
Equatorial circular motion in Kerr spacetime

Daniela Pugliese,1,2,3,* Hernando Quevedo,1,2,4,† and Remo Ruffini1,2,‡

1Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy
2ICRANet, Piazzale della Repubblica 10, I-65122 Pescara, Italy

3School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
4Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, México, DF 04510, Mexico
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We analyze the properties of circular orbits of test particles on the equatorial plane of a rotating central

mass whose gravitational field is described by the Kerr spacetime. For rotating black holes and naked

singularities we explore all the spatial regions where circular orbits can exist and analyze the behavior of

the energy and the angular momentum of the corresponding test particles. In particular, we find all the

radii at which a test particle can have zero angular momentum due to the repulsive gravity effects

generated by naked singularities. We classify all the stability zones of circular orbits. It is shown that the

geometric structure of the stability zones of black holes is completely different from that of naked

singularities.
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I. INTRODUCTION

The Kerr spacetime describes the exterior gravitational
field of a rotating massM with specific angular momentum
a ¼ J=M, where J is the total angular momentum of the
gravitational source. In Boyer-Lindquist coordinates, the
Kerr metric has the form

ds2 ¼ dt2 � �2

�
dr2 � �2d�2 � ðr2 þ a2Þsin2�d�2

� 2M

�2
rðdt� asin2�d�Þ2; (1)

where

� � r2 � 2Mrþ a2; and �2 � r2 þ a2cos2�: (2)

This metric is an axisymmetric, stationary (nonstatic),
asymptotically flat solution of Einstein equations in vac-
uum. The redshift infinity surface and event horizons are
described, respectively, by the equations

gtt ¼ 0; grr ¼ 0: (3)

Then, the solutions of these equations are, respectively,

r0� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2cos2�

p
; and

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
: (4)

Considering that � 2 ½0; ��, the radii r0� and r� exist
when jaj � M (Kerr black hole); in particular, for jaj ¼ M
(extreme Kerr black hole) the two horizons coincide, rþ ¼
r� ¼ M. The outer static limit is r0þ; it corresponds to the
outer boundary of the ergosphere.

A naked singularity case occurs when jaj>M (for more
details about the Kerr metric, see, for instance, [1–7]).
The most important limiting cases are the Schwarzschild

metric which is recovered for a ¼ 0, and the Minkowski
metric of special relativity for a ¼ M ¼ 0. The Kerr met-
ric in Boyer-Lindquist coordinates is singular when � ¼ 0
and when � ¼ 0. However, a calculation of the
Kretschmann curvature scalar reveals that a true curvature
singularity occurs only for � ¼ 0. Therefore, the surface
represented by r ¼ 0 and � ¼ �=2 corresponds to an
intrinsic curvature singularity [1,2,8,9].
In previous works [10–12], the motion of test particles

along circular orbits around static, spherically symmetric
spacetimes was investigated in detail. We are now inter-
ested in studying the more general case of stationary,
axisymmetric spacetimes. The study of the circular motion
around compact objects is of particular interest in the
context of astrophysics. Indeed, an infinitesimal thin disk
of test particles traveling in circular orbits can be consid-
ered as an idealized model for an accretion disk of matter
surrounding the central body. Such an idealized model
could be used, for instance, to estimate the amount of
energy released by matter being accreted by the central
mass [13]. In addition, one can ask the question whether
this hypothetical accretion disk carries information about
the nature of the central compact object. In a recent work
[10–12], this question was answered positively. Indeed, we
found that the geometric structure of the infinitesimal thin
disk around a Reissner-Nordström compact object strongly
depends on the mass-to-charge ratio.
In the present work, we generalize our previous analysis

and study the motion of test particles along circular orbits
on the equatorial plane of the Kerr spacetime. We are
especially interested in studying the differences between
the gravitational field of black holes and naked singular-
ities. Test particles moving along circular orbits are
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particularly appropriate to measure the effects generated
by naked singularities. For the sake of simplicity, we limit
ourselves to the case of equatorial trajectories because they
are confined in the equatorial geodesic plane. This is a
consequence of the fact that the Kerr solution is invariant
under reflections with respect to the equatorial plane.
Nonequatorial geodesics present an additional difficulty
because the corresponding planes are not geodesic. This
case will not be considered in the present work.

This paper is organized as follows. In Sec. II, we use the
formalism of the effective potential to derive the condi-
tions for the existence of circular orbits on the equatorial
plane of the Kerr spacetime. Section III is devoted to the
study of circular orbits around a rotating black hole. In
Sec. IV, we investigate the case of naked singularities and
find all the regions where circular orbits are allowed. We
analyze in detail the values of the energy and the angular
momentum as well as the stability properties of the test
particles for all the allowed regions in black holes and
naked singularities. In Sec. IVD, we present a summary of
behavior of the radii that determine the distribution of test
particles around the central body, and of the radii of the
last stable circular orbits. Finally, in Sec. V we discuss our
results.

II. CIRCULAR ORBITS

We consider the circular motion of a test particle of mass
� in the background represented by the Kerr metric (1). We
limit ourselves to the case of orbits situated on the equato-
rial plane onlywhich are defined bymeans of the conditions

� ¼ �=2; and
d�

d�
¼ 0; (5)

where � is the particle’s proper time. We note that for
� ¼ �=2 the outer boundary of the ergosphere Eq. (4) is
r0þ ¼ 2M while r0� ¼ 0.
The tangent vector ua to a curve x�ð�Þ is u� ¼

dx�=d� ¼ _x�. The momentum p� ¼ � _x� of a particle
with mass � can be normalized so that g�� _x� _x� ¼ �k,

where k ¼ 0, 1, �1 for null, spacelike, and timelike
curves, respectively.
Since the metric is independent of� and t, the covariant

components p� and pt of the particle’s four-momentum

are conserved along its geodesic. Thus, we use the fact that
the quantity

E � �g��	
�
t p

� (6)

is a constant of motion, where 	t ¼ @t is the Killing field
representing stationarity. In general, we may interpret E,
for timelike geodesics, as representing the total energy of
the test particle for a particle coming from radial infinity, as
measured by a static observer at infinity. On the other hand,
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FIG. 1. The outer horizon rþ (dashed curve), the inner horizon
r� (dotted curve), and ra (solid thin black curve), rc2 (solid gray
curve), and r
 (solid thick black curve) are plotted as a function

of the black hole intrinsic angular momentum a=M. The dash-
dotted gray line represents the outer boundary of the ergosphere
r0þ ¼ 2M.
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FIG. 2. The energy EðþÞ� � EðL�Þ (upper plot) and the angular
momentum L� (bottom plot) of circular orbits in a rotating Kerr
black hole with angular momentum 0< a � M, for selected
values of a=M in the interval r > r
. For a � M the energy EðþÞ�
is always positive and diverges as r approaches r
. The dash-

dotted gray line represents the outer boundary of the ergosphere
r0þ ¼ 2M.
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the rotational Killing field 	� ¼ @� yields the following

constant of motion:

L � g��	
�
�p

�: (7)

We interpret L as the angular momentum of the particle.
In this work, we analyze circular orbits involving a

potential function VðrÞ. It represents that value of E=�
that makes r into a ‘‘turning point’’ (V ¼ E=�), in other
words, that value of E=� at which the (radial) kinetic
energy of the particle vanishes [14]. The (positive) effec-
tive potential is

V ¼ � B

2A
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
; (8)

where [1–3,8,9]

A � ðr2 þ a2Þ2 � a2�; (9)

B � �2aLðr2 þ a2 ��Þ; (10)

C � a2L2 � ðM2r2 þ L2Þ�: (11)
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FIG. 3. The energy Eð�Þ
þ � Eð�LþÞ and angular momentum

L ¼ �Lþ of circular orbits in a Kerr black hole with angular
momentum 0< a � M, for selected values of a=M in the region

r > ra. The energy Eð�Þ
þ is always positive and diverges as r

approaches ra.
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FIG. 4. The effective potential V=� for a neutral particle of
mass � in a Kerr black hole with a=M ¼ 0:5 is plotted as a
function of r=M in the range [1.71, 10] for the radial coordinate
and in the range ½�10; 10� for the angular momentum L=ð�MÞ.
The outer horizon is situated at rþ ¼ ð1þ 1=

ffiffiffi
2

p ÞM (see text).
Circular orbits exist for r > 2½1þ sinð�=18Þ�M � 2:347M.
The solid curve represents the location of circular orbits (stable
and unstable). Stable (unstable) circular orbits are minima (max-
ima) of the effective potential function. The last stable circular
orbits are represented by a point. The minima are located at
r ¼ 4:233M with L ¼ 2:903=ðM�Þ and E ¼ 0:918�, and at
r ¼ 7:554M with L ¼ �3:884=ðM�Þ and E ¼ 0:955�.
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FIG. 5. The outer horizon rþ (dashed curve), the inner horizon
r� (dotted curve), and ra (solid thin black curve), rc2 (solid gray
curve), r
 (solid thick black curve), last stable circular orbits rþlsco
(thick dash-dotted black curve) and r�lsco (thick dash-dotted gray

curve) are plotted as functions of the black hole intrinsic angular
momentum a=M. The curves rþlsco and r�lsco represent the radius

of the last stable circular orbit for particles with angular mo-
mentum�Lþ and L�, respectively. Circular orbits with L ¼ L�
exist for r=M > r
 and with L ¼ �Lþ for r > ra. The line ~a �
0:638 285M is also plotted. The thin dash-dotted gray line
represents the outer boundary of the ergosphere r0þ ¼ 2M.
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The negative solution of the effective potential equation

V� � � B

2A
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
(12)

can be studied by using the following symmetry:

VðLÞ ¼ �V�ð�LÞ: (13)

We can note that the potential function (8) is invariant
under the mutual transformation a ! �a and L ! �L.
Therefore, we will limit our analysis to the case of positive
values of a for corotating (L > 0) and counterrotating
orbits (L < 0).

The investigation of the motion of test particles in the
spacetime (1) is thus reduced to the study of motion in the
effective potential V. We will focus on (timelike) circular
orbits for which (see also [15])

_r ¼ 0; V ¼ E=�; @V=@r ¼ 0: (14)

Moreover, we use the following notation for the angular
momentum solutions

L�
�M

� j a2

M2 � 2 a
M

ffiffiffiffi
r
M

p þ r2

M2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

M2 ð rM � 3Þ � 2 a
M

ffiffiffiffiffi
r3

M3

qr ; (15)

and the corresponding energies

EðþÞ
�
�

� EðL�Þ
�

¼
ðr5MÞ1=4j½a2þðr�2MÞr�ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr3Þ=ðMÞÞ

p
Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr�3MÞ ffiffiffi
r
M

p �2a
p þ 2arL�

r½r3 þ a2ðrþ 2MÞ� ; (16)

and

Eð�Þ
�
�

� Eð�L�Þ
�

¼
ðr5MÞ1=4j½a2þðr�2MÞr�ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr3Þ=ðMÞÞ

p
Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr�3MÞ ffiffiffi
r
M

p �2a
p � 2arL�

r½r3 þ a2ðrþ 2MÞ� ; (17)

respectively. The investigation of the above expressions for
the angular momentum and energy of the test particle for
different values of the radial coordinate allows us to extract
physical information about the behavior of the gravita-
tional source. We mention for an analysis of the test
particle motion in Kerr spacetime, for example, [16–37].

III. BLACK HOLES

In this section we shall consider the black hole case 0<
a � M. In the nonextreme black hole case (0< a<M), it
is gtt > 0 for 0< r < r0� and r > r0þ. Inside the interval
r0� < r < r0þ the metric component gtt changes its sign.
Moreover, gtt vanishes for r ¼ r0� and 0< cos2� � 1, and
also at r ¼ 2M for � ¼ �=2. The location of these hyper-
surfaces is such that r0� < r� < rþ < r0þ.
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FIG. 6. The energy Elsco=� and the angular momentum L�
lsco=ðM�Þ of the last stable circular orbit as functions of the ratio a=M � 1

of a Kerr black hole.

TABLE I. Classification of circular orbits of test particles in a
Kerr black hole. Here ~a � 0:638 285M. For each region we
present the value of the orbital angular momentum and the
stability property.

Case: 0< a<M
Region Angular momentum Stability

�r
; ra� L� r�lsco
�ra;1½ �LþðL�Þ rþlscoðr�lscoÞ

0< a< ~aðra < r�lscoÞ
�r
; ra½ L� Unstable

�ra; r�lsco½ ðL�;�LþÞ Unstable

�r�lsco; rþlsco½ L�ð�LþÞ Stable (Unstable)

�rþlsco;1½ ðL�;�LþÞ Stable

~a � a <Mðra � r�lscoÞ
�r
; r�lsco½ L� Unstable

�r�lsco; ra½ L� Stable

�ra; rþlsco½ L�ð�LþÞ Stable (Unstable)

�rþlsco;1½ ðL�;�LþÞ Stable

DANIELA PUGLIESE, HERNANDO QUEVEDO, AND REMO RUFFINI PHYSICAL REVIEW D 84, 044030 (2011)

044030-4



The region r0� < r < r0þ, where gtt < 0, is called ergo-
region. In this region the Killing vector 	a

t ¼ ð1; 0; 0; 0Þ
becomes spacelike or gab	

a
t 	

b
t ¼ gtt < 0. This fact

implies, in particular, that a static observer, i.e., an obse-

rver with four velocity proportional to 	a
t so that _� ¼ _r ¼

_� ¼ 0, cannot exist inside the ergoregion; an observer
inside this region is forced to move.

For the extreme black hole case (a ¼ M) it holds r� ¼
rþ ¼ M. Then, gtt > 0 for 0< r < r0� and r > r0þ when
0 � cos2� < 1, and for 0< r <M and r >M when
cos2� ¼ 1; moreover, gtt ¼ 0 at r ¼ r0� in the interval 0 �
cos2� < 1, and at r ¼ M for cos2� ¼ 1. The location of the
special radii is such that r0� < r� ¼ rþ < r0þ for 0 �
cos2� < 1 and r0� ¼ r� ¼ rþ ¼ r0þ for cos2� ¼ 1.

To investigate the solutions of the conditions of circular
motion given by Eq. (14) it is convenient to introduce the
following radii:

ra � 4M cos

�
1

6
arccos

�
�1þ 2

a2

M2

��
2
; (18)

rc2 � 4M sin

�
1

6
arccos

�
1� 2

a2

M2

��
2
; (19)

r
 � 2M

�
1þ sin

�
1

3
arcsin

�
1� 2

a2

M2

���
; (20)

which have the two limiting cases

ra ¼ r
 ¼ 3M; rc2 ¼ 0 for a ¼ 0; (21)

and

ra ¼ 4M; rc2 ¼ r
 ¼ M for a ¼ M: (22)

The dependence of these radii on the specific angular
momentum is shown in Fig. 1. It is then possible to show
that circular orbits can exist only for r > r
 and that there

are two regions with different values for the angular mo-
mentum, namely,

r
 < r � ra; where L ¼ L�; (23)

and

r > ra; where L ¼ �Lþ; and L ¼ L�: (24)

Moreover, in the extreme black hole case, a ¼ M, the
circular orbits are situated at

r ¼ ra ¼ 4M; (25)

with two different possible values for the angular
momentum:

L ¼ 13

4
ffiffiffi
2

p M� with E ¼ 5

4
ffiffiffi
2

p �; and

L ¼ � 13

4
ffiffiffi
2

p M� with E ¼ 149

140
ffiffiffi
2

p �: (26)

As for the first interval r
 < r � ra, the behavior of the

corresponding energy and angular momentum is illustrated
in Fig. 2. First we note that the area covered by this region
increases as the specific angular momentum of the black
hole increases. Whereas ra and r
 coincide and equal 3M

for nonrotating black holes (a ¼ 0), their maximum
separation is reached in the case of extreme black holes
(a ¼ M) for which r
 coincides with the outer horizon
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FIG. 7. The energy E=� (left plot) and the angular momentum L=ð�MÞ (right plot) of circular orbits in a Kerr black hole with

a ¼ 0:5M as functions of the radial coordinate r=M. The energy Eð�Þ
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radii rþ ¼ 1:707 11M, r
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radius. In the region r > ra, circular orbits are allowed with
different values of the angular momentum (the particular
case with L ¼ �Lþ is illustrated in Fig. 3).

We see that in the gravitational field of a black hole with
0< a<M, particles with angular momentum L ¼ L� can
exist in the entire region r > r
. As the radius r
 is

approached, the angular momentum L� and the corre-

sponding energy EðþÞ� ¼ EðL�Þ diverge, indicating that
the hypersurface r ¼ r
 is lightlike, i.e., it is the limiting

orbit for timelike particles with L ¼ L�. Moreover,
particles with angular momentum L ¼ �Lþ can move

along circular orbits in the interval r > ra, and the limiting
lightlike counterrotating orbit corresponds to r ¼ ra where

both Lþ and the energy Eð�Þ
þ ¼ Eð�LþÞ diverge.

Stability

From the physical viewpoint it is important to find the
minimum radius for stable circular orbits which is deter-
mined by the inflection points of the effective potential
function, i.e., by the condition

@2V=@2r ¼ 0: (27)
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FIG. 8. The effective potential V=� of a Kerr black hole with a ¼ 0:5M as a function of r=M. The radii rþ ¼ 1:707 11M, r
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2:3473M, ra ¼ 3:532 09M, r�lsco ¼ 4:233M, and rþlsco ¼ 7:554 58M are also plotted. The left upper plot shows the effective potential

with orbital angular momentum L ¼ L� ¼ 3:298 06M� for which we find a minimum (stable orbit) at r ¼ 7:852 56M with energy
E�=� ¼ 0:942 949 and a maximum (unstable orbit) at r ¼ 3M with E�=� ¼ 0:979 181. The right upper plot corresponds to an
effective potential with orbital angular momentum L ¼ L� ¼ 2:908 77� (solid black curve) and L ¼ �Lþ ¼ �6:452 35M� (solid
gray curve). For L ¼ L� there is a minimum (stable orbit) at r ¼ 4:499 25M with E� ¼ 0:918 487� and a maximum (unstable orbit)

at r ¼ 4M with E� ¼ 0:918 559�. For L ¼ �Lþ there is a maximum (unstable orbit) at r ¼ 4M with Eð�Þ
þ ¼ 1:237 44�. The bottom

plot is for an effective potential with orbital angular momentum L ¼ L� ¼ 4:096 49� (solid black curve) and L ¼ �Lþ ¼
�4:360 42M� (solid gray curve). For L ¼ L� there is a minimum (stable orbit) at r ¼ 14M with E� ¼ 0:966 09� and a maximum
(unstable orbit) at r ¼ 2:659 96M with E� ¼ 1:134�. For L ¼ �Lþ there is a maximum (unstable orbit) at r ¼ 5:074 11M with

Eð�Þ
þ ¼ 0:991 686� and a minimum (stable orbit) at r ¼ 14M with Eð�Þ

þ ¼ 0:968 052�. The dash-dotted gray line represents the outer
boundary of the ergosphere r0þ ¼ 2M.
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The behavior of the effective potential (8) for a fixed value
of a=M and different values of the particle angular mo-
mentum L=ðM�Þ is sketched in Fig. 4. The radii of the last
stable circular orbits are written as [9,38]

r�lsco ¼ M½3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q
�; (28)

where

Z1�1þ
�
1� a2

M2

�
1=3

��
1þ a

M

�
1=3þ

�
1� a

M

�
1=3

�
; (29)

and

Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
a2

M2
þ Z2

1

s
: (30)

In particular, for a ¼ 0 we have that r�lsco ¼ 6M, and when

a ¼ M we obtain r�lsco ¼ M for corotating orbits and

rþlsco ¼ 9M for counterrotating orbits (see also Fig. 5). In

general, the radii rþlsco and r
�
lsco correspond to the last stable

circular orbit of a test particle with angular momentum Lþ
and L�, respectively.

In Fig. 6 the energy E�
lsco=� ¼ Eðr�lscoÞ=� and the an-

gular momentum L�
lsco=� ¼ Lðr�lscoÞ=� of the last stable

circular orbits are plotted as functions of the ratio a=M.
One can see that

Eþ
lsco � E�

lsco; and Eþ
lsco ¼ E�

lsco for a ¼ 0: (31)

Moreover, as the ratio a=M increases, the energy Eþ
lsco

decreases and the energy E�
lsco increases. Instead, the

corresponding angular momenta of the test particles de-
crease as the intrinsic angular momentum increases.
To classify the circular orbits in a Kerr black hole it is

convenient to distinguish two different regions: The first
one is a 2 ½0; ~a½, where ~a � 0:638 285M is the value
at which ra and r�lsco coincide, and the second one is

a 2�~a; 1½.
In the first region a 2 ½0; ~a½, where ra < r�lsco, we see

that there exist unstable circular orbits with L ¼ L� in the
interval r
 < r < ra. Moreover, in the interval ra < r <

r�lsco there are unstable circular orbits with L ¼ L� and

L ¼ �Lþ. In r�lsco < r < rþlsco there are stable circular

orbits with L ¼ L� and unstable orbits with L ¼ �Lþ.
Finally, in the region r > rþlsco there are stable circular

orbits with L ¼ L� as well as with L ¼ �Lþ.
Let us consider the second region a 2�~a; 1½ where

ra > r�lsco. We see that in the interval r
 < r < r�lsco there

are unstable circular orbits with L ¼ L�. Moreover, in
r�lsco < r < ra there are stable orbits with L ¼ L�. In the

region ra < r < rþlsco there are stable circular orbits with

L ¼ L� and unstable orbits with L ¼ �Lþ. Finally, for
r > rþlsco there are stable circular orbits with L ¼ L� and

L ¼ �Lþ. The classification of circular orbits in this case
is summarized in Table I.
A detailed analysis of the behavior of the energy, angular

momentum, and effective potential of test particles is
presented in Figs. 7 and 8 for a=M ¼ 0:5< ~a, in Figs. 9
and 10 for a=M ¼ 0:7> ~a, and finally in Figs. 11 and 12
for the limiting case of an extreme black hole a=M ¼ 1.
To present the main result of our analysis in a plausible

manner it is convenient to introduce the idea of a
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FIG. 9. The energy E=� (left plot) and the angular momentum L=ð�MÞ (right plot) of circular orbits in a Kerr black hole with
a ¼ 0:7M as functions of r=M. The energy E�þ � Eð�LþÞ and the angular momentum �Lþ are represented by thick solid black
curves, and the energy Eþ� � EðL�Þ and the angular momentum L� by thin solid black curves. The radii rþ ¼ 1:547 72M, r
 ¼
2:013 33M, ra ¼ 3:725 35M, r�lsco ¼ 3:393 13M, and rþlsco ¼ 8:142 97M are also plotted. The dash-dotted gray line represents the outer

boundary of the ergosphere r0þ ¼ 2M. In r
 < r < r�lsco there are unstable circular orbits with L�; in r�lsco < r < ra there are stable

orbits with L�; in ra < r < rþlsco there are stable circular orbits with L� and unstable with �Lþ; finally, for r > rþlsco there are stable
circular orbits with L� and �Lþ. It is clear that Eð�LþÞ> EðL�Þ.

EQUATORIAL CIRCULAR MOTION IN KERR SPACETIME PHYSICAL REVIEW D 84, 044030 (2011)

044030-7



hypothetical accretion disk formed by test particles on
circular orbits around the central massive object. We con-
sider this model only in the region r > r0þ. The structure of
such an accretion disk depends explicitly on the stability
properties of the test particles. In fact, as mentioned above,
the radii r�lsco and rþlsco represent the last stable orbits for

particles with angular momentum L ¼ L� (corotating par-
ticles) and L ¼ �Lþ (counterrotating particles), respec-
tively. Then, in the disk contained within the radii
½r�lsco; rþlsco� only the corotating particles can move along

stable trajectories. If a counterrotating particle is located
inside this disk (this is possible if the radius of the orbit is
r > ra), its orbit is unstable and it must decay into an orbit
with radius r > rþlsco. Consequently, the outer disk with

r > rþlsco can be built of corotating and counterrotating

particles which are both stable in this region. The size of
the inner disk ½r�lsco; rþlsco� depends on the value of the

intrinsic angular momentum of the black hole a; the maxi-
mum size is reached in the case of an extreme black hole
(a ¼ M) with rþlsco � r�lsco ¼ 8M whereas for a ¼ 0 the
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FIG. 10. The effective potential V=� of a Kerr black hole spacetime with a ¼ 0:7M as function of r=M. The radii rþ ¼ 1:547 72M,
r
 ¼ 2:013 33M, ra ¼ 3:725 35M, r�lsco ¼ 3:393 13M, and rþlsco ¼ 8:142 97M are plotted. The left upper plot represents the effective

potential with orbital angular momentum L ¼ L� ¼ 2:619 48M� for which we find a minimum (stable orbit) at r ¼ 3:9473M with
E� ¼ 0:900 551�, and a maximum (unstable orbit) at r ¼ 3M with E� ¼ 0:901 712�. The right upper plot shows an effective
potential with orbital angular momentum L ¼ L� ¼ 2:592 16M� for which there exists a minimum (stable orbit) at r ¼ 3:6M with
E� ¼ 0:897 167�, and a maximum (unstable orbit) at r ¼ 3M with E� ¼ 0:897 167�. The left bottom plot corresponds to effective
potentials with orbital angular momenta L ¼ L� ¼ 2:915 63� (solid black curve) and L ¼ �Lþ ¼ �4:2694M� (solid gray curve).
For L ¼ L� there is a minimum (stable orbit) at r ¼ 6:M with E� ¼ 0:925 818�, and a maximum (unstable orbit) at r ¼ 2:500 52M

with E� ¼ 0:960 213�. For L ¼ �Lþ there is a maximum (unstable orbit) at r ¼ 6M with Eð�Þ
þ ¼ 0:973 034�. The right bottom plot

is for effective potentials with orbital angular momenta L ¼ L� ¼ 4:050 58� (solid black curve) and L ¼ �Lþ ¼ �4:420 36M�
(solid gray curve). For L ¼ L� there is a minimum (stable orbit) at r ¼ 14M with E� ¼ 0:965 775�, and a maximum (unstable orbit)

at r ¼ 2:1819M with E� ¼ 1:232 83�. For L ¼ �Lþ there is a maximum (unstable orbit) at r ¼ 5:6208M with Eð�Þ
þ ¼ 0:984 43�,

and a minimum (stable orbit) at r ¼ 14M with Eð�Þ
þ ¼ 0:968 527�. The dash-dotted gray line represents the outer boundary of the

ergosphere r0þ ¼ 2M.
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radii coincide rþlsco ¼ r�lsco and the disk disappears

(cf. Fig. 5).

IV. NAKED SINGULARITIES

In the naked singularity case (a >M), it is gtt > 0 for
0< r < r0� and r > r0þ when 0 � cos2� < 1=a2, for r > 0
with r � r0� when cos2� ¼ 1=a2, and finally for r > 0
when 1=a2 < cos2� � 1. Moreover, gtt ¼ 0 at r ¼ 2M if

� ¼ �=2, at r ¼ r0� for 0< cos2� < 1=a2, and at r ¼ r0�
for cos2� ¼ 1=a2. As in the black hole case, in the region
ðr0�; r0þÞ the Killing vector 	a

t ¼ ð1; 0; 0; 0Þ becomes space-
like. On the equatorial plane, � ¼ �=2, it is r0þ ¼ 2M and
r0� ¼ 0. In this case, the timelike Killing vector becomes
spacelike in the region 0< r < r0þ, for all a >M.
According to the results presented in Sec. II, to explore

the motion of test particles along circular orbits we must
solve the following equations
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FIG. 11. The energy E=� (left plot) and the angular momentum L=ð�MÞ (right plot) of circular orbits in an extreme Kerr black hole
(a ¼ M) as functions of the radial coordinate r=M. The energy Eð�LþÞ and the angular momentum �Lþ are represented by thick
solid black curves, and the energy EðL�Þ and the angular momentum L� by thin solid black curves. The radii rþ ¼ r
 ¼ M (dashed

curve) and ra ¼ 4M (solid black curve) are also plotted. There exist circular orbits with L ¼ L� in r > r
. The energy EðL�Þ is
always positive and decreases as r approaches r
. Circular orbits with L ¼ �Lþ exist also in r > rþ. The energy Eð�LþÞ is always
positive and increases as r approaches ra. It is evident that Eð�LþÞ> EðL�Þ.
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FIG. 12. The effective potential V=� of an extreme Kerr black hole for a test particle with a fixed orbital angular momentum as
function of r=M. The radii rþ ¼ r
 ¼ M (dashed curve) and ra ¼ 4M (solid black curve) are plotted. The dash-dotted gray line

represents the outer boundary of the ergosphere r0þ ¼ 2M. The left plot shows the effective potentials with orbital angular momenta
L ¼ L� (solid black curve) and L ¼ �Lþ (solid gray curve). For L ¼ L� there is a minimum (stable orbit) at r ¼ 5M with L� ¼
2:530 75M� and E� ¼ 0:906154�. For L ¼ �Lþ there is a maximum (unstable orbit) at r ¼ 5M with �Lþ ¼ �5:796 14M� and
E�þ ¼ 1:085 76�. There exist circular orbits with L ¼ L� in the region r > r
, and orbits with L ¼ �Lþ in the region r > rþ. The
dash-dotted gray line represents the outer boundary of the ergosphere r0þ ¼ 2M.
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momentumL ¼ L� (left plot) and the energy EðþÞ� � EðL�Þ (right plot) of circular orbits are plotted as functions of r > 0 and a �
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FIG. 14. Angular momentum and energy of test particles in a Kerr naked singularity with a � ð3 ffiffiffi
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p
=4ÞM. The angular momentum

L ¼ �Lþ (left plot) and the energy Eð�Þ
þ � Eð�LþÞ (right plot) of circular orbits are plotted as functions of r > ra and a �
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_r ¼ 0; V ¼ E=�; @V=@r ¼ 0 (32)

for the effective potential (8) with a >M, taking into
account that in this case no horizons exist. It turns out
that it is convenient to study separately the range

a � 3
ffiffiffi
3

p
=4M (see Sec. IVA) and the range M< a<

3
ffiffiffi
3

p
=4M (see Sec. IVB) for the values of the intrinsic

angular momentum of the naked singularity.

A. The case a � ð3 ffiffiffi
3

p
=4ÞM

In this case we find that for all r > 0 there exist circular

orbits with angular momentum L ¼ L� and energy EðþÞ� ¼
EðL�Þ. In Fig. 13 we illustrate the behavior of the energy
and angular momentum of test particles for this case.

An analysis of the effective potential shows that a sec-
ond class of circular orbits with L ¼ �Lþ and energy

Eð�Þ
þ ¼ Eð�LþÞ can be found in the region r > ra where

ra
M

� 2þ 1þ ð2 a2

M2 � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

M4 � a2

M2

q
Þ2=3

ð2 a2

M2 � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

M4 � a2

M2

q
Þ1=3

: (33)

The expression for the energy and angular momentum of
the test particles in this region is depicted in Fig. 14.
The special radius ra and the angular momentum for this

radius LðraÞ=ð�MÞ increase as the intrinsic angular mo-
mentum of the naked singularity increases, as shown in
Fig. 15. Notice that we are using the same notation ra
for the radius (18) of a black hole and the radius (33) of
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FIG. 17. Radius of the last stable circular orbits for test parti-

cles in a Kerr naked singularity with a � 3
ffiffi
3

p
4 M. The dash-dotted

gray line represents the outer boundary of the ergosphere r0þ ¼
2M. The radius �rlsco (rþlsco) is the limiting minimum radius of

stability for particles with L ¼ L� (L ¼ �Lþ).
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FIG. 18. Orbits’ stability in a Kerr naked singularity with
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p
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orbits rlsco are plotted in terms of the intrinsic angular momen-
tum a=M.
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FIG. 16. The energy of circular orbits in a Kerr naked singularity with source angular momentum a � ð3 ffiffiffi
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represents the outer boundary of the ergosphere r0þ ¼ 2M.
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a naked singularity. Although these radii are different in
their definitions, we use the same notation because in the
limiting case a ¼ M they both have the same limiting
value ra ¼ 4M. This will turn out later on to be convenient
when we compare the results of black holes with those of
naked singularities.

The energies EðL�Þ and Eð�LþÞ for the two classes of
test particles allowed in this are compared in Fig. 16. For
particles with angular momentum L ¼ L� we see that the

energy diverges as the limiting value r ! 0 is approached.
Similarly, for particles with L ¼ �Lþ the energy diverges
as the radius approaches the limiting value r ! ra, indicat-
ing that the orbit located at r ¼ ra is lightlike.
We now study the stability of the test particles in this

specific case. An analysis of the turning points of the
potential (8) indicates that the radius of the last stable
circular orbit for particles with L ¼ L� (located in the
region r > 0) is given by
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FIG. 20. The effective potential of a naked singularity with a ¼ 3
ffiffi
3

p
4 M for fixed values of the particle angular momentum L=ðM�Þ.

The dash-dotted gray line represents the outer boundary of the ergosphere r0þ ¼ 2M. The radius ra is also plotted (see text). The dots
denote the critical points of the potential. Numbers close to the dots denote the energy V=� of the maxima and minima of the effective
potential.
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FIG. 19. The angular momentum and the energy of test particles in the field of a Kerr naked singularity with a ¼ 3
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3

p
=4M � 1:30M

are plotted as functions of the radial coordinate r=M. The dots represent the last stable circular orbits; numbers close to the points
denote the energy V=� of the last stable circular orbit. For r > ra � 4:2592M there exist circular orbits with angular momentum
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�r lsco � Mð3� Z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 � 2Z2Þ

q
Þ; (34)

where Z1 and Z2 were defined in Eqs. (29) and (30),
respectively. Moreover, for particles with L ¼ �Lþ lo-
cated at r > ra there exists a minimum radius r ¼ rþlsco
for the last stable circular orbit. The expression for rþlsco is
given in Eq. (28). The behavior of this limiting radii in
terms of the intrinsic angular momentum of the naked
singularity is depicted in Fig. 17. It follows that both radii
increase as the value of a=M increases.

It turns out that it is necessary to distinguish two

different regions, namely, a=M 2 ½3 ffiffiffi
3

p
=4; 9� and

a=M 2�9;þ1½.

1. The region a=M 2 ½3 ffiffiffi
3

p
=4; 9�

In the first region a=M 2 ½3 ffiffiffi
3

p
=4; 9� which is charac-

terized by

�r lsco<ra<rþlsco; and �rlsco¼ ra for a�9M; (35)

there exist unstable circular orbits with L ¼ L� in the
interval 0< r < �rlsco, and stable orbits with L ¼ L�
in the interval �rlsco < r < ra. Moreover, in the region
ra < r < rþlsco there are stable orbits with angular momen-

tum L ¼ L�, and unstable orbits with angular momentum
L ¼ �Lþ. Finally, for r > rþlsco there are stable orbits with
L ¼ L� and L ¼ �Lþ. In Fig. 18 we present a summary
of this case.
As a concrete example for this case we consider now the

motion of test particles around a naked singularity with

a ¼ 3
ffiffi
3

p
4 M. In this case, circular orbits with orbital angular

momentum L ¼ L� exist in the range r > 0, and with
L ¼ �Lþ in the range r > ra � 4:259M. The energy
and angular momentum of these circular orbits are plotted
in Fig. 19.
In Fig. 20 the effective potential is plotted for different

values of the orbital angular momentum. In particular, an
‘‘orbit’’ with zero angular momentum (L ¼ 0) and energy
E � 0:333M exists for r ¼ 0:75M (see also Sec. IVC).
From the analysis of the effective potential it follows

that the turning points are located at rþlsco � 9:828M where

Lþ
lsco � �4:421�M and Vþ

lsco � 0:96�. Moreover, in the

interval 0< r < r�lsco the orbits with angular momentum

L ¼ L� are unstable; in the interval r�lsco < r < ra the

orbits with L ¼ L� are stable; and for ra < r < rþlsco we

see that the orbits with L ¼ L� are stable and those with
L ¼ �Lþ are unstable. Finally, in the range r > rþlsco, the
orbits with L ¼ �Lþ and L ¼ L� are both stable.
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FIG. 21. Orbits’ stability in a Kerr naked singularity with
a * 9M. The radii rlsco of the last stable circular orbits are
plotted as functions of the intrinsic angular momentum a=M.
The radius r ¼ ra is also plotted.
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2. The region a
M2�9;þ1½

In the second region (a * 9M) which is chara-
cterized by

ra < �rlsco < rþlsco; (36)

there are unstable orbits with angular momentum L ¼ L�
in the interval 0< r < ra and with L ¼ L� and L ¼ �Lþ
in the interval ra < r < �rlsco. Moreover, for �rlsco < r <
rþlsco there are stable orbits with L ¼ L� and unstable

ones with L ¼ �Lþ. Finally, for r > rþlsco there are stable
orbits with both L ¼ L� and L ¼ �Lþ. In Fig. 21 a
schematic summary of this case is presented.

As a concrete example of this case we now analyze the
circular motion of test particles around a naked singularity
with a ¼ 2M. In this case, circular orbits with angular
momentum L ¼ L� exist in the entire range r > 0, and
with L ¼ �Lþ in the range r > ra � 4:822M. The energy
and the angular momentum of the circular orbits are plot-
ted in Fig. 22.
In Fig. 23, the effective potential of circular orbits is

plotted for selected values of the orbital angular momen-
tum in terms of the radial distance. The turning points of
the effective potential are rþlsco � 11:702M for which

Lþ
lsco � �4:814�M and Vþ

lsco � 0:971�, and r�lsco �
1:263M with L�

lsco � 0:645�M and V�
lsco � 0:687�.
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FIG. 23. The effective potential of a naked singularity with a ¼ 2M for fixed values of the particle angular momentum L=ðM�Þ. The
radius ra is also plotted (see text). The dash-dotted gray line represents the outer boundary of the ergosphere r0þ ¼ 2M. The dots
represent the critical points of the potential. Numbers close to the dots indicate the energy V=� of the maxima and minima of the
effective potential.
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FIG. 24. Circular motion around a naked singularity withM< a< ð3 ffiffiffi
3

p
=4ÞM. The angular momentum L ¼ �Lþ (left plot) and the

energy Eð�Þ
þ � Eð�LþÞ (right plot) for circular orbits are plotted as functions of a in the range 1< a=M < 3

ffiffiffi
3

p
=4 and r in the range

r > ra. The particle energy is always positive with a region of minima corresponding to the minima of �Lþ.
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The distribution of circular orbits is as follows: In the
interval 0< r < �rlsco there exist unstable orbits with
L ¼ L� which become stable for �rlsco < r < ra; in the
interval ra < r < rþlsco the orbits with L ¼ L� are stable

while those with L ¼ �Lþ are unstable. In the outer
region r > rþlsco orbits with L ¼ �Lþ and L ¼ L� are

both stable. To illustrate the results of the analysis of
this case, we consider in the region r > r0þ the model
of an accretion disk made of stable particles moving
on circular orbits around the central naked singularity.
We find an accretion disk composed of an interior disk
contained within the radii ½�rlsco; rþlsco� in which stable

particles with angular momentum L ¼ L� corotate
with the central singularity. A second disk is located
at r > rþlsco and contains corotating particles with an-

gular momentum L ¼ L� and counterrotating particles
with L ¼ �Lþ. We see that the structure of this ac-
cretion disk is similar to that found in Sec. III for
black holes. The only difference is that in the case of a
naked singularity the interior disk situated within the
radii ½�rlsco; rþlsco� has a minimum size of rþlsco � �rlsco >
8M, whereas in the case of a black hole the size of the
inner disk is always less than 8M and disappears as
a ! 0.
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FIG. 25. Circular motion around a naked singularity with M< a< ð3 ffiffiffi
3

p
=4ÞM. The angular momentum L ¼ L� (left plot) and the

energyE� � EðL�Þ (right plot) of circular orbits are plotted as functions ofa in the range 1< a=M < 3
ffiffiffi
3

p
=4 and r in the intervals r > r̂þ

and 0< r < r̂�. The region r̂� < r < r̂þ is represented as a dark region. As r=M approaches the singularity, the particle energy and
angular momentum diverge. As r=M approaches r̂� from the left and r̂þ from the right, the particle energy and angular momentum decrease.
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FIG. 26. Circular motion around a naked singularity withM< a< ð3 ffiffiffi
3

p
=4ÞM. The angular momentum L ¼ �L� (left plot) and the

energy E�� � Eð�L�Þ (right plot) of circular orbits are plotted as functions of a in the range 1< a=M < 3
ffiffiffi
3

p
=4 and of r in the interval

r̂� < r < r̂þ. The solid black curves represent the radii r̂� and r̂þ. The presence of negative values for the particle energy is evident.
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B. The case M< a < ð3 ffiffiffi
3

p
=4ÞM

For this range of values of the intrinsic angular momen-
tum of the naked singularity we find that there are circular
orbits with angular momentum L ¼ �Lþ and energy
Eð�LþÞ only in the region r > ra. In Fig. 24 we present
the parameters for the circular orbits.

From the expression for the effective potential and the
conditions for circular motion it follows that in this case
two additional regions arise. Indeed, in the intervals
0< r < r̂� and r � r̂þ there exist circular orbits with
angular momentum L ¼ L� and energy EðL�Þ (see
Fig. 25). Moreover, in the interval r̂� < r < r̂þ we observe
circular orbits with angular momentum L ¼ �L� and
energy Eð�L�Þ (see Fig. 26), where

r̂� � 1ffiffiffi
6

p
�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ffiffiffi
6

p
a2M

�
��2 � 6a2

s �
; (37)

with

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a4

�1=3
þ �1=3 � 2a2

s
; (38)

and

� ¼ ð27M2a4 � 8a6 þ 3M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81M2a8 � 48a10

p
Þ: (39)

The behavior of these special radii is illustrated in Fig. 27.
Notice that the energy of circular orbits Eð�LþÞ in the

interval 0< r < r̂� and in r � r̂þ (see Fig. 28), and the
energy EðL�Þ in the interval r > ra, are always positive
(see Fig. 29). On the contrary, the energy Eð�L�Þ of
circular orbits within the region r̂� < r < r̂þ can be nega-
tive. In particular, we see that Eð�L�Þ ¼ 0 for a ¼ �a,
where

�a � �ðr� 2MÞ
ffiffiffiffiffi
r

M

r
; (40)

or for the orbital radii r ¼ �r1 and r ¼ �r2, where

�r1
M

� 8

3
sin

�
1

6
arccos

�
1� 27a2

16M2

��
2
; (41)

and

�r2
M

� 4

3

�
1þ sin

�
1

3
arcsin

�
1� 27a2

16M2

���
; (42)

which are the solutions of the equation a ¼ �a.

We can see that Eð�L�Þ< 0 forM< a<
ffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27

p
M in

the interval �r1 < r < �r2. Otherwise, for a >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27

p
M, the

energy Eð�L�Þ is always strictly positive. This behavior is
illustrated in Fig. 30.
The stability of circular orbits is determined by the

turning points of the effective potential. For this case we
find numerically two turning points rþlsco and ~r�lsco with

r̂� < ~r�lsco < r̂þ and rþlsco > ra (see Fig. 31), where

~r�
lsco � 3� Z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 � 2Z2Þ

q
: (43)

The radii rþlsco and ~r�lsco correspond to the last stable

circular orbits with angular L ¼ �Lþ and L ¼ �L�,
respectively. Then, the distribution of circular orbits in
the different regions is as follows:
(i) In the region 0< r < r̂�, the orbits with L ¼ L� are

unstable.
(ii) In the region r̂� < r < ~r�lsco, the orbits with

L ¼ �L� are unstable.
(iii) In the region ~r�lsco < r < r̂þ, the orbits with

L ¼ �L� are stable.
(iv) In the region r̂þ < r < ra, the orbits with L ¼ L�

are stable.
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FIG. 27. The radii ra and r̂� are plotted as functions of a=M.
Circular orbits with angular momentum L ¼ �Lþ exist for r >
ra, with L ¼ L� in 0< r < r̂� and r � r̂þ, and with L ¼ �L�
in r̂� < r < r̂þ (see text). The dash-dotted gray line represents
the outer boundary of the ergosphere r0þ ¼ 2M.
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FIG. 30. The angular momentum �a ¼ �ðr� 2MÞ ffiffiffiffiffiffiffiffiffiffi
r=M

p
is plotted as a function of r. The energy vanishes, Eð�L�Þ ¼ 0, for a ¼ �a,

and is negative, Eð�L�Þ< 0, for 1< a<
ffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27

p
M in the interval �r1 < r < �r2. For a >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27

p
M the energy Eð�L�Þ is always

strictly positive. For a naked singularity with momentum a ¼ 1:02M the energy Eð�L�Þ ¼ 0 at r ¼ 0:41M and r ¼ 0:96M, and

Eð�L�Þ< 0 in 0:41M< r < 0:96M. For a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27

p
M the energy Eð�L�Þ ¼ 0 at r ¼ 2=3M, whereas Eð�L�Þ> 0 for a ¼ 1:1M.

In the bottom plot, the energy Eð�L�Þ is plotted for selected values of a=M in the interval r̂� < r < r̂þ.

EQUATORIAL CIRCULAR MOTION IN KERR SPACETIME PHYSICAL REVIEW D 84, 044030 (2011)

044030-17



(v) In the region ra < r < rþlsco, the orbits with L ¼
�Lþ are unstable and those with L ¼ L� are stable.

(vi) In the region r > rþlsco, the orbits with L ¼ �Lþ
and L ¼ L� are stable.

The summary of this case is sketched in Fig. 32. As a
concrete example, we investigate in detail circular motion
around a naked singularity with a ¼ 1:1M. The radii that
determine the distribution of test particles in this gravita-
tional field are r̂� � 0:378M, ~r�lsco � 0:989M, r̂þ ¼
� 0:989M, ra � 4:088M, and rþlsco ¼� 9:280M. In

Fig. 33, we illustrate the behavior of the angular momen-
tum and the energy of circular orbits for this special case.

In Fig. 34, we show the behavior of the effective
potential for some selected values of the orbital angular

momentum. The turning points of the effective potential
are located at rþlsco � 9:280M, where Lþ

lsco � �4:298�M
and Vþ

lsco � 0:963�, and at ~r�lsco � 0:667M, where L�
lsco ��0:354�M and V�

lsco � 0:028�.

The essential results of our analysis can be described
by using the model of an accretion disk around the
central naked singularity. Considering the properties
and positions of the different radii and the positions of
the last stable circular orbits, we conclude that the stable
accretion disk is composed of three different disks. The
internal disk is situated between the radii ~r�lsco and r̂þ
and is made of stable particles of counterrotating parti-
cles with angular momentum L ¼ �L�. Particles situ-
ated on the boundary radius r̂þ turn out to be
characterized by a zero value of the angular momentum
(cf. Sec. IVC). A second disk made of stable corotating
particles with angular momentum L ¼ L� is situated in
the region r̂þ < r < rþlsco. Finally, the exterior stable disk

is situated in the region r > rþlsco and contains corotating

particles with L ¼ L� and counterrotating particles with
L ¼ �Lþ.

C. Orbits with zero angular momentum

An interesting phenomenon that occurs only in the
gravitational field of naked singularity is the existence of
‘‘circular orbits’’ with zero angular momentum, as defined
by the conditions

V ¼ E=�; V0ðrÞ ¼ 0; L ¼ 0: (44)

This fact can be interpreted as a consequence of the
repulsive gravity effects that characterize the dynamics
in the field of the naked singularity. For the repulsive
gravity effects in the Kerr spacetime see, for example,
[39,40]. From the expression for the angular momentum
derived in Sec. II one can show that the solution (44) is
allowed only for naked singularities with intrinsic an-

gular momentum within the interval 1< a=M � 3
ffiffiffi
3

p
=4.

Outside this interval, i.e., for a=M > 3
ffiffiffi
3

p
=4, no orbits

exist with zero angular momentum. The behavior of
the corresponding effective potential is illustrated in
Fig. 35.
A further analysis shows that the particles with L ¼ 0

are situated on the radii r̂�, and that the radius r̂� corre-
sponds to unstable particles while the radius r̂þ is within
the region of stability. This situation is illustrated in
Fig. 36.
The analysis of the energy of test particles with L ¼ 0 is

presented in Fig. 37. For the stable particles that are
situated on the radius r̂þ we can note that the energy is
always positive and finite. The maximum value of the

energy is reached at the ratio a=M ¼ 3
ffiffiffi
3

p
=4 and the

minimum value with Eðr̂þÞ ! 0 corresponds to the limit
of the extreme black hole a=M ! 1.
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FIG. 31. The radii r�lsco of the last stable circular orbits are
plotted as functions of the intrinsic angular momentum a in the

interval M< a< 3
ffiffi
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p
4 M. The radii ra and r̂� are also plotted.

The particle angular momentum L� is also denoted for some
particular radii.
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FIG. 33. Angular momentum and energy of circular orbits in a Kerr naked singularity with a ¼ 1:1M. The dots denote the position
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FIG. 34. The effective potential of a naked singularity with a ¼ 1:1M for fixed values of the particle angular momentum L=ðM�Þ.
The radii ra and r̂� are also plotted. The dots denote the critical points of the potential. Numbers close to the dots indicate the energy
V=� of the maxima and minima of the effective potential. The dash-dotted gray line represents the outer boundary of the ergosphere
r0þ ¼ 2M.
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D. Summary of the naked singularity
and black hole cases

In the investigation of the circular motion of test parti-
cles around a Kerr naked singularity we found that it is

necessary to analyze separately the two regions a � 3
ffiffi
3

p
4 M

and M< a< 3
ffiffi
3

p
4 M. The distribution of orbits depends on

the position of the special radii r̂�, given by Eq. (37), ra,
given by Eq. (33), and the position of the last stable circular
orbits rþlsco, as given in Eq. (28), ~r�lsco as given in Eq. (43),

and �rlsco, as given in Eq. (34). Notice that although the
radius �rlsco is the geometric continuation of the radius ~r�lsco

for the interval a=M > 3
ffiffiffi
3

p
=4, their values are determined

by different analytical expressions as follows from
Eqs. (28) and (34). The arrangement of these radii in the
interval 1< a=M < 1:7 is depicted in Fig. 38.
Tables II and III summarize the distribution and stability

properties of test particles in circular motion in the field of
a rotating naked singularity for the two different regions of
values of the intrinsic angular momentum.
For the sake of completeness, we show in Fig. 39 the

behavior of the energies Eþ
lsco ¼ EðrþlscoÞ and E�

lsco ¼
Eðr�lscoÞ and angular momenta Lþ

lsco ¼ LðrþlscoÞ and L�
lsco ¼

Lðr�lscoÞ, for the last stable circular orbits in terms of the
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FIG. 35. The effective potential of a Kerr naked singularity with angular momentum parameter a ¼ 1:1M and a ¼ 2M is plotted for
the particle orbital angular momentum L=ðM�Þ ¼ 0 as a function of the radius r=M. The radii ra and r̂� are also plotted for both cases
(see text). The dots represent the critical points of the potential, and the numbers close to the dots indicate the energy V=� of the
maxima and minima of the effective potential. In the case a ¼ 2M no extreme points are observed in the potential.
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singularity with 1< a=M � 3

ffiffiffi
3

p
=4. The picture plots the locus

of the critical points of the effective potential V=� with (parti-
cle) angular momentum L=ðM�Þ ¼ 0. The radius of these
‘‘circular’’ orbits is plotted as a function of the source angular
momentum a=M. Numbers close to the dots indicate the value of
the energy V=�.
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FIG. 37. The energy particles with L ¼ 0 in a naked singular-
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=4. The orbits are located on the radii

r ¼ r̂þ (stable) and r ¼ r̂� (unstable). The energies Eðr̂þÞ (solid
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tions of the intrinsic angular momentum a=M. It is possible to
see that Eðr̂þÞ<Eðr̂�Þ for 1< a=M < 3

ffiffiffi
3

p
=4, and Eðr̂þÞ ¼

Eðr̂�Þ for a=M ¼ 3
ffiffiffi
3

p
=4.
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ratio a=M of the naked singularity. Notice that, as expected
from a physical viewpoint, for a fixed value of the ratio
a=M the energy of the exterior last stable circular orbit
EðrþlscoÞ is always smaller than the corresponding energy of

the interior particle Eðr�lscoÞ.
Our analysis of Kerr black holes and naked singularities

shows that the properties of circular orbits depend strongly
on their radial distance with respect to the central source.
The critical radii that are found in the analysis of the
conditions for circular motion determine the angular
momentum and the energy of the test particles. The ar-
rangement of those special radii and the positions of the
last stable circular orbits is depicted in Fig. 40 for the
relevant ranges of the ratio a=M.
The radii ra, r
, r̂þ, and r̂� determine the angular

momentum and direction of rotation of test particles at a
given distance from the central source. In addition, the
radii r�lsco determine the position of the last stable circular

orbits with a given angular momentum of the test
particle.
If we imagine an infinitesimal thin disk made of test

particles in circular orbits around the central compact
object, the above results show that the geometric structure
of the disk is sufficient to distinguish between black holes
and naked singularities. For such a hypothetical disk to be
a meaningful approximation of a physically realizable
disk, it is necessary that the individual particle orbits be
stable with respect to infinitesimal perturbations. In the
case of radial perturbations, stability is guaranteed as a
consequence of the fact that the disk is made of stable
particles in circular motion, as described above. As for
perturbations out of the equatorial plane, the analysis of
stability has been performed by using the geodesic equa-
tions [41], the phase space method [42], and the Rayleigh
criterion [43,44]. Although the last method has been
applied only to static central sources, the generalization
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FIG. 38. The radii rlsco of the turning points of the effective
potential and the special radii ra and r̂� are plotted as functions of
the ratioa=Mwithin the interval [1, 1.7]. The dash-dotted gray line
represents the outer boundary of the ergosphere r0þ ¼ 2M.

TABLE II. Distribution and stability properties of circular
orbits for a test particle in a Kerr naked singularity with M<
a< ð3 ffiffiffi

3
p

=4ÞM. For each region we present the value of
the orbital angular momentum of the particle as determined by
Eq. (15).

Case: M< a< ð3 ffiffiffi
3

p
=4ÞM

Region Angular momentum Stability

�0; r̂�½ L� ~rlsco
�r̂�; r̂þ½ �L� ~rlsco
�r̂þ;1½ L� ~rlsco
�ra;1½ �Lþ rþlsco
�0; r̂�½ L� Unstable

�r̂�; ~rlsco½ �L� Unstable

�~rlsco; r̂þ½ �L� Stable

�r̂þ; ra½ L� Stable

�ra; rþlsco½ L�ð�LþÞ Stable (Unstable)

�rþlsco;1½ ðL�;�LþÞ Stable

TABLE III. Distribution and stability properties of circular orbits for a test particle in a Kerr
naked singularity with a � ð3 ffiffiffi

3
p

=4ÞM. For each region we present the value of the orbital
angular momentum of the particle as determined by Eq. (15).

Case: a � ð3 ffiffiffi
3

p
=4ÞM

Region Angular momentum Stability

�0;1½ L� �rlsco
�ra;1½ �Lþ rþlsco

ð3 ffiffiffi
3

p
=4ÞM< a< 9Mð�rlsco < ra < rþlscoÞ

�0; �rlsco½ L� Unstable

��rlsco; ra½ L� Stable

�ra; rþlsco½ L�ð�LþÞ Stable (Unstable)

�rþlsco;1½ ðL�;�LþÞ Stable

a � 9Mðra < �rlsco < rþlscoÞ
�0; ra½ L� Unstable

�ra; �rlsco½ ðL�;�LþÞ Unstable

��rlsco; rþlsco½ L�ð�LþÞ Stable (Unstable)

�rþlsco;1½ ðL�;�LþÞ Stable
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to include rotating sources seems to be straightforward.
All those methods show that equatorial circular orbits
around a Kerr black hole are stable under out-of-equato-
rial-plane perturbations as long as the angular momentum
per unit mass of the test particles increases monotonically
as the distance to the axis of symmetry increases. A
complementary analysis must be performed in the case
of naked singularities; however, a brief inspection of the
analytical results obtained by using the phase space
method seems to indicate that the stability does not de-
pend drastically on the mass-to-angular-momentum ratio
of the central body. In general, one can expect that the
stability with respect to radial and out-of-equatorial-plane
perturbations depends on the ratio of source rotation to
particle angular momentum.

V. CONCLUSIONS

In this work, we investigated the circular motion of test
particles around a rotating central mass whose gravitational
field is described by the Kerr spacetime. We limit ourselves
to the study of circular orbits situated on the equatorial
plane � ¼ �=2. First, we derive the conditions for the
existence of circular orbits by using the fact the geodesic
motion in this case can be reduced to the motion of test
particles in an effective potential. In this procedure, two
constants of motion arise, E and L, which are interpreted as
the energy and the angular momentum of the test particles,
respectively. We concentrate on the analysis of the condi-
tions for the existence of circular orbits and their conse-
quences for the values of the energy and angularmomentum
of the test particles. Our analysis covers completely the
range of values of the intrinsic angular momentum of the
central mass, including black holes and naked singularities.
We find all the regions of the equatorial planewhere circular
motion is allowed and analyze the behavior of the energy
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momentum of the naked singularity.
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and the angular momentum of the test particles in those
regions.Moreover, the stability properties of all the allowed
circular orbits were investigated in detail.

For our analysis we consider separately the case of
black holes with ratio a=M � 1 and naked singularities
a=M > 1, whereM is the mass and a is the specific angular
momentum J=M of the central body. Moreover, in the case
of naked singularities it turns out that the physical proper-
ties of the circular motion depend on the value of the ratio
a=M so that it is necessary to explore two different ranges:

1< a=M < 3
ffiffiffi
3

p
=4 and a=M > 3

ffiffiffi
3

p
=4. The essential part

of our results can be formulated in a plausible manner by
using the model of an accretion disk made of stable test
particles which are rotating around the central mass.

In the case of a black hole (a=M � 1), we find that the
accretion disk is composed of an interior disk situated
within the radii ½r�lsco; rþlsco� and an exterior disk in the

region r>rþlsco, where r
�
lsco represent the radius of the last

stable circular orbit with angular momentum L ¼ �L�;
moreover, the value of L� depends on the radius r of the
circular orbit and on the ratio a=M of the central body
[cf. Eq. (15)]. A similar accretion disk is found around

naked singularities with a=M > 3
ffiffiffi
3

p
=4. The only differ-

ence is that in the case of a naked singularity the interior
disk, situated within the radii ½ �r�lsco; rþlsco�, has a minimum

size of rþlsco � �r�lsco > 8M, whereas in the case of a black

hole the size of the inner disk is always less than 8M and
disappears as a ! 0.

For naked singularities in the range 1< a=M � 3
ffiffiffi
3

p
=4

we find that the stable accretion disk is composed of three
different disks. The internal disk is situated between the
radii ~r�lsco and r̂þ < rþlsco and is made of stable counter-

rotating particles with angular momentum L ¼ �L�. The
radius r̂þ corresponds to circular orbits with zero angular
momentum [V ¼ E=�, V0ðrÞ ¼ 0, L ¼ 0]. A second disk
made of stable corotating particles with angular momen-
tum L ¼ L� is situated in the region r̂þ < r < rþlsco.
Finally, the exterior stable disk is situated in the region
r > rþlsco and contains corotating particles with L ¼ L�
and counterrotating particles with L ¼ �Lþ. We conclude

that the main difference between a rotating black hole and
a rotating naked singularity consists in the different geo-
metric structure of their accretion disks.
The study of the dynamics of test particles around

compact rotating objects is surely interesting from the
point of view of the astrophysical phenomenology.
However, an immediate application of this study will be
in the physics of the accretion disks as observed around
astrophysical rotating objects (see [45–47] and also
[39,48–50]; for the problem concerning the extended
theories of gravity see, for example, [51]). The matter
constituents, plasma elements, are the material of the
electromagnetic jets as seen in the x-ray and 
-ray emis-
sions. In this respect, a detailed and proper description of
the test particle dynamics is the first step towards the
construction of a realistic model for accretion disks around
Kerr sources (see [39,52–54], and also [55,56]).
In this work, we also explored the physics of naked

singularities (see also [10–12,57]). As no naked singularity
has been yet observed and furthermore the existence of
these objects is still a subject under intensive theoretical
debate, the analysis of the dynamical properties of these
objects is clearly important either for a formalization of a
complete theoretical picture of the physical features of
these solutions or for observational issues [58–63] (see
also [64,65]). We expect to generalize this work to include
the physical contribution of a charged source, therefore,
exploring the Kerr-Newman metric which properly de-
scribes the spacetime of a rotating, electrically charged,
compact object in general relativity [14].
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