF2dxaÞ

vanishes on horizontal vectors (see theorem 5.5.6 in [3]).
This can be compared to the construction of the Levi-
Civita connection on metric spacetimes which is the
unique metric compatible and torsion-free connection.

The Cartan nonlinear connection can now be applied to
construct a linear covariant derivative2 that maps d tensors
with components Ta...

b... to d tensors with components

rcT
a...

b... ¼ �cT
a...

b... þ ��a
pcT

p...
b...

þ . . .� ��p
bcT

a...
p... � . . . ; (22)

where the connection coefficients ��a
bcðx; yÞ are defined

similarly as Christoffel symbols for the Finsler metric gab,
but using horizontal derivatives:

��a
bc ¼ 1

2g
apð�bgpc þ �cgpb � �pgbcÞ: (23)

Under induced coordinate transformations (14), these con-
nection coefficients change in precisely the same way as
the usual metric Christoffel symbols do. The coefficients
��a

bc can also be used to write the curvature (19) of the

Cartan nonlinear connection in the more familiar form

Rc
ab ¼ �ydð�a�

�c
db � �b�

�c
da þ ��c

pa�
�p

db

� ��c
pb�

�p
daÞ: (24)

After this review of standard constructions in Finsler
geometry we will now proceed to show our new results.
First we will establish a link between the ��a

bc, the fiber

derivatives of the Cartan nonlinear connection, and the
totally symmetric Cartan d tensor,

Cabcðx; yÞ ¼ 1
2
�@agbcðx; yÞ: (25)

The following theorem will be useful for later calculations,
especially for integrations by parts that occur in variations
of field theory actions on Finsler spacetime.

Theorem 1.—Wherever the Finsler metric g of a Finsler
spacetime ðM;L; FÞ is nondegenerate,

Sabc ¼ ��a
bc � �@cN

a
b (26)

defines a d-tensor field. The components Sabc can be

written as Sabc ¼ �yprpC
a
bc (where the index on the

Cartan tensor is raised with the inverse Finsler metric).
Proof.—The coefficients ��a

bc change under induced

coordinate transformations (14) as do the standard
Christoffel symbols. The same is true for the �@cN

a
b, as

follows from (17). Hence their difference defines the com-
ponents of a d-tensor field. In order to prove the stated
relation of Sabc to the Cartan tensor, we rewrite Eq. (20) in
the form

Na
b ¼ �a

bpy
p � Ca

bt�
t
pqy

pyq: (27)

Using this, the claim follows from a lengthy expansion of
both expressions stated for Sabc. j

2Without entering the technical detail, we mention that this
covariant derivative is the horizontal derivative via the Cartan
linear connection on the tangent bundle.
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Both the Cartan tensor Cabc and the d tensor Sabc vanish
for a metric-induced Finsler spacetime, so they measure
certain aspects of the departure from metricity.

We will now prove one of the key results of this article.
The geometric objects on a Finsler spacetime ðM;L; FÞ
discussed above are only defined where the Finsler metric
exists and is nondegenerate, i.e., on TM n ðA [ fL ¼ 0gÞ.
We will prove that these geometric objects can be defined
on the larger domain TM n A; thus, in particular, they can
be defined on the null structure fL ¼ 0g of the spacetime.

Theorem 2.—Let ðM;L; FÞ be a Finsler spacetime. Over
TM n ðA [ fL ¼ 0gÞ we obtain the following:

(i) the nonlinear connection coefficients Na
b½g�ðx; yÞ

defined in (20) as functionals of the Finsler metric
g of F can be written as functionals ~Na

b½gL�ðx; yÞ of
the Hessian gL of L; the ~Na

b½gL� are defined on
TM n A;

(ii) the coefficients of the linear covariant derivative
fulfill ��a

bc½g� ¼ ��a
bc½gL�, and so they are defined

on TM n A.
Proof.—The strategy to prove part (i) of the theorem is to

define

~� a
bc½gL� ¼ 1

2ðr� 1Þ g
Lap

�
@bg

L
pc þ @cg

L
pb �

2

r
@pg

L
bc

�
(28)

for which we can show that on TM n ðA [ fL ¼ 0gÞ,
~� a

bc½gL�ybyc ¼ �a
bc½g�ybyc: (29)

According to definition (20) we then obtain the desired
result that the coefficients of the Cartan nonlinear connec-
tion can be expressed as functionals of gL. Since the
inverse of gL appears in (28) the definition of the Cartan
nonlinear connection extends to TM n A, where gL is
nondegenerate.

In order to validate (29) we use the homogeneity of F to
rewrite the right-hand side as

1
2 g

apðyb@b �@pF2 � @pF
2Þ: (30)

Now we replace F2 ¼ jLj2=r and express gap as in (9). This
yields

�a
bcy

byc ¼ 1
2g

Lapyb@b �@pL� 1
2g

Lap@pL; (31)

which is recognized as a rewriting of the desired expression
~�a

bc½gL�ybyc by using the homogeneity properties of L.
In order to prove part (ii) of the theorem, we simply need

to replace all occurrences of gab in the definition (23) by
gLab using the relations in (9). Expanding all terms then

yields the result. j

Since all geometric objects discussed in this section
depend on the choice of nonlinear connection Na

b

and on ��a
bc, they are now seen to be well defined on

TM n A, which includes the full null structure of the under-
lying Finsler spacetime.
When we discuss Lorentzian metric manifolds as a

special case of Finsler spacetimes in Sec. V, we will see
that the Cartan nonlinear connection reduces to the Levi-
Civita connection; accordingly, the curvature is also re-
duced to the usual Riemann curvature.

IV. CAUSAL STRUCTURE

In this section we will describe the causal structure of
Finsler spacetimes ðM;L; FÞ. It will be shown that their
definition implies a precise notion of timelike vectors that
can be used to distinguish the tangents to the observers’
worldlines. We will prove that these timelike vectors lie in
open convex cones, similarly as in Lorentzian metric ge-
ometry. These cones are bounded by null vectors with
L ¼ F ¼ 0, but the complete null structure of a Finsler
spacetime may be considerably more complicated.
Moreover, the standard discussion of Finsler geodesics in
terms of F, which breaks down on the null structure, is
generalized. We will present an improved description in
terms of L that is applicable almost everywhere on TM,
especially on the null structure. We thus show that the
motion of massive observers and particles and the expected
motion of light are well defined on Finsler spacetimes. That
light indeed propagates on null Finsler geodesics will be
confirmed in Sec. VII by an explicit construction of a
theory of electrodynamics.

A. Timelike cones

The unit timelike condition in our definition of Finsler
spacetimes intuitively provides a shell Sx of unit timelike
vectors at each point x. The following theorem shows that
this shell can be rescaled to form an open convex cone Cx

of timelike vectors.

Theorem 3.—Each tangent space TxM of a Finsler space-
time ðM;L; FÞ contains an open convex cone

Cx ¼
[
�>0

�Sx ¼
[
�>0

f�uju 2 Sxg: (32)

Proof.—The techniques for this proof are adapted from
Beem [15]. To begin, note that the shell of unit timelike
vectors Sx is a three-dimensional closed submanifold of
TxM ffi R4. We now proceed in three steps. First we will
determine the normal curvatures of Sx at some point y0 2
Sx. These are defined [20] as �nðzÞ ¼

P
a €�

að0Þna for
curves � � �ð�Þ in Sx with normalized tangent vectorsP

a _�a _�a ¼ 1 and initial conditions �að0Þ ¼ ya0 and
_�að0Þ ¼ za. The initial tangent z is tangent to Sx in y0;
i.e., it satisfies

0 ¼ �@ajLjðx; y0Þza ¼ 2jLðx; y0Þj
ðr� 1ÞLðx; y0Þ g

L
abðx; y0Þzayb0 :

(33)
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The unit normal is given by

na ¼ 1

Nðx; y0Þ
�@ajLjðx; y0Þ

¼ jLðx; y0ÞjgLabðx; y0Þyb0
Lðx; y0Þð

P
c
gLcpðx; y0ÞgLcqðx; y0Þyp0yq0Þ1=2

: (34)

Since the curves �ð�Þ lie in Sx, where jLj ¼ 1, we may
obtain a useful relation for €�ð0Þ by differentiating
jLðx; �ð�ÞÞj ¼ 1; we find that gLabðx; y0Þyb0 €�að0Þ ¼
�ðr� 1ÞgLabðx; y0Þzazb. Combining these results we find

the normal curvatures

�nðzÞ ¼ � ðr� 1ÞjLðx; y0Þj
Nðx; y0ÞLðx; y0Þ g

L
abðx; y0Þzazb: (35)

Second we will show that all these normal curvatures are
positive. Note that the homogeneity of L implies
gLabðx; y0Þya0yb0 ¼ 1

2 rðr� 1ÞLðx; y0Þ so that y0 is gLðx; y0Þ
timelike. Because of (33) we know that z and y0 are
gLðx; y0Þ orthogonal; hence z must be gLðx; y0Þ spacelike,
i.e., signðgLabðx; y0ÞzazbÞ ¼ �jLðx; y0Þj=Lðx; y0Þ. This im-

mediately confirms the result �nðzÞ> 0.
Finally, we will show the convexity of the set Cx defined

in the theorem. Positivity of the normal curvatures implies
positivity of the principal curvatures of Sx. Now the set
~C1
x ¼

S
��1�Sx is closed, connected, and convex with

boundary Sx. Because of the homogeneity of L, we then

conclude that for all 	> 0 the sets ~C	
x ¼ S

��	�Sx are

closed, connected, and convex. But then[
	>0

~C
	
x ¼ Cx (36)

is an open convex cone, which concludes the proof. j

So Finsler spacetimes provide a precise notion of time-
like vectors: y 2 TxM is called timelike if and only if
y 2 Cx. We will use these vectors in the following section
to define timelike geodesics as the worldlines of observers.

Since Cx � TxM is an open convex cone, we may define
the dual cone in T�

xM by

C�
xM ¼ fp 2 T�

xMjpðyÞ> 0 for all y 2 Cxg: (37)

The dual cone is also open and convex, and clearly defines
the set of physical momenta p with positive energy with
respect to an arbitrary observer, compare [8].

Next we prove a result that characterizes, in particular,
the boundary of the cone Cx of timelike vectors. As in
Lorentzian metric geometry we will find that this boundary
is built from null vectors y 2 TxM for which Lðx; yÞ ¼ 0.

Theorem 4.—Let ðM;L; FÞ be a Finsler spacetime.
Consider a connected component Tx of

fy 2 TxMjjLðx; yÞj ¼ 1; gLabðx; yÞ is nondegenerateg
(38)

and define the open set ~Tx ¼
S

�>0�Tx. Then for ðx; yÞ in
the boundary @ ~Tx we either have that Lðx; yÞ ¼ 0 or that
gLabðx; yÞ is degenerate.
Proof.—Using the homogeneity of L we can write ~Tx as

fy 2 TxMj9� > 0: jLðx; yÞj ¼ �r;

gLabðx; yÞ is nondegenerateg: (39)

The boundary @ ~Tx hence consists of vectors y 2 TxM with
Lðx; yÞ ¼ 0 or degenerate gLabðx; yÞ. j

The proof shows, in particular, that the boundary of the
open convex cone Cx is null. This follows from the addi-
tional fact that Sx is closed; then the boundary of Cx must
be null, and hence gLab cannot be degenerate.

B. Finsler geodesics

From the physical point of view, the Finsler length
integral (1) provides an action integral for the motion of
massive observers and point particles. Their worldlines are
described by the geodesics that extremize this integral. In
the standard treatment the geodesic equations are the
Euler-Lagrange equations

d

d�

@F

@ _xa
� @F

@xa
¼ 0: (40)

Using the relation gabðx; yÞyayb ¼ Fðx; yÞ2 between the
Finsler function and the Finsler metric, it is not difficult
to express the geodesic equations in an arclength parame-
trization through the coefficients Na

b of the Cartan non-

linear connection

_x brb _x
a ¼ €xa þ Na

bðx; _xÞ _xb ¼ 0: (41)

These equations are not defined where F is not differen-
tiable; hence they cannot be applied to null motion. This
is consistent with the fact that the action (1) vanishes for
F ¼ 0 and so its variation cannot imply any equation.
We will now show that the Finsler function L can be

used to describe the motion of all point particles, including
massive observers and particles as well as the expected
effective motion of light. Consider the following action
integral for a curve � � xð�Þ in M,

S½x� ¼
Z

d�ðLðxð�Þ; _xð�ÞÞ þ �ð�Þ½Lðxð�Þ; _xð�ÞÞ � ��Þ;
(42)

where a normalization constant � ¼ 0, 
1 appears. This
action formulation does not involve mass explicitly, which
is consistent with the weak equivalence principle.
In the Lorentzian metric case Lðx; _xÞ ¼ ~gabðxÞ _xa _xb, one

recognizes the standard quadratic point particle action; the
Lagrange multiplier � then controls whether the resulting
geodesics are massive with unit timelike tangent vectors

CAUSAL STRUCTURE AND ELECTRODYNAMICS ON . . . PHYSICAL REVIEW D 84, 044039 (2011)

044039-7



~gab _x
a _xb ¼ � ¼ �1, spacelike with � ¼ þ1, or massless

with null tangent vectors � ¼ 0.
Also, for general L, the constraint from the variation of

the action with respect to the Lagrange multiplier � ensures
arclength parametrization

Lðxð�Þ; _xð�ÞÞ ¼ � (43)

which is equivalent to F ¼ j�j along the curve. Massless
motion will again be described by � ¼ 0, while massive
motion will be described by the timelike vectors _x 2 Cx

for which j�j ¼ 1. The requirement that the variation of the
action with respect to the curve xð�Þ should vanish is the
Euler-Lagrange equations

d

d�

�
ð1þ �Þ @L

@ _xa

�
� ð1þ �Þ @L

@xa
¼ 0: (44)

With the help of (12) and theorem 2 we rewrite these
equations in the equivalent form

_x brb _x
a ¼ �

_�

ðr� 1Þð1þ �Þ _x
a: (45)

In the case � ¼ 
1, the parametrization condition implies
gLabðx; _xÞ _xa _xcrc _x

b ¼ 0, so we conclude from Eq. (45) that
_� ¼ 0 and obtain the Finsler geodesic equation (41). For
null curves � ¼ 0 we can simply reparametrize � � �ð�Þ
without changing Lðx; x0Þ ¼ 0 to obtain the Finsler geode-
sic equation (41) in terms of derivatives with respect to the
parameter �.

It is important to note that the derivation of Finsler
geodesics from the action (42) involving L also results in
the Cartan nonlinear connection expressed through deriva-
tives of L (see theorem 2 in Sec. III). Hence we can
formulate Finsler geodesics with this action on TM n A
which includes the full null structure fL ¼ 0g.

We conclude that the technology available on Finsler
spacetimes, as we have defined them in Sec. II, enables us
to describe massive observers and point particles as Finsler
geodesics � � xð�Þ in M with timelike tangent vectors
_xð�Þ 2 Cxð�Þ. Moreover, we can describe the expected ef-

fective motion of light or massless particles by well-defined
null Finsler geodesics with Lðxð�Þ; _xð�ÞÞ ¼ 0. This expec-
tation will be justified field theoretically in Sec. VII.

V. ILLUSTRATIVE EXAMPLES

After these technical preparations we are now in the
position to discuss in detail two simple examples of
Finsler spacetimes ðM;L; FÞ. These illustrate the strength
of our definition and the general theorems derived above.
First we will show that Lorentzian metric spacetimes are a
special case of Finsler spacetimes. In particular, we will
exhibit how connection and curvature, and the causal struc-
ture of a Lorentzian metric fit into the more general scheme
discussed above. The second example shows a more com-
plicated causal structure with two different light cones at
each point. This Finsler spacetime goes beyond metric

manifolds, but nevertheless has well-defined timelike cones
and allows a full description of observers and null motion.

A. Lorentzian metric spacetimes

Lorentzian manifolds ðM; ~gÞ with metric ~g of signature
ð�;þ;þ;þÞ are a special type of Finsler spacetimes
ðM;L; FÞ. They are described by the metric-induced
function

Lðx; yÞ ¼ ~gabðxÞyayb (46)

which is homogeneous of degree r ¼ 2. Recalling the

definition, Lðx; yÞ leads to the Finsler function Fðx; yÞ ¼
j~gabðxÞyaybj1=2 that is easily recognized as the integrand of
the Lorentzian length as described in the motivation of this
article.
Clearly L is smooth on TM and obeys the reversibility

property. The metric gLabðx; yÞ ¼ ~gabðxÞ, and hence is non-

degenerate on TM; so the measure zero set A ¼ ;. The
signature of gL is globally ð�;þ;þ;þÞ, so the unit time-
like condition tells us to consider the set

�x ¼
�
y 2 TxM

���������ðx; yÞ ¼ jLðx; yÞj
Lðx; yÞ ¼ �1

�
: (47)

This set has precisely two connected components, both of
which are closed. We may call one of these Sx, as displayed
in Fig. 2(a). From theorem 3 in Sec. IV we learn that the
shell of unit timelike vectors Sx can be rescaled to form an
open convex cone Cx that contains all the usual timelike
vectors of ~g at a point x 2 M (see Fig. 2(b)).
The Finsler function F is nondifferentiable on the

null structure fL ¼ 0g � TM; there the Finsler metric is
not defined. We have the results gabðx; yÞ ¼ �~gabðxÞ on
the ~g-timelike vectors and gabðx; yÞ ¼ þ~gabðxÞ on the
~g-spacelike vectors; hence the Finsler metric changes its
signature.
The geometric constructions of Sec. III take the familiar

form for Lorentzian manifolds. The Cartan tensor Cabc and
the tensor Sabc that measure the departure from metricity

vanish, because the Finsler metric does not depend on the
fiber coordinates. Moreover, the coefficients of the linear

x

sign L=−1

sign L=1 sign L=1

sign L=−1

S
xS

FIG. 2 (color online). (a) Left diagram: null structure and shell
of unit timelike vectors on Lorentzian metric spacetimes.
(b) Right diagram: rescaling the unit shell to form the cone of
timelike vectors.

CHRISTIAN PFEIFER AND MATTIAS N. R. WOHLFARTH PHYSICAL REVIEW D 84, 044039 (2011)

044039-8



covariant derivative simply become the Christoffel sym-
bols of the metric ~g, i.e., ��a

bcðx; yÞ ¼ �a
bcðxÞ. The non-

linear connection reduces to a linear connection with
coefficients

Na
bðx; yÞ ¼ �a

bcðxÞyc; (48)

and according to (19) its curvature is given by the Riemann
tensor of ~g as Rc

abðx; yÞ ¼ �ydRa
dbcðxÞ.

For Finsler spacetimes induced by Lorentzian metrics it
is easy to see that the connection and curvature are expres-
sible in terms of gLabðx; yÞ ¼ ~gabðxÞ and hence defined

everywhere on TM, not only where the Finsler metric is
defined. This is a very special case of theorem 2 of Sec. III.

B. Simple bimetric Finsler structure

A simple example of a Finsler spacetime ðM;L; FÞ that
goes beyond Lorentzian metric manifolds can be defined
through two Lorentzian metrics h and k of signature
ð�;þ;þ;þÞ for which the cone of h-timelike vectors is
contained and centered in the cone of k-timelike vectors.
As mentioned before, such Finsler spacetimes are relevant
as covariant descriptions for certain aspects of crystal
optics. It is worth noting that it was thought impossible
to realize two signal cones consistently in Finsler geometry
[21], but we will see that this is not a problem at all. Our
example is based on the function

L ¼ habðxÞyaybkcdðxÞycyd: (49)

It is clear that L is homogeneous of degree r ¼ 4, smooth
on TM, and that it obeys the reversibility condition. The

corresponding Finsler function is defined as Fðx; yÞ ¼
jhabðxÞyaybkcdðxÞycydj1=4.
The null structure fL ¼ 0g is the union of the null cones

of the metrics h and k, and the metric gLabðx; yÞ turns out to
be degenerate on a measure zero subset A � ; that forms
an additional structure between the null surfaces, as dis-
played in Fig. 3.
Across A, the metric gL changes its signature from

ðþ;�;�;�Þ to ð�;þ;þ;þÞ. In order to analyze the unit
timelike condition, we need to compare the signature of gL

with the sign of L. One finds four connected components of
the set �x. Two of these are closed, two are not; one of
each is displayed in Fig. 4(a). Choosing one of the closed
components to be the set Sx, we can rescale it to form the
complete convex cone Cx of timelike vectors at x 2 M
according to theorem 3 of Sec. IV. The nonclosed compo-
nents will not give rise to a convex cone when rescaled in
the same way, as can be seen in Fig. 4(b).
As in the Lorentzian metric case the Finsler function F

of this Finsler spacetime is not differentiable where L ¼ 0.
There the Finsler metric is not defined; it changes its
signature across the null structure and is degenerate on A.
It is necessary to apply theorem 2 of Sec. III to realize that
the Cartan nonlinear connection and its curvature are well
defined on TM n A, in particular, on the set fL ¼ 0g. Hence
this bimetric Finsler spacetime has a well-defined causal
structure which is more general than that of Lorentzian
metric manifolds but admits all the necessary properties to
be applicable in physics. So Finsler spacetimes are indeed
nice generalizations of Lorentzian metric manifolds. In the
next section we will demonstrate that it is possible to
formulate physical field theories on these generalized
backgrounds.

VI. FIELD THEORYACTIONS ON FINSLER
SPACETIMES

Classical physics is described by field theories and
effective massive and massless point particles on

A

L=0

L=0

FIG. 3 (color online). Null structure of the bimetric Finsler
spacetime (solid lines) and degeneracy set A of gL (dashed
lines).

S x

L<0

(+
,−

,−
,−

)

L<0

(−,+,+,+)
L>0

L=−1

L=1
L>0

(+,−,−,−)
(−,+,+,+)

C x

FIG. 4 (color online). (a) Left diagram: cut through two connected components of �x; the inner set Sx is closed, and the outer set is
not. (b) Right diagram: rescaling Sx leads to a convex cone Cx; rescaling the outer set does not.
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Lorentzian metric spacetimes. Since Finsler spacetimes
present a natural generalization of metric spacetimes, we
should not only be able to formulate point particle actions,
as we already did in Sec. IVB, but also generalized field
theories. In this section we will develop the technology
needed to write down well-defined field theory action
integrals, and to derive the corresponding equations of
motion. We will also argue that certain past attempts to
formulate such actions on Finsler spaces are technically
incorrect.

An extended field � on a Finsler spacetime is a tensor
field with definite homogeneity on the tangent bundle.
Hence the components of � are functions of all tangent
bundle coordinates, �A...

B...ðx; yÞ, which are measured by
observers moving through a spacetime point x with world-
line tangent y, as argued in Sec. II B. Naively, an action
S½�� for � would be an integral over some Lagrangian

density ~L½��ðx; yÞ on TM with variation

�S½��¼
Z
TM

d4xd4y� ~L½��ðx;yÞ

¼
Z
TM

d4xd4y
�S½��

��A...
B...ðx;yÞ

��A...
B...ðx;yÞ: (50)

However, if the integrand is of definite homogeneity n, the
variation �S½�� always diverges. Therefore one cannot
require �S½�� ¼ 0 in order to read off equations of motion;
this issue was not appreciated in [17,18].

The divergence of the variation �S½�� becomes clear
by using special coordinates ðx̂a; u
; RÞ on the domain
fL � 0g � TM, which will be constructed in detail below,
to write (50) as

Z
fL¼0g

d4xd4y� ~L½��ðx; yÞ

þ
�Z 1

0
dRRnþ3

�Z
d4x̂d3uJðx̂; u; 1Þ� ~L½��ðx̂; u; 1Þ;

(51)

where J is the determinant of the Jacobian of the coordi-
nate change. The integral over R absorbs the n homoge-
neity of the integrand and clearly diverges. Note that this
problem cannot be cured by considering compactly sup-
ported ��A...

B...ðx; yÞ; these simply do not exist because
homogeneity always leads to noncompact support along
the fiber directions.

We will now present the technology to formulate well-
defined action integrals for fields on Finsler spacetimes. As
we have seen, these actions cannot be integrals over the
whole tangent bundle because of homogeneity. The central
idea is to divide out the homogeneity by restricting the
integration to the subbundle of constant jLj in TM.

Variations of the so-constructed actions will lead to equa-
tions of motion on the same subbundle. The homogeneity
of all involved fields then guarantees that the equations can
be extended back to the whole tangent bundle.
More precisely, we formulate actions for homogeneous

fields � on Finsler spacetimes as integrals over the sub-
bundle � � ðTM n AÞ � TM that is defined as

� ¼ [
x2M

fy 2 TxMjjLðx; yÞj ¼ 1;

gLabðx; yÞ is nondegenerateg: (52)

For explicit calculations it will be convenient to introduce
coordinates on �. The charts we consider live on the
smooth choice of a connected component of �jx over an

open set x 2 U � M. Similarly as in [1] we start from
induced coordinates ðZAÞ ¼ ðxa; yaÞ and define new coor-

dinates ðẐAÞ ¼ ðx̂a; u
; RÞ on TM that satisfy

x̂ aðx; yÞ ¼ xa; Rðx; yÞ ¼ jLðx; yÞj1=r;
u
ðx; yÞ homogeneous of degree zero in y:

(53)

It will not be necessary to specify the coordinates u
 more
explicitly. We simply note that they can be constructed

from the zero-homogeneous functions ya=jLðx; yÞj1=r that
provide an embedding � ,! TM.
We will now deduce a number of properties of the new

coordinates. For an n-homogeneous function h on TMwith
hðx; �yÞ ¼ �nhðx; yÞ for positive �, we find that the homo-
geneity with respect to the fiber coordinates is translated
into homogeneity with respect to R. Indeed,

�nhðx̂aðxÞ; û
ðx; yÞ; Rðx; yÞÞ ¼ hðx̂aðxÞ; û
ðx; yÞ; Rðx; �yÞÞ;
(54)

then differentiation with respect to � at � ¼ 1 shows that h
is n-homogeneous in R by Euler’s theorem. In particular,
this implies that ya is one-homogeneous, R@Ry

a ¼ ya. By
direct calculation we thus obtain from the coordinate trans-
formation the basis change matrices on TTM:

@ẐA

@ZB ¼
�a
b 0

@bu



@bjLj1=r
�@bu




�@bjLj1=r

2
664

3
775;

@ZA

@ẐB
¼ �a

b 0 0

@̂by
a @u�y

a ya

R

" #
:

(55)

These matrices are inverses of one another, so we can read
off many relations that will become important when we
deduce a canonical volume form on �, and perform varia-
tions of the field theory actions:
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@ẐA

@ZC

@ZC

@ẐB
¼

�a
b 0

@bu

þ �@cu


@̂by
c

@bjLj1=rþ �@cjLj1=r@̂byc
�@cu


@u�y
c �@cu


 yc

R
�@cjLj1=r@u�yc 1

2
64

3
75¼

�a
b 0
0
0

�

� 0
0 1

2
4

3
5; (56)

@ZA

@ẐC

@ẐC

@ZB ¼ �a
b 0

@̂by
a þ @bu

�@u�y
a þ ya

R @bjLj1=r @u�y
a �@bu

� þ ya

R
�@bjLj1=r

" #
¼ �a

b 0
0 �a

b

� �
: (57)

In physical field theory actions one usually writes the

Lagrangian density ~L½��ðx; yÞ as a volume form multi-
plied with a scalar Lagrangian L½��ðx; yÞ. We construct
the volume form on our integration domain � � TM n A
as the pullback of a very simple volume form on TM n A
which is determined by the Sasaki-type r-homogeneous
metric

G ¼ jLj2=rgLabdxa � dxb þ gLab�y
a � �yb

¼ R2gLabdx̂
a � dx̂b þ h
��u


 � �u�

þ rðr� 1ÞL
2R2

dR � dR; (58)

where h
� ¼ @u
y
a@u�y

bgLab and �u
 ¼ du
 þ
ð �@bu
Nb

a � @au

Þdx̂a. We remark that one can determine

the signature of h, given the signature of gL and the sign of
L.3 The pullback of the metricG to� is simply obtained by
setting R ¼ 1; in local coordinates this implies the follow-
ing volume form on �:� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detgLab deth
�j
q �

j�
� dx̂0 ^ dx̂1 ^ dx̂2 ^ dx̂3 ^ du1 ^ du2 ^ du3: (59)

The restriction of a function f on TM to � is always
obtained by setting R ¼ 1, i.e.,

fj�ðx̂; uÞ ¼ fðx̂; u; 1Þ: (60)

Combining these arguments, we conclude that field theory
actions for physical fields� on a Finsler spacetime take the
general form

S½�� ¼
Z
�
d4x̂d3u

� ffiffiffiffiffiffiffiffiffi
gLh

q
L½��

�
j�
; (61)

where we use the shorthand notation gL ¼ j detgLabj and
h ¼ j deth
�j.

Physical scalar LagrangiansL½�� depend locally on the
field� and its derivatives up to some finite order. To derive
equations of motion by variation of the field theory action
(61), we hence need to know how to perform integrations
by parts. Using the relations in (56) and (57) one can prove
that

Z
�
d4x̂d3u

� ffiffiffiffiffiffiffiffiffi
gLh

q
�aA

aðx; yÞ
�
j�

¼ �
Z
�
d4x̂d3u

� ffiffiffiffiffiffiffiffiffi
gLh

q
ð��p

pa þ SppaÞAa

�
j�

(62)

and for n-homogeneous functions Aaðx; yÞ thatZ
�
d4x̂d3uð

ffiffiffiffiffiffiffiffiffi
gLh

q
�@aA

aðx;yÞÞj�

¼�
Z
�
d4x̂d3u

� ffiffiffiffiffiffiffiffiffi
gLh

q �
gLpq �@ag

L
pq

�2½4rþn�5�
rðr�1ÞL gLapy

p

�
Aa

�
j�
: (63)

This overview completes the tools needed for field theo-
ries on Finsler spacetimes. In the following section we
apply this newly developed formalism to the case of gen-
eralized electrodynamics.

VII. ELECTRODYNAMICS

By applying the technology that we have developed for
field theory action integrals, we will formulate an explicit
theory of generalized electrodynamics on Finsler space-
times in this section. This theory reduces to standard
electrodynamics if the Finsler spacetime is induced by a
Lorentzian metric. Our key objective is the proof that the
propagation of light indeed takes place on Finsler null
geodesics. This claim, often found in the literature, will
be confirmed here for the first time. The proof fundamen-
tally relies on theorem 2 of Sec. III that allows us to
describe the differential geometry of the null structure.
This in turn is a consequence of our definition of Finsler
spacetimes.

A. Action and field equations

Classical electrodynamics on a Lorentzian metric space-
time ðM; ~gÞ can be formulated in terms of an action for a

one-form ~A and a field strength two-form ~F as

� 1

2

Z
M
d4x

ffiffiffi
~g

p
~gab~gcd ~Fac

�
@b ~Ad � @d ~Ab � 1

2
~Fbd

�

¼
Z
M
d4x

ffiffiffi
~g

p
Lð~gab; ~Aa; @a ~Ab; ~FabÞ: (64)

The equations of motion are obtained from this action by

variation with respect to ~A and ~F:

3For instance, on the cone Cx of timelike vectors in the
bimetric example of Sec. V, we have positive L > 0 and the
signature ðþ;�;�;�Þ of gL. There it follows that h has definite
signature ð�;�;�Þ.
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r~g
b
~Fba ¼ 0; ~Fab ¼ @a ~Ab � @b ~Aa; (65)

where r~g denotes the Levi-Civita connection of the space-
time metric. The advantage of this formulation over the
standard action� 1

4

R
d4x

ffiffiffi
~g

p
~Fab ~Fab lies in the fact that the

relation ~F ¼ d ~A, that ~A is a gauge potential, does not need
to be imposed by hand.

In order to determine a generalized theory of electro-
dynamics on Finsler spacetimes ðM;L; FÞ, we propose the
following minimal extension principle:

(i) all equations of motion must be determined by the
action;

(ii) all tensor fields of the theory on ðM; ~gÞ are lifted to
zero-homogeneous tensor fields of the same type on
TM, so that their components with respect to the
Berwald bases are independent of the geometry L;

(iii) the generalized action is obtained by using the
scalar Lagrangian to contract the lifted fields and
the metric G of (58);

(iv) the restriction of the result to � is integrated as in
(61);

(v) Lagrange multipliers are used to constrain all fields
to their horizontal components.

This principle is designed to generate a unique extension of
a given classical field theory. The last point is implemented
to keep the same number of components of the physical
fields as in the classical theory. Hence the extension essen-
tially involves an additional dependence of the field com-
ponents on the fiber coordinates which we can interpret in
terms of observers in motion.

We now apply the minimal extension principle to the
action (64). Using the horizontal/vertical Berwald bases

(16), the fields ~A and ~F are lifted to4

A ¼ Aaðx; yÞdxa þ A �aðx; yÞ�ya;
F ¼ 1

2Fabðx; yÞdxa ^ dxb þ F �abðx; yÞ�ya ^ dxb

þ 1
2F �a �bðx; yÞ�ya ^ �yb:

(66)

The forms A and F are required to be zero-homogeneous in
the fiber coordinates; this implies the homogeneities zero
for Aa, Fab, minus 1 for A �a, F �ab, and minus 2 for F �a �b.
According to the extension principle the generalized action
then becomes

S½A; F� ¼
Z

d4xd3u
ffiffiffiffiffiffiffiffiffi
gLh

q
j�

�
� 1

2
GABGCDFAC

�
�
@BAD � @DAB � 1

2
FBD

�
þ � �aA �a

þ � �abF �ab þ � �a �bF �a �b

�
j�
; (67)

where the induced coordinates ðZAÞ ¼ ðxa; yaÞ and the
corresponding partial derivatives are used before restrict-
ing to �. Observe the appearance of the Lagrange multi-

pliers � �a, � �ab, and � �a �b that kill the nonhorizontal parts of A
and F on shell.
The variation of the generalized action with respect to A,

F and the Lagrange multipliers is technically straightfor-
ward; the calculation uses the Berwald bases and requires
the integration by parts identities (62) and (63). Using the
immediate constraints

A �a ¼ 0; F �ab ¼ 0; F �a �b ¼ 0; (68)

we thus find the field equations

Fab ¼ �aAb � �bAa; (69)

0 ¼ gLabgLcdðraFbd � SppaFbdÞ; (70)

� �ab ¼ gLapgLbq �@pAq;

� �a ¼ 1
2g

LabgLcdFacR
q
bd;

� �a �b ¼ 0:

(71)

The field strength F, whose components are interpreted as
electric and magnetic fields, is gauge invariant under the
transformations

Aa � Aa þ Ba; �½aBb� ¼ 0: (72)

These may change the solution for the Lagrange multi-
pliers, but this has no physical relevance.
We emphasize that the field equations reduce to the

standard Maxwell equations (65) in case the Finsler space-
time is induced by a Lorentzian metric and the fields only
depend on the coordinates of the manifoldM but not on the
fiber coordinates of TM.

B. Propagation of light

Any theory of electrodynamics determines the motion of
light through the corresponding system of partial differen-
tial equations. Light trajectories are obtained in the geo-
metric optical limit by studying the propagation of
singularities of the electromagnetic fields. Since our field
equations on Finsler spacetime are formulated over the
tangent bundle, the resulting singularity propagation will
also follow curves � � ðxð�Þ; yð�ÞÞ on the tangent bundle
TM. Of these only the natural lifts � � ðxð�Þ; _xð�ÞÞ that
arise from curves � � xð�Þ on the manifold M have an
immediate interpretation as light trajectories. Wewill dem-
onstrate the strong result that, in the proposed extended
electrodynamics (67), all light trajectories are Finsler null
geodesics.
In the following analysis we regard the components of

the one-form A as the fundamental variables. We insert
(69) into (70) to obtain the following system of linear
second order partial differential equations,

4It should be clear from the context whether F denotes the
Finsler function or the field strength tensor.

CHRISTIAN PFEIFER AND MATTIAS N. R. WOHLFARTH PHYSICAL REVIEW D 84, 044039 (2011)

044039-12



0 ¼ gLa½bgLd�cðrarbAc � SpparbAcÞ: (73)

A solution of this system for Aa determines solutions for
Fab and � �ab according to our field equations (69)–(71).
Following standard methods for partial differential
equations we now extract the principal symbol from the
equations above. For this purpose we use the gauge con-
dition gLabraAb ¼ 0 which generalizes the usual Lorentz
gauge. Then the terms of highest derivative order can be
written in the form

0 ¼ gLabð@a@b � 2Np
a@b �@p þ Np

aN
q
b
�@p �@qÞAc þ . . .

¼ �p
cPAB@A@BAp þ . . . ; (74)

where the dots represent terms with less than two deriva-
tives acting on the Aa. Following the definition of Dencker
[22], and using the nondegeneracy of gLab, one can check

that the system is of real principal type. Hence, as Dencker
shows, the propagation of singularities is governed by the
Hamiltonian

Pðx; y; k; �kÞ ¼ 1
2P

ABkAkB ¼ 1
2g

LabkHa k
H
b ;

kHa ¼ ka � Np
a
�kp:

(75)

More precisely, the singularities of the field A propagate
along the projection to TM of the integral curves of the
Hamiltonian vector field

XP ¼ @kaP@a þ @ �ka
P �@a � @aP@ka � �@aP@ �ka

(76)

that lie in the surface P ¼ 0.
The integral curves � � ðxð�Þ; yð�Þ; kð�Þ; �kð�ÞÞ in T�TM

of the Hamiltonian vector field XP are determined by the
corresponding Hamiltonian equations

_x a ¼ gLabkHb ; (77)

_y a ¼ �gLpbkHb N
a
p; (78)

_ka ¼ �1
2@ag

LpqkHp k
H
q þ gLpqkHq @aN

b
p
�kb; (79)

_�ka ¼ �1
2
�@ag

LpqkHp k
H
q þ gLpqkHq �@aN

b
p
�kb; (80)

and satisfy the constraint of lying in the surface P ¼ 0, i.e.,

gLabðx; yÞkHa kHb ¼ 0: (81)

We can immediately conclude from (77) and (78) that the
projection � � ðxð�Þ; yð�ÞÞ of these integral curves to TM
satisfies _ya þ Na

p _xp ¼ 0, i.e., is horizontal. This yields the

nice result that all singularities of the one-form A propa-
gate into directions that can be identified with tangent
directions to the manifold. We also conclude from (77) and
(81) that _xa is gL null.

Light trajectories are a special case of the obtained
propagation trajectories. They are natural lifts of some
curve � � xð�Þ in M so that ya ¼ _xa. Hence we conclude
for light that

€x a þ Na
bðx; _xÞ _xb ¼ 0; gLabðx; _xÞ _xa _xb ¼ 0: (82)

Comparison of this result with (41) and (12) proves that all
light trajectories that arise on Finsler spacetimes from the
generalized theory of electrodynamics (67) are Finsler null
geodesics. This shows that the null structure of Finsler
spacetimes is indeed related to the propagation of light.

VIII. DISCUSSION

We have identified a number of conceptual issues that
prevent a straightforward application of Finsler geometry
to the description of spacetime. These involve imprecise
definitions of Lorentzian Finsler structures, unclear notions
of causality, and restricted constructions of field theory
actions. Our results presented in this article demonstrate
how to solve these problems.
We have developed a concise new definition for Finsler

spacetimes ðM;L; FÞ; this involves a fundamental geome-
try function L on the tangent bundle that induces a Finsler
function F. From the properties of L we could prove that
the construction of connections, covariant derivatives, and
curvature, which works perfectly on definite Finsler
spaces, can be extended to our definition of Finsler space-
times. In particular, these geometric objects were shown to
be well defined on the null structure. On the basis of this
result, we could clarify the causal structure of Finsler
spacetimes. With well-defined notions of timelike and
lightlike vectors now available, we can describe the trajec-
tories of massive observers and point particles and of light
as timelike or null Finsler geodesics, respectively. The
timelike vectors form open convex cones with null bounda-
ries as in Lorentzian metric geometry.
Further, we could deduce that light indeed must propa-

gate along Finsler null geodesics. In order to obtain this
result we developed a completely new formulation of well-
defined field theory actions on Finsler spacetimes as inte-
grals over the subbundle � � TM. These actions have no
divergency problems, and the corresponding field equa-
tions allow the full reconstruction of the physical fields.
Our application of this method to a generalized theory of
electrodynamics produced equations of motion that deter-
mine the propagation of light along Finsler null geodesics.
We conclude that Finsler spacetimes are consistent gen-

eralizations of Lorentzian metric manifolds that can be
used as geometric spacetime backgrounds for physics.
The following questions will be relevant for future re-

search. The definition of observers on Finsler spacetimes
needs to be made more precise. In particular, this concerns
the definition of spatial directions, the measurement of
spatial length, and the group of transformations that relates
different observers. Using the methods developed during
this article it should be possible to formulate a gravity
action for Finsler spacetimes that provides dynamics
for the basic geometry function L. As a guiding principle,
these dynamics should be equivalent to the Einstein
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equations if the Finsler spacetime is induced by a
Lorentzian metric. Further, it would be interesting to study
how satisfactorily the technology we have developed can
be applied to crystal media described by bimetric Finsler
functions, as in the second example presented in Sec. V. Is
it possible to deduce the effects observed in these crystals
from our generalized electrodynamics, and can we learn
something about the interpretation of the tangent direction
dependence of the fields?

Besides these questions that concern the physical inter-
pretation and application of Finsler spacetimes, there is
also the mathematical question about the relation between
Finsler spacetimes and other generalized geometric back-
grounds for physics. For example, is there a connection to
the backgrounds based on hyperbolic polynomials on the
cotangent bundle of a manifold [8]? The examples dis-
cussed in this article are not only Finsler spacetimes but
they also belong to that class. It would be interesting to

investigate whether there is an overlap of spacetimes con-
sistent with the different definitions. We note the fact that
bimetric backgrounds defined by two Lorentzian metrics
with timelike cones that intersect only in the origin are
excluded both as Finsler spacetimes and as hyperbolic
polynomials.
Using the techniques presented in this article we already

study observers and gravity on Finsler spacetimes. We
expect to report on further results soon.
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