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We reproduce the two-body gravitational conservative dynamics at third post-Newtonian order for

spinless sources by using the effective field theory methods for the gravitationally bound two-body

system, proposed by Goldberger and Rothstein. This result has been obtained by automatizing the

computation of Feynman amplitudes within a MATHEMATICA algorithm, paving the way for higher-order

computations not yet performed by traditional methods.
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I. INTRODUCTION

The problem of finding the equations of motion of a two-
body system subject to gravitational interaction has been
intensively studied since the advent of general relativity.
Because no exact solution is known, different frameworks
and approximations have been developed out in the past:
the present work lies within the post-Newtonian (PN)
approximation of general relativity, see e.g. [1,2] for re-
views and the current situation of this approach.

In particular the computation of the effective two-body
dynamics within the PN approximation has been the sub-
ject of intensive research in the last three decades, both in
the conservative and in the dissipative sector. At present the
Arnowitt-Deser-Misner Hamiltonian ruling the conserva-
tive dynamics of a gravitationally bound, spinless binary
system, has been computed up to third PN order in [3],
whose calculations have been later finalized and confirmed
by [4–6] in harmonic coordinates, and also by [7], where a
different resolution of the source singularity has been
adopted.

From the 2.5PN order onwards, the dynamics of binary
systems is modified by dissipative effects [8], associated
with gravitational radiation. At present the energy flux
emitted by a spinless binary system on quasicircular orbits
has been computed up to 3.5PN order with respect to the
leading order contribution [9].

The main result of this paper is the recomputation of the
two-body effective action for the conservative dynamics at
3PN order for spinless objects via an automatized algo-
rithm, making use of a different method than those imple-
mented so far to obtain such a result: we performed the
computation within the framework of the effective field
theory methods (EFT) for nonrelativistic particles intro-
duced in [10]. This method has already been applied with

success on the conservative sector of the theory to deter-
mine the two-body 1PN [10] and 2PN [11] Hamiltonian
(see also [12] for some investigations beyond 2PN), as well
as to the study of the n-body 2PN [13] Hamiltonian (for
3-body systems, first obtained in [14]). On the radiative
side, [15] showed an application of EFT methods to the
calculation of some terms of the gravitational wave energy
flux for spinless systems up to 3PN order, and in [16] it is
shown how present gravitational wave observations can set
bounds on the fundamental parameters of the theory. The
EFT approach has lead not only to rederivation of old and
established results, but also contributed to the computation
of new spin effects in the 3PN conservative [17] (also
obtained in [18] with more traditional methods) and non-
conservative dynamics [19] (first obtained in [20]).
An EFT method possesses several features making it

suitable for computing physical quantities in problems
involving well-separated scales. This is the case for grav-
itationally bound two-body systems, where the different
scales can be identified in the size of the compact
objects rs, the orbital separation r and the gravitational
wavelength � with hierarchy rs < r� rs=v

2 < �� r=v,
being v the relative velocity between the two bodies
(we posit the speed of light c ¼ 1). We neglect here
radiation effects and consider pointlike sources, comforted
by the effacement principle [21], which guarantees that
finite size-effects come into play from 5PN order, for
spinless objects. The power-counting scheme outlined
in [10] enables to clearly separate scales and to frame
divergences arising from zero-size sources within a well
under control field theory setting. Moreover EFT methods
make systematic use of Feynman diagrams and exhibits
manifest power-counting rules, enabling to implement PN
computations within an algorithm automatizing the intri-
cate computations involving hundreds of Feynman dia-
grams. Such an algorithm is completely general and it
can be generalized to the calculation of higher-order
dynamics.
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A key simplification enabled by EFT methods with
respect to the standard ones is the use of perturbative
techniques to integrate out the degrees of freedom respon-
sible of mediating the conservative gravitational interac-
tion (the so-called potential gravitons in the language of
[10]) to directly obtain the 2-body action, without the need
to solve for the metric.

This field of studies is nowadays of great phenomeno-
logical impact as the large interferometers LIGO and Virgo
have been operating until recently (fall 2010) at unprece-
dented sensitivity and a further increase in sensitivity is
scheduled for their advanced runs, due to start in the year
2014, see e.g. [22] for a recent publication of coalescing
binary signal search. As reported in [23], reasonable as-
trophysical estimates make plausible the detection of
gravitational wave signals from coalescing binaries by
the advanced interferometers.

In the search for signals from coalescing binaries the
detector output is processed via standard match-filtering
methods [24], where the experimental data are confronted
against banks of template waveforms. The result is par-
ticularly sensitive to the time varying phase of the oscillat-
ing gravitational wave signal [25]. In order to compute
such a phase with O(1) accuracy it is necessary to take into
account PN corrections to both the energy and the emitted
energy flux up to 3PN order at least.

The frequency region accessible to the advanced ver-
sions of LIGO/Virgo (roughly from 10 Hz to 10 kHz)
corresponds to the last stages (whose duration is at most
few tens of minutes) of the coalescence of astrophysical
objects like black holes and neutron stars and by then the
orbit will have circularized, as eccentricity decay faster
than orbital separation [26], enabling the energy and flux
functions to depend on the single parameter v.

The inspiral phase of the coalescence is bound to end
when the two constituents of the binary systemmerge into a
single object and the perturbative PN analysis cannot be
followed beyond the merger. Here however numerical tech-
niques have been proven useful, see e.g. [27] for reviews, to
construct complete analytical waveforms from inspiral to
merger and the subsequent ring down, as it is conventionally
named the last phase in which the final object produced by
the merger undergoes damped oscillation before settling
down to quietness. The ring-down phase also admits an
analytical perturbative description [28].

The present work represents a decisive step towards the
computation of the Hamiltonian dynamics at fourth PN
order, which is a key ingredient in the construction of
template waveforms to be used in actual experimental
searches, like the effective one body waveforms [29] which
have been used in the recent experimental search published
in [30].

The paper is organized as follows. In Sec. II we give an
overview of the effective field theory methods for gravity,
which are applied in Sec. III to the determination of the

2-body effective action at order 3PN. We summarize and
conclude in Sec. IV.

II. MAIN

A. Lagrangian and Feynman rules

The relevant physical scales for the 2-body problem in
gravity are the totalmassM, the separation r and the relative
velocity v. By nPN correction it is conventionally meant
corrections of order v2n � ðGNM=rÞn, where GN is the
standard Newton constant and the virial relation has been
applied, showing that an expansion in v2 is at the same time
an expansion in the strength of the gravitational field.
At 3PN order, the EFT description of massive compact

objects in binary systems takes them as nondynamical,
background pointlike sources: quantitatively this corre-
sponds to particle worldlines interacting with gravitons.
The action S we consider is then given by

S ¼ SEH þ SGF þ Spp; (1)

where the first and the third terms are, respectively, the
d-dimensional Einstein-Hilbert action and the worldline
point particle action

SEH ¼ 2�2
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
RðgÞ;

Spp ¼ � X
i¼1;2

mi

Z
d�i ¼ � X

i¼1;2

mi

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��ðx�i Þdx�i dx�i

q
;

(2)

with ��2 � 32�G, being G the d-dimensional gravita-
tional constant [31]: as dimensional regularization will be
needed, it is necessary to keep d generic until the actual
value of Feynman integrals will have been computed. The
goal is to compute the effective action Seff for particles
alone, with gravitons mediating interactions being inte-
grated out by standard perturbative methods, i.e. by the
aid of Feynman diagrams. For the gauge fixing term, we
follow [11]:

SGF ¼ ��2
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
���

� (3)

with �� � �
�
��g

��, corresponding to the same harmonic

gauge adopted in [1]. Still following [11], we adopt the
standard Kaluza-Klein (KK) parametrization of the metric
(first applied to this framework in [32]), suitable for a
nonrelativistic expansion around a Minkowski metric:

g�� ¼ e2�=�
�1 Aj=�

Ai=� e�cd�=�	ij � AiAj=�
2

 !
; (4)

with 	ij ¼ 
ij þ �ij=�, cd ¼ 2 ðd�1Þ
ðd�2Þ and i, j running over

the d spatial dimensions.
In terms of the metric parametrization (4), each world-

line coupling to the gravitational degrees of freedom�, Ai,
�ij reads
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Spp ¼ �m
Z

d� ¼ �m
Z

dte�=�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� Ai

�
vi

�
2 � e�cd�=�

�
v2 þ �ij

�
vivj

�s
; (5)

and its Taylor expansion provides the various particle-gravity vertices of the EFT.
Also the pure gravity sector Sbulk ¼ SEH þ SGF can be explicitly written in terms of the KK variables, SEH in KK

variable has been first derived in [33]. We report here only a part of Sbulk, including all the terms that are needed for the 3PN
calculation:

Sbulk � �2
Z

ddþ1x
ffiffiffiffiffiffiffiffi�	

p �
1

4
½ðr�Þ2 � 2ðr�ijÞ2 � ð _�2 � 2ð _�ijÞ2Þe�cd�=�� � cd½ðr�Þ2 � _�2e�ðcd�=�Þ�

þ
�F2

ij

2
þ ðr �AÞ2 � _A2e�ðcd�=�Þ�ecd�=� þ 2cdð _�r �A� _A � r�Þ

þ 1

�
ð2½FijA

i _Aj þA � _Aðr �AÞ�ecd�=� � cd _�½2A � r�þ _�A2�Þ
�
; (6)

where Fij � Aj;i � Ai;j and indices are raised and con-
tracted by means the d-dimensional metric tensor 	
(although in most terms one can just use 
ij because the
neglected parts are not needed at 3PN) [34]. All spatial
derivatives are meant to be simple (not covariant) [35] and,
when ambiguities might raise, gradients are always meant
to act on contravariant fields (so that, for instance,r �A �
	ijAi;j and F2

ij � 	ik	jlFijFkl).
All the Feynman rules needed for our calculation can be

read off Eq. (6). In particular: the first line gives the � and
� propagators, as well as all the�n�m interaction vertices;
the second line gives the A propagator and, together with
the third, contains enough information to compute all the
other vertices needed for the 3PN calculation.

Borrowing the definitions from [10], the two bodies
exchange potential gravitons, responsible for binding the
system as they mediate instantaneous interactions: their
characteristic four-momentum k� scales thus as k� �
ðk0 � v=r;k� r�1Þ and we neglect altogether the emis-
sion of gravitational waves because we are interested in the
conservative part of the binary system dynamics. When a
compact object emits a single graviton, momentum is

actually not conserved and the nonrelativistic particle re-
coils of a fractional amount roughly given by j
pj=jpj ’
jkj=jpj ’ ℏ=J, where J �mvr is the angular momentum
of the system: however, for macroscopic systems such a
quantity is negligibly small.
In order to allow manifest scaling it is necessary to work

with the space-Fourier transformed fields

�kðtÞ �
Z

ddx�ðt;xÞe�ikx;

Ai;kðtÞ �
Z

ddxAiðt;xÞe�ikx;

�ij;kðtÞ �
Z

ddx�ijðt;xÞe�ikx:

(7)

The fields defined above are the fundamental variables in
terms of which the Feynman graphs are going to be con-
structed; the action governing their dynamics can be found
from Eqs. (5) and (6) by direct substitution and replace-
ment of spatial derivatives by the appropriate ik factors.
From the quadratic part of the Lagrangian the propaga-

tors can be written as

P½�kðtaÞ�k0 ðtbÞ� ¼ � 1
2cd

P½Ai;kðtaÞAj;k0 ðtbÞ� ¼ 1
2
ij

P½�ij;kðtaÞ�kl;k0 ðtbÞ� ¼ 1
2Pij;kl

9>=
>;� ð2�Þd
dðkþ k0ÞP ðk2; ta; tbÞ
ðta � tbÞ; (8)

where Pij;kl � �½
ik
jl þ 
il
jk þ ð2� cdÞ
ij
kl� and

P ðk2; ta; tbÞ ¼ i

k2 � @ta@tb

’ i

k2

�
1þ @ta@tb

k2
þ @2ta@

2
tb

k4
þ . . .

�
(9)

is the full relativistic propagator, which can be thought as
an instantaneous nonrelativistic part plus insertion terms
involving time derivatives. Only few of these time deriva-
tive terms need to be included in a Feynman diagram at a
given PN order.

B. Feynman diagrams

We have exposed all the ingredients needed to obtain the
2-body effective action Seff with manifest power counting
in G and v at the third post-Newtonian order. This can be
done by integrating out the graviton fields from the full
action derived above

Seff ¼
Z

D�D�ijDAk exp½iðSEH þ SGF þ SppÞ�: (10)

We can now proceed to lay down all the Feynman diagrams
relevant for our computation, then by applying the
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Feynman rules derived from the above interactions the
amplitudes will be computed, collecting all results belong-
ing to the same PN order.

1. Topologies

Following the procedure and the terminology of [11], we
first select the topologies having the appropriate power of
G for being potentially relevant from a given PN order on,

that is Gðnþ1Þ for nth-PN order. The attribution of a power
of G to a topology is made according to the following rule:
each vertex involving n gravitational fields gives a factor

Gn=2�1 if it is a bulk one, and a factor Gn=2 if it is attached
to an external particle.

Concretely, there is just one topology contributing at the
Newtonian orderG: the one representing the single graviton
exchange. At OðG2Þ order two other topologies (modulo
switch of the external particles) enter the game but actually

just one of these contributes at 1PN since the other involves
an extra v2 factor, which is equivalent to increasing by one
unity the PN order. As underlined in [11], this is a very
welcome effect of using the KK parametrization, also with
respect to the Arnowitt-Deser-Misner one, see [36].
At 2PN order, 5 new G3 topologies have to be added,

while 4 additional ones come into play only from 3PN on
because of v2 suppressions. All these 12 topologies con-
tributing to G3 order have been already displayed in [11],
and they are also reported here in Fig. 1.
To complete the 3PN order the introduction of G4 top-

ologies is required. The generation of the new topologies at
any given order n is done iteratively from the ones at the
previous order n� 1: to any Gn�1 topology a new propa-
gator is attached in all possible ways, provided that one
extremum ends on an external particle, and the second
extremum is placed in one of the following three locations:
(i) an internal vertex, (ii) a vertex attached to the other

Out[108]= , , , , , ,

, , , , ,

FIG. 1. The 12 topologies up to G3 as they are produced by a Mathematica code. The last 4 start contributing at 3PN order. Here and
in the following figures, we count them form left to right, from top to bottom.

Out[350]= , , , , , ,

, , , , , ,
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, , , ,

FIG. 2. The 32 G4 topologies. Only the first 8 contribute at 3PN order, and they are all factorizable into simpler subtopologies.
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external particle, (iii) a propagator, so to ‘‘break’’ it into
two propagators ending into the same newly-born 3-legged
internal vertex; barring in all cases the possibility that
internal graviton loops are created, as they would give
rise to uninteresting quantum corrections (i.e. proportional
to ℏ=J � 1). In this way one actually obtains a redundant
set of Gn topologies because many of them are equivalent,
i.e. they are skeletons of the same Feynman graphs, then
the algorithm to eliminate equivalent graphs can be
straightforwardly implemented on a computer program.

We have indeed implemented the whole procedure into a
MATHEMATICA code [37] and 32 G4 topologies have been

found, only 8 of which turned out to be relevant at the 3PN
level of accuracy, as the remaining 24 contribute at higher
PN orders because of v2 suppressions. Moreover, as Fig. 2
shows, none of the 8 3PN-relevant topologies is really new,
since they are actually factorizable in lower order subto-
pologies. We have also worked out, for the sake of future
developments, the situation at 4PN and summarized the
number of topologies in the top part of Table I.

That makes a total of 20 topologies that must be taken
into account for the 3PN calculation, and only 2 of them
(the two G3 ones involving 4-legged vertices, the last two
ones of Fig. 1) are genuinely new ones, i.e. nonfactorizable
into subtopologies.

2. Graphs

The next step is to generate Feynman graphs from all
topologies by replacing all the not-yet-specified propaga-
tors by the proper �, A or � ones. This is the point where
powers of v (traced by time derivatives in the Lagrangian)
enter the game, both in external and bulk vertices and in the
relativistic propagators. The lowest power of v2 appearing
in a graph, together with its G order, determines the lowest
PN order at which such a graph must be taken into account.
As different vertices carry different time derivative struc-
tures, see for instance Eq. (6), topologies of the same G
order, or even the same topology, can generate Feynman
graphs whose lowest PN orders differ. In particular some
topologies allow only graphs containing v2 corrections at
least, thus entering the game at higher PN order than one
would have inferred by a naive G power counting; this is
the origin of the above mentioned simplification intro-
duced by the use of KK variables, which reduces the
number of topologies (and thus of graphs) to be taken
into account at any given PN order. This welcome feature
becomes more and more important at higher PN orders.
The generation and classification of all the Feynman

graphs needed at a given PN level is an automatizable
procedure, as it suffices to try all possibilities (although
one can envisage shortcuts towards more efficient algo-
rithms) and find out the lowest power of v2 of each graph
using the Feynman rules implicit in the Lagrangians (5)
and (6). Our MATHEMATICA code has thus generated all the
80 diagrams giving a contribution at 3PN (as well as other
515 for the 4PN case): 63 of them are new ones, while the
other 17 have been computed at 2PN order by Gilmore and
Ross [11,38]. The bottom part of Table I shows the classi-
fication of the new diagrams according to their G and
lowest v2 powers.

III. THE RESULTS

We use a MATHEMATICA [37] code together with the EINS

[39] and FEYNCALC [40] software to generate and to com-
pute all the diagrams. Here we show the results concerning
the 3PN part only [41].

A. OðGÞ diagrams

They are shown in Fig. 3 and they can all be done by
means of the dimensionally regularized Fourier formula

TABLE I. On the top: number of topologies entering at a given
PN order. On the bottom: number of diagrams that start to
contribute to the effective action at a given G and v power.
The 63 diagrams whose contribution starts at 3PN are written in
boldface characters.

0PN 1PN 2PN 3PN 4PN

G 1

G2 1 1

G3 5 4

G4 8 21

G5 50

v0 v2 v4 v6

G 1 1 1

G2 1 8 7 7

G3 5 48 159 . . .
G4 8 299 . . .
G4 50 . . .

Out[210]=
1

2
,

1

2
,

1

2

FIG. 3 (color online). The three OðGÞ diagrams. The �, A and � propagators are represented, respectively, by blue dashed, red
dotted and green solid lines. From the left to the right, they contain v6, v4 and v2 corrections under the form of vertices expansion
and/or double time derivative insertions in the propagators. The number in the right part of each diagram is its multiplicity factor.
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Z
p

e�ipr

p2�
¼ 1

ð4�Þd=2
�ðd=2� �Þ

�ð�Þ
�
2

r

�
d�2�

(11)

(with
R
p � R ddp

ð2�Þd and r � x1 � x2), as well as its general-

ization to the case where factors of p� ’s appear in the
integrand; the corresponding formulae can be obtained by
taking the appropriate number of r gradients of Eq. (11).

The result is then multiplied by a symmetry factor
accounting for:

(i) factorials coming from the development of the ex-
ponential function contained in (10);

(ii) a factor 1=2 for diagrams symmetric under parti-
cles exchange, in order not to overcount when

performing symmetrization (i.e. þ1 $ 2) in the
very final stage of the calculation;

(iii) the number of possible Wick contractions giving
rise to the same diagram, with the convention that
equivalent legs attached to an internal vertex are
indistinguishable (because we chose to incorporate
the corresponding factors already in the internal
vertices definitions).

The results of the integration have been evaluated at d ¼ 3
and multiplied by the imaginary unit i to give the following
potential terms for the 3PN effective Lagrangian (Ga

b being

the value of the b-th Ga diagram, listed as in Figs. 3–6):

G1
1 ¼ �GNm1m2

32r

�
_a1 � _a2 þ 3n: _a1n: _a2

9
r4 þ ½a1:a2r:a2 � 2a1:a2r:a1 � a2: _a1r:v1 � a2: _a1r:v2

� 2r: _a1v1:a2 � 18v1:a1v1:a2 � 2a1:a2v
2
1 þ 9a22v

2
1 � 2a1:a2v1:v2 � v1:a2v2:a1 � 14r: _a1v2:a2

� 111v1:a1v2:a2 � 9a21v
2
2 � 7a1:a2v

2
2�r2 þ 22v6

1 þ 2ðv1:v2Þ3 � 2a1:a2ðr:v1Þ2 � a1:a2ðr:v2Þ2
þ 16v2

1ðv1:v2Þ2 � ðr:a1Þ2r:a2 � r:a2r: _a1r:v1 � r:a2r: _a1r:v2 � 2a1:a2r:v1r:v2

� 7r:a1r:v1v1:a2 � 3r:a1r:v2v1:a2 � 3ðr:a2Þ2v2
1 � 2r:a1r:a2v

2
1 þ 88r:v2v1:a1v

2
1

þ 22v4
1v1:v2 � 2r:a1r:a2v1:v2 þ 32r:v2v1:a1v1:v2 þ 16r:v2v

2
1v2:a1 þ 8r:v2v1:v2v2:a1

� 41r:a1r:v1v2:a2 � 17r:a1r:v2v2:a2 þ 3ðr:a1Þ2v2
2 þ 34v4

1v
2
2 � 7r:a1r:a2v

2
2 þ 124r:v2v1:a1v

2
2

þ 23v2
1v1:v2v

2
2 þ 20r:v2v2:a1v

2
2 þ 2r:a1r:a2ðn:v1Þ2 þ r:a1r:a2ðn:v2Þ2 þ 8ðn:v2Þ2v4

1

� 22n:v1n:v2v
4
1 � 6n:v1n:v2ðv1:v2Þ2 þ 2r:a1r:a2n:v1n:v2 � 4r:a1ðn:v2Þ2v1:v2

þ 12ðn:v2Þ2v2
1v1:v2 � 16n:v1n:v2v

2
1v1:v2 � 8ðn:v2Þ3v2:a1r=3� 4r:v1ðn:v2Þ2v2:a1

� 20r:a1ðn:v1Þ2v2
2 � 10r:a1ðn:v2Þ2v2

2 � 16r:a1n:v1n:v2v
2
2 � 20ðn:v1Þ2v2

1v
2
2

� 39n:v1n:v2v
2
1v

2
2 þ 2r:a1ðn:v2Þ4 þ 4r:a1n:v1ðn:v2Þ3 þ 20ðn:v2Þ4v2

1 þ 4n:v1ðn:v2Þ3v2
1

þ 9ðn:v1Þ2ðn:v2Þ2v1:v2 � 5ðn:v1Þ3ðn:v2Þ3
�
;

G1
2 ¼

GNm1m2

4r

�
r4

_a1: _a2
3

þ ½a1:a2r:a2 � 2a2: _a1r:v1 � 2v1:a2r: _a1 � 2a2: _a1r:v2

� 3a1:a2v1:v2 � 2v2:a1v1:a2 � 14v1:a1v1:a2 � 3v2
1a1:a2 � 5v2

2a1:a2 � 3a1:a2r:a1�r2
� 2a1:a2r:v1r:v2 � 2r:a1v1:a2r:v2 � r:a1r:a2v1:v2 � 3a1:a2ðr:v1Þ2 � 6r:a1v1:a2r:v1

� a1:a2ðr:v2Þ2 þ 12v1:a1r:v2v1:v2 þ 6v2
1v2:a1r:v2 þ 8v2:a1r:v2v1:v2 þ 10v2

2v2:a1r:v2

� 2r:a1ðn:v2Þ2v1:v2 � 2v2:a1r:v1ðn:v2Þ2 � 2rv2:a1ðn:v2Þ3 þ 2ðv1:v2Þ3

þ 6v2
1ðv1:v2Þ2 þ 6v4

1v1:v2 þ v2
1v

2
2v1:v2 � 4n:v1n:v2ðv1:v2Þ2 � 6v2

1n:v1n:v2v1:v2 þ 3ðn:v1Þ2ðn:v2Þ2v1:v2
�
;

G1
3 ¼

GNm1m2

2r
f½2a1:a2v1:v2 þ 2v2:a1v1:a2 � 4v1:a1v2:a2�r2

� 4v2:a1r:v2v1:v2 þ 4v2
2v1:a1r:v2 � ðv1:v2Þ3 � 2v2

1ðv1:v2Þ2 þ 2v4
1v

2
2

þ v2
1v

2
2v1:v2 þ n:v1n:v2ðv1:v2Þ2 � v2

1v
2
2n:v1n:v2g;

where n � r=r and the Newton’s GN constant is related to the d-dimensional gravitational constant G by the following
relation involving the arbitrary subtraction length scale L:

G ¼ GNL
d�3; (12)
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which gives trivially G ! GN in this case, but gives also a nontrivial contribution in presence of divergences, see next
section.

B. OðG2Þ diagrams

The first, second, and tenth diagram of Fig. 4 can be factorized in terms of lowest order ones, all the others need the use
of the well known formula

Z
p1

1

p2�
1 ðp� p1Þ2�

¼ 1

ð4�Þd=2
�ðd=2� �Þ�ðd=2� �Þ�ð�þ �� d=2Þ

�ð�Þ�ð�Þ�ðd� �� �Þ pd�2��2�; (13)

Out[215]= 1 , 1 , 1

2
, 1

2
, 1

2
, 1 ,

1 , 1 , 1

2
, 1 , 1 ,

1 , 1

2
, 1

2
, 1 , 1

FIG. 4 (color online). The 16 OðG2Þ diagrams. Diagrams from 2 to 9 actually start contributing at 2PN order, and must be
consequently evaluated at their next-to leading order in v2 (which involves an appropriate vertices expansion or one double time
derivative insertion in the propagators) to catch their 3PN contribution. Analogously, the first diagram enters already at 1PN order, so it
must be expanded up to v4. As in Fig. 3, the�, A and � propagators are represented, respectively, by blue dashed, red dotted and green
solid lines and the number in the right part of each diagram is its multiplicity factor.

Out[229]= 2 , 1 , 1

2
, 1

8
, 1

4
, 1

2
, 2 ,

1 , 2 , 1 , 1 , 2 , 2 , 1 ,

1 , 2 , 1 , 2 , 1

2
, 1

4
, 2 ,

1

8
, 1 , 2 , 1

2
, 2 , 1

2
, 1

2
,

1

2
, 1 , 1

6
, 1

2
, 1

2
, 1

2
, 1

2
,

1 , 1

2
, 1

4
, 1

2
, 1

2
, 1

8
,

1

4
, 1 , 1 , 1 , 1 , 1 ,

1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

FIG. 5 (color online). The 53 OðG3Þ diagrams. The first 5 enter at 2PN order, and must be consequently evaluated at their next-to
leading order in v2, which involve an appropriate vertices expansion or one double time derivative insertion in the propagators. As in
Figs. 3 and 4, the�, A and � propagators are represented, respectively, by blue dashed, red dotted and green solid lines and the number
in the right part of each diagram is its multiplicity factor.
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and of its generalization to inclusion of p
�
1 ’s factors in the integrand (up to four different indices are needed at 3PN), which

can be worked out by means of appropriate contractions with p�’s. The result is

G2
1 ¼ �G2

Nm
2
1m2

16r2
½2r2a1:a2 þ 36v2

2r:a1 þ 8v1:a2r:v1 � 8r:a2ðn:v1Þ2 � 8ðv1:v2Þ2 � 24v2
1v1:v2 þ 144v2

1v
2
2

� 32v4
1 þ 49v4

2 þ 48v2
1n:v1n:v2 � 24ðn:v1Þ2v1:v2 þ 32n:v1n:v2v1:v2 � 28v2

2ðn:v1Þ2 � 24v2
1ðn:v1Þ2

� 32ðn:v1Þ2ðn:v2Þ2 þ 32ðn:v1Þ3n:v2 � 8ðn:v1Þ4�;

G2
2 ¼

2G2
Nm

2
1m2

r2
½r2a1:a2 þ 2v1:a2r:v1 � 2ðv1:v2Þ2 � 4v2

1v1:v2 þ 3v2
2v1:v2 � 2ðn:v1Þ2v1:v2 þ 4n:v1n:v2v1:v2�;

G2
3 ¼ �G2

Nm
2
1m2

3ðd� 3Þ ½2a1:a2 þ a21� þ
G2

Nm
2
1m2

36r2

�
24r2 log

�
r

L0

�
ð2a1:a2 þ a21Þ � r2ð32a1:a2 þ 22a21Þ þ 48r:a1r:a2

� 180v2
1r:a1 � 96v2:a1r:v2 � 156v2

2r:a1 � 12ðr:a1Þ2 þ 96r:a1ðn:v2Þ2 þ 54v1:a2r:v1 þ 288v2
1r:a2

� 54r:a2ðn:v1Þ2 � 54ðv1:v2Þ2 þ 150v2
1v1:v2 � 369v2

1v
2
2 � 78v4

1 þ 576v2
1ðn:v2Þ2 � 300v2

1n:v1n:v2

þ 42ðn:v1Þ2v1:v2 þ 216n:v1n:v2v1:v2 þ 243v2
2ðn:v1Þ2 þ 222v2

1ðn:v1Þ2 � 216ðn:v1Þ2ðn:v2Þ2

� 56ðn:v1Þ3n:v2 þ 20ðn:v1Þ4
�
;

G2
4 ¼

G2
Nm

2
1m2

6r2
½r2a1:a2 þ 3r:a1r:a2 þ 12r:a1v1:v2 � 3v2:a1r:v2 � 3v2

2r:a1 þ 6r:a1ðn:v2Þ2 þ 11v1:a2r:v1

þ 25v2
1r:a2 � 2r:a2ðn:v1Þ2 � 11ðv1:v2Þ2 þ 6v2

1v1:v2 � 25v2
1v

2
2 � 3v2

2v1:v2 þ 50v2
1ðn:v2Þ2

� 24v2
1n:v1n:v2 � 12ðn:v1Þ2v1:v2 þ 26n:v1n:v2v1:v2 þ 2v2

2ðn:v1Þ2 þ 3v2
2n:v1n:v2

� 8ðn:v1Þ2ðn:v2Þ2 � 4ðn:v1Þ3n:v2�;

G2
5 ¼

G2
Nm

2
1m2

12r2
½10v2:a1r:v2 þ 2v2

2r:a1 � 4r:a1ðn:v2Þ2 þ 6ðv1:v2Þ2 þ 18v2
1v

2
2 þ 3v4

2 � 24v2
1ðn:v2Þ2

� 12n:v1n:v2v1:v2 � 3v2
2ðn:v2Þ2 þ 12ðn:v1Þ2ðn:v2Þ2�;

Out[231]= 4 , 6 , 1 , 1 ,

1 , 1 , 2 , 2

FIG. 6 (color online). The 8 OðG4Þ diagrams. As in Figs. 3–5, the �, A and � propagators are represented, respectively, by blue
dashed, red dotted and green solid lines. The number in the right part of each diagram is its multiplicity factor.
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G2
6 ¼ �G2

Nm
2
1m2

3r2
½r2ða1:a2 þ 2a21Þ þ 27v2

1r:a1 � 9v2
2r:a1 þ 14v1:a2r:v1 þ 4v2

1r:a2 � 14r:a2ðn:v1Þ2 � 14ðv1:v2Þ2

� 39v2
1v1:v2 � 22v2

1v
2
2 þ 9v4

1 þ 8v2
1ðn:v2Þ2 þ 78v2

1n:v1n:v2 þ 56n:v1n:v2v1:v2 þ 50v2
2ðn:v1Þ2

� 24v2
1ðn:v1Þ2 � 56ðn:v1Þ2ðn:v2Þ2 þ 8ðn:v1Þ4�;

G2
7 ¼

8G2
Nm

2
1m2

d� 3
a1:a2 þ 4G2

Nm
2
1m2

r2

�
r2a1:a2

�
1� 4 log

�
r

L0

��
� 2r:a1v1:v2 þ 4v2:a1r:v2 � 4v1:a2r:v1

� v2
1r:a2 þ 4ðv1:v2Þ2 þ 3v2

1v1:v2 þ v2
1v

2
2 þ v2

2v1:v2 � 2v2
1ðn:v2Þ2 þ 2v2

1n:v1n:v2

þ 2ðn:v1Þ2v1:v2 � 8n:v1n:v2v1:v2

�
;

G2
8 ¼

G2
Nm

2
1m2

9r2
½9v2

1r:a1 � 21v2
1v1:v2 � 27v2

1v
2
2 � 33v4

1 þ 42v2
1n:v1n:v2 þ 96ðn:v1Þ2v1:v2 þ 54v2

2ðn:v1Þ2

þ 24v2
1ðn:v1Þ2 � 128ðn:v1Þ3n:v2 þ 56ðn:v1Þ4�;

G2
9 ¼

4G2
Nm

2
1m2

d� 3
a21 þ

2G2
Nm

2
1m2

r2

�
4r2a21

�
1� log

�
r

L0

��
þ 8v2

1r:a1 � 6v2
1v1:v2 � 3v2

1v
2
2 þ v4

1

þ 12v2
1n:v1n:v2 � 9v2

1ðn:v1Þ2
�
;

G2
10 ¼ � 6G2

Nm
2
1m2

r2
½ðv1:v2Þ2 � v2

1v
2
2�;

G2
11 ¼ � 8G2

Nm
2
1m2

r2
v2:a1r:v2;

G2
12 ¼ � 8G2

Nm
2
1m2

r2
½v1:a2r:v1 � ðv1:v2Þ2 þ v2

1v1:v2 � 2ðn:v1Þ2v1:v2 þ 2n:v1n:v2v1:v2�;

G2
13 ¼

4G2
Nm

2
1m2

r2
½4r:a1v1:v2 þ 6v1:a2r:v1 � v2

1r:a2 � 6ðv1:v2Þ2 þ 2v2
1v1:v2 þ v2

1v
2
2 � 2v2

1ðn:v2Þ2

þ v2
1n:v1n:v2 � 4ðn:v1Þ2v1:v2 þ 12n:v1n:v2v1:v2�;

G2
14 ¼

2G2
Nm

2
1m2

r2
½v2

1v
2
2 � 2ðv1:v2Þ2 þ v2

1ðn:v2Þ2�;

G2
15 ¼ � 8G2

Nm
2
1m2

r2
v2
1r:a1;

G2
16 ¼

8G2
Nm

2
1m2

r2
½v2

1 � 2ðn:v1Þ2�v1:v2:

Divergences appear at this order from the terms G2
3, G

2
7

and G2
9, under the shape of (d� 3) simple poles, giving

rise also to logarithmic factors involving the subtraction
scale L0 � Le�	=2=

ffiffiffiffiffiffiffi
4�

p
, where 	 ¼ :577 216 . . . is the

Euler-Mascheroni constant and L is the length scale
written in Eq. (12). Following [1], in Sec. III E we will
get rid of the poles by means of a shift of the world-line
parameters; as to the logarithms involving the arbitrary
subtraction scale, they are known to remain in the
Lagrangian and also in the equation of motion for r, which
is however a gauge-dependent variable. They however
drop out in the expression of observables, like the energy
E of the system as a function of the orbital frequency !,
which are gauge-independent quantities as both E and !
can be measured asymptotically far from the binary
system.

C. OðG3Þ diagrams

Most of the diagrams of Fig. 5 can be computed via
recursive application of Eq. (13), with the exception of the
5th diagram and all the ones sharing the same H-shaped
topology. In this case one has to work on the integrand by
parts to obtain the following recursive relationship

Ið�;�;	;
;�Þ
�
Z
p1;p2

1

p2�
1 ðp�p1Þ2�p2	

2 ðp�p2Þ2
ðp1 �p2Þ2�
¼ ½	ðIð�� 1;�;	þ 1;
;�Þ� Ið�;�;	þ 1;
;�� 1ÞÞ

þ
ðIð�;�� 1;	;
þ 1; �Þ
� Ið�;�;	;
þ 1; �� 1ÞÞ�=ð2�þ	þ
� dÞ; (14)
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and its generalization to the inclusion of p
�
1;2 factors in the

integrand. The above formula (14) also holds exchanging
in the right hand side (f�;�g $ f	; 
g) or (f�; 	g $
f�; 
g) and it can be iterated to obtain an integral of the
type Eq. (13).

As in the G2 case, here also poles and logarithmic terms
are obtained, which again are non physical, see Sec. III E.
The output of our code for these diagrams is

G3
1¼

G3
Nm

2
1m

2
2

4r3
½12v2

1�3v1:v2þ7n:v1n:v2�4ðn:v1Þ2�;

G3
2¼�G3

Nm
3
1m2

4r3
½v1:v2þ3v2

1þ9v2
2�3n:v1n:v2þ2ðn:v1Þ2�;

G3
3¼

G3
Nm

3
1m2

30ðd�3Þr3 ½10v1:v2�13v2
1�30n:v1n:v2þ39ðn:v1Þ2�

þG3
Nm

3
1m2

900r3

�
90log

�
r

L0

�
ð13v2

1�10v1:v2þ30n:v1n:v2�39ðn:v1Þ2Þ

þ850v1:v2�2401v2
1�450v2

2�3450n:v1n:v2þ3243ðn:v1Þ2
�
;

G3
4¼��2G3

Nm
2
1m

2
2

128r3
½v1:v2þ2v2

1�3n:v1n:v2�6ðn:v1Þ2�;

G3
5 ¼

G3
Nm

2
1m

2
2

72r3
½9�2ðv2

1 � v1:v2 þ 3n:v1n:v2 � 3ðn:v1Þ2Þ þ 50v1:v2

� 644v2
1 � 294n:v1n:v2 þ 348ðn:v1Þ2�;

G3
6 ¼

G3
7

2
¼ �G3

11

4
¼ �G3

12

4
¼ 2G3

Nm
2
1m

2
2

r3
v1:v2;

G3
8 ¼ �G3

23

4
¼ � 3G3

29

16
¼ 3G3

46

32
¼ 2G3

Nm
3
1m2

r3
v1:v2;

G3
9 ¼

G3
34

8
¼ �G3

Nm
2
1m

2
2

r3
½v2

1 � ðn:v1Þ2�;

G3
10 ¼

3G3
28

4
¼ � 3G3

45

8
¼ 4G3

Nm
3
1m2

r3
v2
1;

G3
13 ¼

2G3
Nm

2
1m

2
2

r3
½v1:v2 � 2n:v1n:v2 þ ðn:v1Þ2�;

G3
14 ¼

8G3
Nm

2
1m

2
2

r3
v2
1;

G3
15 ¼ �3G3

16 ¼ � 6G3
Nm

2
1m

2
2

r3
½v2

1 � 2ðn:v1Þ2�;

G3
17 ¼ � 2G3

Nm
2
1m

2
2

r3
½v1:v2 þ v2

1 � 2n:v1n:v2 � 2ðn:v1Þ2�;

G3
18 ¼

2G3
Nm

2
1m

2
2

r3
½4ðn:v1Þ2 � v1:v2 � v2

1�;
G3

19 ¼ G3
20 ¼ G3

33 ¼ G3
39 ¼ 0;

G3
21 ¼ �G3

Nm
2
1m

2
2

r3
½v2

1 � 4v1:v2 þ 14n:v1n:v2 � 7ðn:v1Þ2�;

G3
22 ¼

�2G3
Nm

2
1m

2
2

8r3
½v2

1 � 4v1:v2 þ 12n:v1n:v2 � 3ðn:v1Þ2�;
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G3
24 ¼

2G3
Nm

3
1m2

r3
½v2

1 � 2ðn:v1Þ2�

G3
25 ¼

3G3
Nm

3
1m2

2r3
½v2

2 � ðn:v2Þ2�;

G3
26 ¼ � 2G3

Nm
3
1m2

r3
½v1:v2 þ v2

1 � 3n:v1n:v2 � ðn:v1Þ2�;

G3
27 ¼

G3
Nm

3
1m2

r3
½v1:v2 � n:v1n:v2�;

G3
30 ¼ �G3

Nm
3
1m2

2r3
½v2

1 � 4v1:v2 þ 12n:v1n:v2 � 5ðn:v1Þ2�;

G3
31 ¼ � 4G3

Nm
3
1m2

15ðd� 3Þr3 ½v
2
1 � 5v1:v2 þ 15n:v1n:v2 � 3ðn:v1Þ2� � 2G3

Nm
3
1m2

75r3

�
�
30 log

�
r

L0

�
ð5v1:v2 � v2

1 � 15n:v1n:v2 þ 3ðn:v1Þ2Þ � 25v1:v2 � ðv2
1Þ þ 225n:v1n:v2 � 57ðn:v1Þ2

�
;

G3
32 ¼

2G3
Nm

3
1m2

r3
½v2

1 � 3ðn:v1Þ2�
�

2

3ðd� 3Þ � 2 log

�
r

L0

�
þ 1

�
;

G3
35 ¼

8G3
Nm

2
1m

2
2

r3
½v1:v2 � n:v1n:v2�;

G3
36 ¼ �G3

Nm
2
1m

2
2

2r3
½3�2ðv2

1 � v1:v2 þ 3n:v1n:v2 � 3ðn:v1Þ2Þ þ 60v1:v2 � 60v2
1 � 148n:v1n:v2 þ 148ðn:v1Þ2�;

G3
37 ¼ �G3

Nm
2
1m

2
2

2r3
½�2ðv1:v2 � 3n:v1n:v2Þ � 32v1:v2 þ 32n:v1n:v2�;

G3
38 ¼

�2G3
Nm

2
1m

2
2

8r3
½v2

1 � 3ðn:v1Þ2�;

G3
40 ¼ � 32G3

41

3
¼ ��2G3

Nm
2
1m

2
2

4r3
½v1:v2 � 3n:v1n:v2�;

G3
42 ¼

G3
Nm

2
1m

2
2

4r3
½v1:v2 þ 2v2

1 þ n:v1n:v2 þ 2ðn:v1Þ2�;

G3
43 ¼

G3
Nm

2
1m

2
2

2r3
½�2ðv1:v2 þ v2

1 � 3n:v1n:v2 � 3ðn:v1Þ2Þ þ 4v1:v2 � 4v2
1 þ 4n:v1n:v2 � 4ðn:v1Þ2�;

G3
44 ¼

4G3
Nm

3
1m2

ðd� 3Þr3 ½v2
1 � v1:v2 þ 3n:v1n:v2 � 3ðn:v1Þ2� þ 2G3

Nm
3
1m2

r3

�
6 log

�
r

L0

�
ðv1:v2 � v2

1 � 3n:v1n:v2 þ 3ðn:v1Þ2Þ

þ 5v2
1 � 5v1:v2 þ 21n:v1n:v2 � 21ðn:v1Þ2

�
;

G3
47 ¼ � 4G3

Nm
3
1m2

3ðd� 3Þr3 ½v1:v2 þ v2
1 � 3n:v1n:v2 � 3ðn:v1Þ2� þ 2G3

Nm
3
1m2

3r3

�
6 log

�
r

L0

�
ðv2

1 þ v1:v2 � 3n:v1n:v2

� 3ðn:v1Þ2Þ � v1:v2 � v2
1 þ 9n:v1n:v2 þ 9ðn:v1Þ2

�
;

G3
48 ¼

2G3
Nm

3
1m2

5ðd� 3Þr3 ½v
2
1 � 3ðn:v1Þ2� þ 2G3

Nm
3
1m2

25r3

�
17v2

1 � 56ðn:v1Þ2 � 15 log

�
r

L0

�
ðv2

1 � 3ðn:v1Þ2Þ
�
;

G3
49 ¼ � 4G3

Nm
3
1m2

15ðd� 3Þr3 ½v1:v2 � 3n:v1n:v2� � 4G3
Nm

3
1m2

75r3
½12v1:v2 � 66n:v1n:v2 � 15 log

�
r

L0

�
ðv1:v2 � 3n:v1n:v2Þ

�
;
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G3
50 ¼ � 2G3

Nm
3
1m2

5ðd� 3Þr3 ½v1:v2 � 3n:v1n:v2� � 2G3
Nm

3
1m2

25r3

�
17v1:v2 � 56n:v1n:v2 � 15 log

�
r

L0

�
ðv1:v2 � 3n:v1n:v2Þ

�
;

G3
51 ¼ � 2G3

Nm
3
1m2

15ðd� 3Þr3 ½v
2
1 � 3ðn:v1Þ2� þ 2G3

Nm
3
1m2

75r3

�
23v2

1 þ 36ðn:v1Þ2 þ 15 log

�
r

L0

�
ðv2

1 � 3ðn:v1Þ2Þ
�
;

G3
52 ¼

2G3
Nm

3
1m2

3ðd� 3Þr3 ½v1:v2 � 3n:v1n:v2� � 2G3
Nm

3
1m2

3r3

�
v1:v2 þ 6n:v1n:v2 þ 3 log

�
r

L0

�
ðv1:v2 � 3n:v1n:v2Þ

�
;

G3
53 ¼

G3
Nm

3
1m2

10ðd� 3Þr3 ½v
2
1 � 3ðn:v1Þ2� þG3

Nm
3
1m2

300r3

�
17v2

1 � 100v1:v2 � 81ðn:v1Þ2 þ 300n:v1n:v2

� 90 log

�
r

L0

�
ðv2

1 � 3ðn:v1Þ2Þ
�
:

D. OðG4Þ diagrams

TheG4 topology set shown in Fig. 6 does not present any
new difficulty, and the integrations can be done straight-
forwardly:

G4
1 ¼ G4

2 ¼
3G4

6

2
¼ G4

7

8
¼ 3G4

8

4
¼ G4

Nm
3
1m

2
2

2r4
;

G4
3 ¼

G4
4

8
¼ G4

Nm
4
1m2

24r4
;

G4
5 ¼ 0:

E. Reproducing the 3PN Lagrangian

Adding up all the terms shown so far a Lagrangian
containing poles and logarithmic terms is obtained. The
poles can be removed by performing the shift of the world-
line parameters as given by Eq. (1.13) of [6], acting over
the source positions x1;2 according to x1 ! x0

1 ¼ x1 þ 1

with

1 � 11

3
G2m2

1

�
1

d� 3
� 2 log

�
r

L0

�
� 327

1540

�
a1; (15)

and analogously for 2 [42].
Finally, in order to get the exact form of the 3PN

Lagrangian as it is written in Eq. (174) of [1] (and origi-
nally derived in [5]), one has to act on factors like a1 � a2,
_a1 � _a2 and similar by means of the standard double-zero
technique, see e.g. [43],

a1 � a2 ¼
�
a1 þGm2

r3
r�Gm2

r3
r

�
�
�
a2 �Gm1

r3
rþGm1

r3
r

�

’ a1 �Gm1

r3
r�a2 �Gm2

r3
rþG2m1m2

r4
; (16)

which makes use of the lowest order equations of motion to
get rid of the 3PN Lagrangian terms quadratic in the
accelerations. This transformation should be iterated (as
in the case of the _a1 � _a2 term) and combined with deriva-

tions by parts until only terms linear in the accelerations
remain.
Moreover, as terms like a1 � a2 appear also in the 2PN

effective Lagrangian, the same technique must be applied
at 2PN, but employing the equation of motion up to 1PN
accuracy rather than just the Newtonian part written above;
this gives a further contribution to the 3PN Lagrangian, and
all these terms nicely fit with all the previous ones to give
Eq. (174) of [1].

IV. CONCLUSIONS

We have computed the conservative dynamics of a
gravitationally bound binary system within the framework
of the PN approximation to general relativity to third
post-Newtonian order. By a systematic use of the effective
field theory methods for general relativity proposed
by Goldberger and Rothstein it has been possible to
automatize the computation and compute the effective
Lagrangian by summing the contributions of 80
Feynman diagrams. We have computed the effective
Lagrangian reproducing known results [3] and paving
the way for the yet uncomputed 4PN dynamics. Beside
the clear theoretical interest of this calculation, the
4PN Hamiltonian has a direct phenomenological impact
as it enters the determination of the templates wave-
forms used in analyzing the data from the large interfer-
ometers LIGO and Virgo like the effective one body ones
[29].
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