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Bulk matter fields on two-field thick branes
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In this paper, we obtain a new solution of a brane made up of a scalar field coupled to a dilaton. There is
a unique parameter b in the solution, which decides the distribution of the energy density and will affect
the localization of bulk matter fields. For free vector fields, we find that the zero mode can be localized on
the brane. And for vector fields coupled with the dilaton via e”™ F,, FMV, the condition for localizing the
zero mode is 7= —/b/3 with 0< b = 1, or 7> —1/~/3b with b > 1, which includes the case T = 0.
While the zero mode for free Kalb-Ramond fields cannot be localized on the brane, if only we introduce a
coupling between the Kalb-Ramond fields and the dilaton via e¢™H,y; H¥N:. When the coupling
constant satisfies > 1/ V3b with b= 1 or > % with 0 < b <1, the zero mode for the KR fields
can be localized on the brane. For spin half fermion fields, we consider the coupling nWe’” p W between
the fermions and the background scalars with positive Yukawa coupling 5. The effective potentials for
both chiral fermions have three types of shapes decided by the relation between the dilaton-fermion
coupling constant A and the parameter b. For A = —1/ \/3b, the zero mode of left-chiral fermion can be
localized on the brane. While for A > —1/+/3b with b> 1 or —1//3b <A< —/b/3 with0< b = 1,

the zero mode for left-chiral fermion also can be localized.
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I. INTRODUCTION

The brane theory [1,2], which considers our four-
dimensional Universe as a hypersurface (‘‘brane world™)
embedded in more higher dimensional space-time, has
received a great deal of renewed attention. In this theory,
all matter fields are confined to the brane in a high-
dimensional space while only gravity is free to propagate
in all dimensions. The extra dimensions can be compact
[3-5], or infinite and noncompact [6,7]. This theory has
opened up new avenues to explain some questions in
particle physics and in astrophysics, such as the hierarchy
problem, the cosmological problem, the nature of dark
matter and dark energy [4-6,8—11].

Some brane models consider the brane as infinitely thin
branes with deltalike localization of matter, which are ideal
models [4-6], so some thick brane models are proposed.
The thick branes are usually realized naturally by one
[12-23] or two [24-26] background scalar fields configu-
ration coupled with gravity. For a comprehensive review
on thick brane solutions and related topics, please see
Ref. [27].

In this paper, we will investigate the localization of
various matter fields on a thick brane generalized by two
background scalar fields, i.e., a kink scalar and a dilaton
scalar, which is similar to that in Refs. [24,28]. But in our
solution of the brane there is a unique parameter b, which
makes the solution in Refs. [24,28] only one case of ours.
The unique parameter b decides the distribution of the
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energy density of the bulk, and will affect the localization
of various bulk matter fields differently.

The localization of various matter fields on the branes is
an important problem in the braneworld theory, which is
used in order to build up the standard model. It has been
known that massless scalar fields and graviton can be
localized on branes of different types [5,6,29] with an
exponentially decreasing warp factor. But spin-1 Abelian
vector fields can only be localized on the Randall-Sundrum
(RS) brane in some higher-dimensional cases [30], or on
the thick de Sitter brane and the Weyl thick brane [31,32].

The antisymmetric Kalb-Ramond (KR) tensor field B,,,
was first introduced in the string theory, in which it is
associated with massless modes. Then it was used to ex-
plain the torsion of the space-time in the Einstein-Cartan
theory. Moreover in the four-dimensional space-time, by a
symmetry known as duality, antisymmetric tensor fields
are just equivalent to scalar or vector fields [33]. However,
in extra dimensions they will indicate new types of parti-
cles. Thus, any observational effect involving the KR fields
is a window into the inaccessible world of very high energy
physics. The investigation of the KR fields in the context of
theories with extra dimensions has been carried out in
Refs. [28,34-38].

In Refs. [34-36], the authors proved that in the back-
ground of RS space-time both the massless and the massive
Kaluza-Klein (KK) modes of the KR fields appear much
weaker than the curvature to an observer on the visible RS
brane; however, when the KR fields couple with the dilaton
fields, the trilinear dilaton-KR couplings may lead to new
signals in Tev scale experiments. In Ref. [28], the author
also proved that only when the KR fields couple with the
dilaton field, the zero mode of the KR fields can be
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localized on a thick brane, but there is only a zero mode
and no bound massive KK mode. In our work, we also find
that it is necessary to introduce the dilaton-KR coupling in
order to obtain a localized zero mode, and we find there are
massive bound KK modes.

The localization of the spin 1/2 fermion fields is also
interesting. It has been proved that in order to have normal-
izable zero modes, the fermion fields should couple with
the background scalars. With a different scalar-fermion
coupling, there may exist a single bound state and a con-
tinuous gapless spectrum of massive fermion KK states
[17,39-42], or finite discrete KK states (mass gap) and a
continuous gapless spectrum starting at a positive m?
[32,43-45], or even only bound KK modes [46,47]. In
this paper, we will show that with one scalar-fermion
coupling to both background scalars the above three cases
will exist with different relations between the unique pa-
rameter b and the dilaton-fermion coupling constant.

Our paper is organized as follows: In Sec. II, we give a
brief review of the braneworld generated by two scalars.
Then, in Sec. III, we study the localization and mass
spectra of the vector, KR, and fermion fields on the brane
by presenting the potentials of the corresponding
Schrédinger equations. Finally, a brief discussion and con-
clusion are given in the last section.

II. REVIEW OF THE BRANE GENERATED
BY TWO INTERACTING SCALARS

In this paper, we consider the braneworld generated by
two interacting scalars ¢ and 7. The action of the system is

1 1 1
s= [ de\/_—_E[z—KgR — 309 =3 (0m ~ V(g m)]
(D

with R the scalar curvature and Kg = 87Gs, where Gs is
the five-dimensional Newton constant. Here we set ks = 1.
The line-element of a five-dimensional space-time can be
assumed as [24,28,48]

ds®> = ezA(y)nw,dx/‘dx” + 280 dy?, 2)

where e*4 and e?? are the warp factors and y stands for the
extra coordinate. The background scalars ¢, 7 are as-
sumed to be only the functions of y, because the brane
can be treated as the cross section of the bulk. In this
model, the thick brane is realized by the potential
V(¢, 7). Then the equations of motion generated from
the action (1) with the ansatz (2) are given by

1
%4)/2 + 577./2 _ eZBV — 6A12, (3)

1
%95'2 otV = —6A" =347+ 34'B, (4)
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¢// + (4A/ _ Bl)g{)/ — eZBﬁ’ (5)
7"+ (4A’ — B)w = 6233—:_, (6)

where the prime stands for the derivative with respect to y.

The solutions of the system can be found by following the
superpotential method [12]. With the superpotential func-
tion W(¢) and suppose V = 6_2\/;73—”[%(%)2 — bW, it
can be verified that the following first-order differential
equations are the solutions of the equations of motion

(3)—(6):
ow 1

I=_’ A/Z_—W,
=90 3 (7)
B = bA, 7 = \3bA,

where b is a positive constant. For a specific superpotential
W(e) [24,28],

Wie) = vas(1 - 3—;) (®)

the solutions are found to be

¢(y) = v tanh(ay), ©))

2
Ay) = — %<lncosh2(ay) + %tanhz(ay)), (10)

7(y) = V3bA(y), (11)
B(y) = bA(y), (12)

where v, a are both positive constants. It can be seen that the
solution for ¢ is a kink and 7 = V3bA is the dilaton field
consistent with the metric and the kink. The solutions in
Refs. [24,28] are only one case of the above solutions when
we let v?/9 = B and b = 1/4. Here we have another
parameter b, which leads to new solutions of the brane
world. Our solutions for the brane do not amount to a simple
coordinate change, because the solutions are decided by the
scalar potential V(¢) with the parameter b, which does not
depend on the coordinate systems.

In order to clarify this question more clearly, we would
like to discuss the effect of the parameter b on the brane
under the physical coordinate y. To this end, we perform a
coordinate transformation dy = e ?4dj to translate the
different coordinate y to the same physical coordinate ¥.
Then the metric is read as

ds? = 00y dxtdx” + dy>. (13)

With the relation of the two coordinate systems, we have

5= y DAy — '[ye—(sza/9)bid)7’ for § — oo, (14)
0 0
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FIG. 1 (color online).

so it can be seen that in this new coordinate system the
extra dimension J is finite (with J,,c = 53—), which is
different from the nonphysical and infinite coordinate y.
For different b, the boundary of the extra dimension y is
also different.

Now we can investigate the energy density of the system
Too(?) in the new coordinate. With the solution (10) and
the relation between the two coordinates, we calculate
the values of the energy density Tyo(¥) at y = 0 and at

|y| - ymax:

Too(0) = a*v?, (15)
TOO(lyl - ymax)
4a%v* 2v2ab —2(b=1)/b
— b= s 1) T ae)

from which we can see that the behavior of Ty (|¥] = Fax)
at the boundaries of the extra dimension is

0, 0<b<l1

—%azv“, b=1
Too(I7] = Fmax) = § —00, I<b<2. (172

0, b=2

o) b>?2

We plot the energy density Ty(¥) for different b using
numerical method in Fig. 1.

In the following, we will mainly discuss the effect of the
parameter b on the localization of bulk matter fields.

III. LOCALIZATION AND MASS SPECTRA
OF VARIOUS BULK MATTER FIELDS
ON THE BRANE

In this section, we will investigate the localization
and mass spectra of various bulk matter fields in this

-2 -1 0 1 2

The shapes of the energy density Ty, (¥) for different b. The parameters are setto a = 1, v = 1.

braneworld by presenting the potentials of the correspond-
ing Schrodinger equations. In order to make sure the
solutions of the system obtained before are valid, we treat
the bulk matter fields considered below as perturbations
around the background [49,50], namely, we neglect the
backreaction of bulk matter fields on the background ge-
ometry. We will use the conformally flat metric

ds* = ezA(Z)(nM,,dx“dx" + dz?). (18)

Comparing it with the metric (2), we find the two co-
ordinate systems are connected by dz = e*?~Y4dy. For
the conformally flat space-time, the extra dimension z will
be infinite for 0 < b = 1 and finite (with |z| = 7, =

%) for b > 1. From the following calculations, we
can see that the mass-independent potentials can be ob-
tained conveniently with the conformally flat metric (18),
and we will mainly investigate the effect of the parameter b
on the zero modes and the spectra for various bulk matter

fields.

A. Spin-1 vector fields

First, we investigate the localization of the spin-1 vector
fields in five-dimensional space. The action of vector fields
coupled with the dilaton is

1
Sy = 4 [dsx\/—ge”gMRgNSFMNFRS’ (19)

where the field strength tensor is given by Fyy =
dyAy — dyAy and 7 is the coupling constant between
the dilaton and the vector field. The equations of motion
can be obtained using the background geometry (18):
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1
e’ = ay(\/__g’gypg’w\FpA) + grhe A9, TME,))
=0, (20)
e™d,(V—88""F,s) = 0. 2D

Then with the gauge choice A, = 0 and the decomposition
of the vector field A , (x, z) = Z,,aif)(x)p,,(z)e*(”‘/ﬁfm/z,
we find that the KK modes of the vector field satisfy the
following Schrodinger-like equation:

[—02 + Vi(2)]p,(2) = mip,(2), (22)

with m, the masses of the four-dimensional vectors, and
the effective potential is

2
Vi(z) = @(@A)Z + %\/% %A, (23)

Furthermore, providing the orthonormality condition

f i dzpu(2)pn(2) = Oy, 24)
b
we can get the four-dimensional effective action
S e G R !
n
—%mﬁgﬂ”aﬁf)ai’”), (25)

where f% =9 ”as,”) - 8,,a§f) is the four-dimensional field
strength tensor.
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We rewrite the potential (23) as the function of y:

_ 1+ \/%T
Viy) = e b>A[72 92A

N (1 + 3b7)? + 2(1 + 3b7)(1 — b)
4

(a},A)Z].
(26)

So, with the relation dz = e*~"4dy, we can get the values
of Vi(z) at z = 0 and |z| — z:

V,00) = — éa%z(l +\3b7), 27)
4 2 —
Villel = 2,) = 28 (1 +~/3b7)(3 — 2b + \/%T)‘ 28)

8I[-2e(h— 1)z + 1P

In order to get a zero mode, we have to insure that the value
of V,(z) at z = 0 is negative, so the condition turns out
to be

7> —1//3b.

From this we can see that if 7 = 0, namely, there is no
coupling between the vector and the dilaton field, there
could also exist a zero mode. Then with the condition (29),
the potential V,(z) is volcanolike and PT-like ones for 0 <
b <1and b = 1, respectively. For b > 1, the potential will
be divergent at the boundary of the extra dimension with
TF %, but vanish with 7 = %. We plot the shapes of

(29)

the potential in Fig. 2.
Under the condition (29), the zero mode for the vector
field can be obtained by setting m, = O:

po & e((1+3357)/2)A() (30)

In order to check whether the zero mode for the vector field
can be localized on the brane, we can investigate whether it
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FIG. 2 (color online).

4 2 0 2 4

The shapes of the potentials of the vector field V,(z) for different parameter b, and a = 1, v = 1, 7 = 0.
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satisfies the orthonormality condition
S dzpw(D)pa(2) = 8, (or [ de 4 p,(3)p,(F) =
8,nm). With relation dz = e®~D4dy, we get

[p%dZ = '[p%e(b_l)Ady—» [e—(sza/‘))(b—%—\/ﬁT)ydy

for y — oo, 31

which is in accord with that in Ref. [24].

So if there is no coupling between the dilaton and the
vector fields, the orthonormality condition for the zero
mode becomes

[ymux d)_/e_Apg(y) o /)’max d.)_; < OO, (32)

- -5
) max .)mux

which is the same as that in Ref. [29]. However, it is clear
that the zero mode for the vector field can be localized on
the brane, because the extra dimension y is finite. The
shapes of the zero mode for the vector fields are shown
in Fig. 3.

While for the case that there is a coupling, it can
be obtained from the relation (31) that the condition for
the localization of the zero mode for the vector field is
7= —b/3for0<b=1o0r7>—1//3bforb>1.

The zero mode can be localized on the brane for differ-
ent b, so there will no unstable KK modes. For b < 1 there
is no massive bound KK mode, but some resonance may
exist. There will be a finite number of the massive bound
KK modes for b = 1, but infinite modes for b > 1.

B. The Kalb-Ramond fields

In this subsection, we investigate the KR fields. The
action of a KR field coupled with the dilaton is

Sw = = [ /TR Hu I (33)

where Hyyy, = 9y Byy is the field strength for the KR
field, HMNL = gMONPoLOH 1 and ¢ is the coupling
constant. The equations of motion derived from this action
and the conformal metric (18) read

ef™a, (V=gH"*P) + 04(/—gef"TH**F) =0, (34

1.0F
09+t

0.7¢
0.6F
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po(2)(b=2)

\ Z
2 ) 0 2 4

The shape of the zero mode for vector field py(z) witha =1, v =1, 7 = 0.

ef™a, (y—gH"**) = 0. (35)
If we choose the gauge B,; =0 and make a de-
field  B{f(x" z) =
an;gff (x")U(n)(z)e(_7_‘/§5)A/ 2, we will get the following
Schrédinger equation for the KK mode U, (z):

composition of the KR

(=02 + Vir(2)U,(2) = m2U,(2), (36)

where the effective potential V(z) takes the following form:

1 — +/3b{)? 36 — 1

Vkr = (L =360y V3DEZ 1, 37)
4 2

Provided the orthonormality condition

J2., dzU,(2)U,(z) = 8,,, the action of the KR field
(33) is reduced to

Skr = _Z[d4x\/__£’<§“’“§a’agﬂrﬂhiff)a'ﬂ'hmﬁ

1 ! /P ~
+imigeagh Bbf;’,g,bgyg) (38)
with ﬁm g = a[ﬂéa ] the four-dimensional field strength
tensor.

The expression of the effective potential for the KR field
Vkr can be written as the function of y:

Vkr = eZ(l—b)A[% a%A
L (L= V3bgP + 221 —V3bO)(1 ~ b) (ayA)z]‘
(39)

So with the braneworld solution (10), the values of the
potential Vir(z) at z = 0 and at the boundaries are

Vir(0) = — éazuz(\/@g —1) (40)

and
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a®v*(\3b¢ — 1)(\3b{ + 1 — 2b)
8I(—e(h— 1)z + 1

VKR(|Z| - Zb) =
41)

In order to get a negative value of the potential Vg (z) at
z = 0, the parameter ¢ should satisfy

¢ > 1//3b, (42)
which is necessary for the localization of the zero mode.
Therefore, it is clear that the zero mode of free KR fields
(£ = 0) cannot be localized on the brane, and the coupling
with the dilaton field 7 is necessary for the purpose of
localizing the KR field zero mode. From Eq. (41) it can
be seen that, under the condition (42), the potential is
a volcanolike one and a PT-like one for 0 < b <1 and
b = 1, respectively, while for b > 1, the potential is diver-

gent at the boundary 7 = z,,,, with £ # 221 but vanishes

N
with { = %. We plot the shapes of the potential for KR

field KK modes in the conformally flat space-time in Fig. 4.

Vkr(2)(b=0.5,=0)

Vkr(2)(b=1,{=0)

PHYSICAL REVIEW D 84, 044036 (2011)

So with the condition (42), we can obtain a zero mode
for the KR field by setting m = 0:

Uy o e(V3b{—1/2)A). (43)

We should also check whether the zero mode for the KR
fields can be localized on the brane through the orthonor-
mality condition [¥_ dzU3(z) < co. With the relation

dz = e® " VAdy, we get

[ U2dz = f U2elb—DAdy — f e Cav? OIFE=2+b)y gy

for y — oo.

(44)

Thus, only when the coupling constant ¢ satisfies ¢ >
1/:/3b for b =1 or §>275% for 0 < b < 1, the integral
ES Ujdz is finite, i.e., the zero mode for the KR field can

be localized on the brane. The shape of the zero mode for
KR field is plotted in Fig. 5.

The spectrum structure of KR KK modes under the
condition (42) is similar to the case of vector fields.
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FIG. 4 (color online). The shapes of the potentials of the

KR field Vgg(z). The parameters are set to a = 1, v = 1.
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FIG. 5 (color online).

The shape of the zero mode for KR field Uy(z) witha =1, v =1, { = 2.
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C. The spin-1/2 fermion fields

In the last subsection, we investigate the spin-1/2 fer-
mion fields. Consider a massless spin 1/2 fermion coupled
with gravity and the background scalars ¢ and 7 in five-
dimensional space, the Dirac action is

&ﬂszth@W%W+me—n@H¢wW)
(45)

with 7 the coupling constant and F(¢, 77) the type of
the coupling. As in Ref. [51,52], we have T'M =
(e™y*, ey, w, =1(9,A)y, s, ws =0, where y*
and y° are the usual flat gamma matrices in the four-
dimensional Dirac representation. Then, the five-
dimensional Dirac equation is read as

{y#(0, + &,) + ¥ (0, +23.A) — ne* F(¢, m)}¥ = 0,
(46)
where y#(d, + @,) is the four-dimensional Dirac opera-

tor. Using the general chiral decomposition W(x, z) =
e_ZAZn(lan(x)an(Z) + (pRn(x)fRn(Z))a we can get that

fra(z) and fg,(z) satisfy the following coupled equations:
[az + neAF(¢» W)]an(Z) = mnfRn(Z)’
[az - ’)’]GAF(Q’), W)]fRn(Z) = _mnan(Z)’
where ;, r,(x) satisfy the four-dimensional massive
Dirac equations y*(d, + @,)¢,(x) = m,g,(x) and
Y9, + @) ¥g,(x) = m,,(x). From the above
coupled equations, we can get the following Schrodinger-

like equations for the KK modes of the left- and right-
chiral fermions:

(—83 + V(@) fn = m%an,
(_33 + VR(Z))fRn = m%tfRn’

where the effective potentials take the following forms:

VL(Z) = (neAF(d)’ 7T))2 - naz(eAF(¢’ 7T));
Vr(2) = V(@)

(47a)
(47Db)

(48a)
(48b)

(49a)
(49b)

Moreover, provided the following orthonormality condi-
tions for f;, and fg,,

fjb frm@frn(2)dz = 8, (50)
_Zb me(Z)fRn(Z)dZ = 5mn} (51)
[ finofutaz =0 (52)

we can obtain the standard four-dimensional action for
massive chiral fermions:

PHYSICAL REVIEW D 84, 044036 (2011)

Sl/2 = Z fd4x\/_—_§17/n(x)['y“(8# + (b#) - mn]l/jn(x)
(53)

From (49a) and (49b), it can be seen that there must
exist some kind of scalar-fermion coupling in order to
localize the left- and right-chiral fermions. If we demand
that V; z(z) are invariant under the reflection symmetry
z— —z, F(¢(z), m(z)) should be an odd function of the
extra dimension y. Thus, we get F(¢(0), 7(0)) = 0 and
Vi (0) = —V¢(0) = —1d,(F(¢(0), 7(0))), which results
in that at most only one of the massless left- and right-
chiral fermions could be localized on the brane. However,
the masses of the massive KK modes of both chiral fermi-
ons are the same. In the following discussion, we only give
the mass spectra for the left-chiral fermions.

In order to investigate the potentials of both chiral
fermions, we use the relation 9, = e17?49, to rewrite
the potentials V; p as the functions of y:

Vi(y) = ne* [nF(¢, m)* — e "4(3, F (¢, 7)?
+ F(, md,A)) (54)

VR()’) = VL(y)lnﬁf’r]' (55)

Here, we consider the case that the scalar-fermion
coupling F(¢, m) takes the form e?*"¢ with A the
dilaton-fermion coupling constant, then we can get the
values of V; r(z) at z = 0 and z — z;, with the coordinate
transformation dz = e’"Y4dy and the expressions (54)
and (55):

V. (0) = —avn, (56)
Vg(0) = avy, (57)
202 2(1++/361)/b—1
Vi(z— *z,)— vznz[— v9 a(b —1)z+ 1]
4 3
+ “; D(1+3b2A)
2 —((1+~3bA)/b—1)—1
x[—zv a(b—l)z-i—l] ,
9
(58)
Vr(z = *z,) = V(2= *z)| =y (59)

We can see that for 1 + \/-3—1;)L = 0, the values of the
potentials at the boundaries will tend to be constant. For
1+ +/3bA >0, the values of V, z(lz] — z,) will always
vanish for different b, while for 1 + \/%/\ <0, it will
always divergent. Thus there are three cases in total, which
are decided by the relation between A and b.
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1. Case 1: 1 + /3bA =0

For the case 1 + +/3bA = 0,i.e., A = —1/~/3b, it can be
seen that both V,(z — *z,) and Vgx(z — *z,) trend to a
constant v> 72, which means the potentials are PT-like ones
for left-chiral fermion with 7 >0 and for right-chiral
fermion with 1 > a/v. So, there exists a zero mode for
left-chiral fermions for any positive value of 7, and there
will be a mass gap between the bound KK modes and
continuous modes for both chiral fermions. The shapes of
the potentials for a set of parameters are shown in Fig. 6.

From (47a), we can solve the zero mode for the left-
chiral fermions:

Fro@) = exp(—n [0 $dzeAOF((2), 77(2))). (60)

In order to check whether the zero mode can be localized
on the brane, we should check whether the integral

ff%o(z)dz x [exp(—zn [OZ dZeA(Z)F(d>(Z), W(i)))dz

0
(61)
is finite. With the relation A = —1/ \/E, we have

j.f%o(z)dz—’ fe’Z’Wdy, for b =1, (62)

V,(2)(b=0.5)

-20 -10 0 10 20

FIG. 6 (color online).

Vi (2)(b=2)
al
2 L
0 z
_2 L
41, ) ) ]
-4 2 0 2 4

FIG. 7 (color online).
n =3.
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[f%o(z)dz_, fe—z(n/k(b—1))ek(b—l)>.ek(b_l)ydy’
fOI' b 7& 1, (63)

with k = —2v%a/9, which are both finite for different b.
So, the orthonormality conditions (50) are always satisfied,
namely, the zero mode for the left-chiral fermion can be
localized on the brane with the dilaton-fermion coupling
constant A = —1//3b.

Because the potentials are PT-like ones, there exists a
mass gap for both chiral fermions with large n > 0.

2 Case 2: 1 + \3bA>0

For the case 1 + +/3bA >0, i.e., A > —1/+/3b, which
includes A = 0, it can be seen that both V, (z — *z,) and
Vr(z — *z,,) vanish, which means the potentials are vol-
canolike ones for left- and right-chiral fermions with large
7. So there is only a zero mode for left-chiral fermions for
n >0, and there does not exist a mass gap, but some
resonances may appear for proper values of the parameters.
The shapes of the potentials for both chiral fermions are
shown in Fig. 7.

Here we also need to check whether the zero mode (60)
satisfies the conditions (50), i.e., whether the zero mode
can be localized on the brane. From (61), we get that

ff%o(z)dzﬁ fe*(Zn/k(H/\\/S_b))e"(b“m)-"ek(b*l)ydy_ (64)

Vr(@)(b=0.5)

=20 -10 0 10 20

The shapes of potentials V;(z) and Vg(z) witha =1, v=1,b=0.5,n = 2.

Vr(2)(b=2)
4t
3t
2t
1k
0 z
4 2 o0 2 4

The shapes of potentials V;(z) and Vi(z). The parameters are set to a =1, v=1, b =0.5, A =1,
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FIG. 8 (color online).

So we find that, for A > —1/\/5 with b>1 or
—1//3b < A < —/b/3 with 0<b <1, the integral is
finite, and the zero mode of the left-chiral fermion can be
localized on the brane. But for b =1, the integral is
infinite.

3. Case 3: 1 + 3bA <0

For the last case 1 + +/3bA <0, i.e.,, A < —1//3b, the
potentials V; z(z) are divergent at z — *z,,. So there will
be only bound KK modes for both chiral fermions, but
there is only the zero mode for the left-chiral fermion for
positive value of 7. We plot the shapes of the potentials for
both chiral fermions in this case in Fig. 8.

From the relation (64), we find that the integral
TS f2,dz is always finite in this case, so the zero mode
of the left-chiral fermion (60) can be localized on the
brane.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, by presenting the shapes of the mass-
independent potentials of KK modes in the corresponding
Schrédinger equations, we investigated the localization
and mass spectrum of various bulk matter fields in a brane-
world. The braneworld is generated by two interacting
scalar fields, i.e., the kink ¢ and the dilaton 7. There is a
unique parameter b in the solution, which leads to different
distributions of the energy density of the system, and will
affect the localization of various bulk matter fields.

For spin-1 vector fields coupled with the dilaton via
e FynFMY, when 7> —1/+/3b, the effective potential
is a volcanolike potential for 0 < b <1 and a PT-like one
for b= 1. It will diverge at the boundaries of the

extra dimension for b > 1 but 7 # %, and vanish for

T # % . There is always a localized vector zero mode for

7> —b/3with0<b =1, 0or 7> —1//3b with b > 1.
So, when 7 = 0, i.e., the case without coupling with the
dilaton, the vector zero mode can also be localized on the
brane for any b > 0.

For KR fields coupled with the dilaton 7, using the
conformal metric and the KK decompositions, we also

The shapes of potentials V;(z) and Vz(z). The parameters are settoa = 1, v =1, b =

PHYSICAL REVIEW D 84, 044036 (2011)
Vr(2)(b=2)

50
40}
30}
20
10}

O " n n "
-4 22 0 2 4

I,A=—-1,n=23.

obtained the Schrodinger equations for the KR KK modes.
When the coupling constant ¢ satisfies ¢ > 1/+/3b with
b=1,or{> 27}1% with 0 < b < 1, there will be a localized

zero mode. With £ > 1/+/3b, there are also three types of
potentials for different b, which is similar to the vector
fields.

While for spin-1/2 fermion fields, in order to localize
the left-chiral and right-chiral fermions on the brane, some
kind of coupling between the fermions and the background
scalars should be introduced. In the paper, we considered
the coupling type nWer” W with positive Yukawa cou-
pling constant 7. We found that the relation between the
constant A and b is crucial. With different relations, there
will be three types of potentials.

If A = —1//3b, the potentials for left- and right-chiral
fermions with larger n are PT-like ones. So there is a zero
mode for left-chiral fermion and the zero mode can be
localized on the brane for different . The number of the
massive bound KK modes for both chiral fermions is finite
for b > 0.

ForA > —1/ \/@, the potentials for both chiral fermions
become volcanolike potentials. Therefore, there is no mas-
sive bound KK mode for this case. The zero mode for the
left-chiral fermion can be localized on the brane for b > 1
and A > —1/~/3b, or b <1 and —1//3b < A < —/b/3.
However, for b = 1, the zero mode for the left-chiral
fermion cannot be localized on the brane.

The potentials for left- and right-chiral fermions have
infinite potential wells when A < —1/ \/%, so there will be
only bound KK modes for any b > 0. The zero mode for
the left-chiral fermion can be localized on the brane.
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