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We considered the behavior of Dirac fermion modes in the background of a Euclidean dilaton black

hole with an Abelian Higgs vortex passing through it. Fermions were coupled to the fields due to the

superconducting string model. The case of nonextremal and extremal charged black holes in the theory

with an arbitrary coupling constant between the dilaton field and Uð1Þ-gauge field was considered. We

elaborated the cases of zero and nonzero Dirac fermion modes. One finds evidence that the system under

consideration can support fermion fields acting like a superconducting hair on a black hole in the sense

that a nontrivial spinor field configuration can be carried by a Euclidean spherically symmetric charged

dilaton black hole. It was revealed that the localization of Dirac fermion modes depended on the cosmic

string winding number and the value of black hole surface gravity.
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I. INTRODUCTION

In recent years, studies of a much more realistic case
than scalar fields have attracted more attention. In particu-
lar, the solution of field equations describing fermions in a
curved geometry is one of the theoretical tools of inves-
tigating the underlying structure of spacetime. A better
understanding of the properties of black holes also requires
examination of the behavior of matter fields in the vicinity
of them [1]. Dirac fermions’ behavior was studied in the
context of Einstein-Yang-Mills background [2]. Fermion
fields were analyzed in the near-horizon limit of an
extreme Kerr black hole [3] as well as in the extreme
Reissner-Nordström (RN) case [4]. It was also revealed
[5,6] that the only black hole solution of four-spinor
Einstein-dilaton-Yang-Mills equations was those for
which the spinors vanished identically outside a black
hole. Dirac fields were considered in Bertotti-Robinson
spacetime [7,8] and in the context of a cosmological
solution with homogeneous Yang-Mills fields acting as
an energy source [9].

The late-time decay of fermion fields in the background
of various kinds of black holes is an important problem
from the point of view of the uniqueness theorem for them.
The late-time behavior of massless and massive Dirac
fermion fields was widely studied in spacetimes of static
as well as stationary black holes [10–16].

Brane models in which our Universe is represented as a
(3þ 1)-dimensional submanifold living in higher dimen-
sional spacetime also attract the attention to brane black
holes. The decay of massive Dirac hair on a brane black
hole was considered in [17].

It could have happened that at the beginning our
Universe underwent several phase transitions. The mecha-
nism of spontaneous symmetry breaking involved in the

early Universe phase transitions might have produced sta-
ble topological defects like cosmic strings, monopoles, and
domain walls [18]. Among them cosmic strings and cosmic
string black hole systems have acquired much interest.
Assuming a distributional mass source, the metric of this
system was derived in [19] (the so-called thin string limit).
In Ref. [20] the numerical and analytic evidence for the
existence of an Abelian Higgs vortex on a Schwarzschild
black hole was given, while in Refs. [21,22] the extensions
of the aforementioned arguments to the case of a charged
RN black hole and dilaton black holes were performed. It
was also found that an analog of the Meissner effect (i.e.,
the expulsion of the vortex fields from the black hole)
could take place. It happened that this phenomenon occurs
for some range of black hole parameters [23]. On the
contrary, extremal dilaton black holes always expel vortex
Higgs fields from their interior [24]. A very similar situ-
ation takes place in the case of the other topological defect,
a domain wall which can be expelled from various kinds of
black holes [25].
There are some cosmic strings which may become

superconducting by the implementation of fermions.
They may be responsible for various exotic astrophysical
phenomena. For instance, closed superconducting loops,
the so-called vortons [26], may constitute a fraction of cold
dark matter in the galactic halo, and their slow quantum
decays may be connected with the ultrahigh energy cosmic
rays [27]. To everyone’s dismay, it turned out that also the
high-redshift gamma-ray bursts could be a reasonable way
to test the superconducting string model [28].
In Ref. [29] it was revealed that the Euclidean vortex

solution in the spacetime of a black hole led to the non-
perturbative exponential decay of an electric field outside
the event horizon of a Schwarzschild black hole. It was
shown [30] that a Euclidean Schwarzschild black hole
could support a vortex solution at the event horizon. In
Ref. [31] the generalization of the above problem to the
case of Einstein-Maxwell-dilaton gravity was proposed.
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On the other hand, in Ref. [32] it was observed that the
Dirac operator in the spacetime of the system composed of
a Euclidean magnetic RN black hole and a vortex in the
theories containing superconducting cosmic strings [33]
possessed zero modes. In turn, the aforementioned zero
modes caused the fermion condensate around the magnetic
RN black hole.

The motivation of our paper was to provide some con-
tinuity of the research presented in Ref. [32] and to gen-
eralize it to the theory constituting the modification of
the Einstein-Maxwell theory, the so-called dilaton gravity
being the low-energy limit of the heterotic string theory. In
dilaton gravity one has to work with the nontrivial coupling
of the dilaton field with the Uð1Þ-gauge field. Our consid-
erations will be valid for an arbitrary coupling constant. In
our research we shall consider a static spherically charged
black hole solution in dilaton gravity which has quite a
different topological structure than the one studied in [32].
Contrary to the research conducted in the aforementioned
reference we shall not only pay attention to Dirac zero
fermion modes but we shall elaborate the nonzero fermion
modes in the underlying spacetime. To our knowledge,
the problem of nonzero Dirac fermion modes in the space-
time of the black hole cosmic string system has not been
studied before. We will also pay attention to the near-
horizon behavior of fermionic fields causing superconduc-
tivity in the case of an extremal charged dilaton black
hole. As was mentioned before, in the spacetime of an
extremal dilaton black hole one can observe the analog of
the Meissner effect.

The layout of our paper will be as follows. In Sec. II we
start with a discussion of the vortex itself in the background
of the Euclidean dilaton black hole being the static solution
of dilaton gravity equations with an arbitrary �-coupling
constant. Section III will be devoted to the superconduct-
ing cosmic string piercing the black hole in question. We
shall elaborate the behavior of zero Dirac fermion modes
both on a nonextremal and extremal Euclidean dilaton
black hole. In Sec. IV we take into account fermion modes
for the case when k > 0 on the same kinds of black holes.
We find that Dirac fermion modes may be regarded as hair
on the considered black holes. In the next section we
conclude our studies.

II. EUCLIDEAN DILATON BLACK
HOLE/ABELIAN HIGGS VORTEX SYSTEM

In the following section we shall consider a Euclidean
charged dilaton black hole/string vortex configuration. One
assumes the complete separation between the degrees of
freedom of each of the objects in question. We shall treat a
static charged dilaton black hole line element as the back-
ground solution and numerically justify the existence of
the vortex solution, for an arbitrary coupling constant in the
considered theory.

The system under consideration will be described by the
action of the form as

S ¼ S1 þ Sbos; (1)

where S1 is the dilaton gravity action being the low-energy
limit of the string action with an arbitrary coupling con-
stant. It is provided by

S1 ¼
Z ffiffiffiffiffiffiffi�g

p
d4x½R� 2ðr�Þ2 � e�2��F��F

���; (2)

where F�� ¼ 2r½�A��, � is the dilaton field, and � is a

coupling constant which determines the interaction be-
tween dilaton and Abelian gauge fields. In action S1, the
corresponding Abelian gauge field can be thought of as the
everyday Maxwell one.
The other gauge field is hidden in the action Sbos and it is

subject to the spontaneous symmetry breaking. Its action
implies

Sbos ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
�ðd��Þyd��� 1

4
B��B

��

� �

4
ð�y�� �2Þ2

�
; (3)

where B�� ¼ 2r½�B�� is the field strength associated with

the B�-gauge field, � is the energy scale of symmetry

breaking, and � is the Higgs coupling. The covariant
derivative has the form d� ¼ r� þ ieRB�, where eR is

the gauge coupling constant.
The line element of the general static spherically sym-

metric Euclidean dilaton black hole yields

ds2 ¼ A2d�2 þ B2dr2 þ C2ðd	2 þ sin2	d�2Þ; (4)

where in order to Euclideanize the metric we set the
Euclidean time as t ! i�. For the case when BðrÞ2 ¼
1=AðrÞ2, the explicit forms of the metric coefficients are
as follows:

A2 ¼
�
1� rþ

r

��
1� r�

r

�ð1��2Þ=ð1þ�2Þ
; (5)

C2 ¼ r2
�
1� r�

r

�
2�2=ð1þ�2Þ

; (6)

where rþ, r� are related to the mass and charge Q of the
black hole due to the relations

2M ¼ rþ þ 1� �2

1þ �2
r�; (7)

Q2 ¼ rþr�
1þ �2

: (8)

On the other hand, the dilaton field is given as

e2�� ¼
�
1� r�

r

�
2�2=ð1þ�2Þ

: (9)
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The location of the event horizon is r ¼ rþ. The r ¼ r� is
another singularity, but one can ignore it for r� < rþ.
Having in mind the above charged dilaton black hole
solution one can see that the structure of the black hole
in question is drastically changed due to the presence of the
dilaton field. Moreover, the arbitrary �-coupling constant
is the other nontrivial element in the studies. Recently, the
numerical studies of the dynamical collapse of the complex
charged scalar field [34] reveal that due to the coupling
between the dilaton andUð1Þ-gauge field the collapse leads
to the Schwarzschild black hole rather than the collapse of
the charged field in Einstein-Maxwell gravity—though,
when one puts the coupling constant to zero we obtain
the behavior leading to a black hole with a Cauchy horizon.

Treating a nonlinear system coupled to gravity is a very
difficult problem but it is worth mentioning that it was
found in Refs. [20–24] that the self-gravitating Nielsen-
Olesen vortex can act as a long hair for various kinds of
black holes. In what follows, we refine our attention to the
vortex itself and elaborate its behavior in the background
of a Euclidean dilaton black hole in the theory with the
arbitrary coupling constant �. To begin with we choose X
and P fields provided by the expressions

�ðxiÞ ¼ �XðrÞeiN�
; (10)

B�ðxiÞ ¼ 


eR
½P�ðrÞ � Nr���; (11)

where 
 ¼ 1
2 ½@rA2ðrÞ�r¼rþ is the surface gravity of the

Euclidean dilaton black hole. Further, we assume that B�

is the only nonvanishing coefficient of the gauge field
which is subject to the spontaneous symmetry breaking.

Let us introduce quantities defined by

ffiffiffiffi
�

p
�ðM;QBH; r; rþ; r�; 
Þ � ð �M; �QBH; �r; �rþ; �r�; �
Þ:

(12)

Taking the background solution as the spacetime of the
Euclidean charged dilaton black hole, one reaches the
following equations of motion for X and P fields:

1

C2
ðC2A2X;�rÞ;�r � �
2 P

2X

A2
� 1

2
XðX2 � 1Þ ¼ 0; (13)

1

C2
ðC2P;�rÞ;�r � 1

�

X2P

A2
¼ 0; (14)

where we denoted � ¼ �
2e2R

. The above equations can be

rearranged in the forms which imply

�
1� �rþ

�r

��
1� �r�

�r

�ð1��2Þ=ð1þ�2Þ d2

d�r2
Xþ

�
2

�r
þ 2�2

1þ �2

�r�
�r

� 1

�r� �r�
þ 1

�r2

�
1� �r�

�r

�ð1��2Þ=ð1þ�2Þ

�
�
�rþ þ �r�

1� �2

1þ �2

�r� �rþ
�r� �r�

��
d

d�r
X

� �
2

�
�r

�r� �rþ

��
�r

�r� �rþ

�ð1��2Þ=ð1þ�2Þ
P2X

� 1

2
XðX2 � 1Þ ¼ 0; (15)

d2

d�r2
Pþ

�
2

�r
þ 2�2

1þ �2

�r�
�r

1

�r� �r�

�
d

d�r
P

�
�

�r

�r� �rþ

��
�r

�r� �r�

�ð1��2Þ=ð1þ�2Þ PX2

�
¼ 0: (16)

We solve this set of equations numerically using the re-
laxation technique [35]. As in Ref. [32] we shall work in
the so-called supersymmetric limit when � ¼ 1. The be-
havior of the fields in question is depicted in Figs. 1 and 2,
respectively. For the completeness of the studies we also
plotted in Fig. 3 the � dependence of the surface gravity. It
can be seen that the bounded solution at the event horizon
for the P field integrated out the exponentially decaying at
infinity while the X field tends to the constant value equal
to 1 at infinity. We take the coupling constant equal to 0.0,
0.5, 1.0, 1.5, respectively. On the other hand, the charge
of the considered black hole was taken as QBH ¼
0:96QBH max, whereQBH max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
M. In our numeri-

cal analysis we set r=rþ as the radial coordinate for the
Euclidean black hole in question. For the flat spacetime we
chose the ordinary r coordinate. We obtained a perfect
agreement with the previous numerical studies for the
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FIG. 1. Plot of the gauge field P for the different values of the
coupling constant �. QBH max is the charge of the extreme black

hole, given by QBH max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
M. The cosmic string wind-

ing number is equal to 1.0.
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case � ¼ 0, Ref. [30], and when � ¼ 1, Ref. [31]. Our
numerical investigations reveal that the larger coupling
constant � is, the quicker field P tends to zero. For the
other vortex field X the conclusion is similar; i.e., the larger
the value of � one considers, the quicker field X tends to
the constant value equal to 1.

III. FERMIONS IN THE EUCLIDEAN DILATON
BLACK HOLE BACKGROUND

In Ref. [33] it was shown that cosmic strings can behave
like superconductors and are able to carry electric currents.
In principle there are two varieties of superconducting
strings, i.e., fermionic or bosonic. In the fermionic case
superconductivity takes place due to the appearance of
charged Jackiw-Rossi [36] zero modes which effectively
can be regarded as Nambu-Goldstone bosons in 1þ 1
dimensions. They give a longitudinal component to the
photon field on the cosmic string, and may be trapped in

the string as massless zero modes. On the other hand,
bosonic superconductivity occurs when a charged Higgs
field acquires an expectation value in the core of the cosmic
string. In this case the current in the aforementioned object
is carried by bosonic modes.
In this section we shall consider a fermionic supercon-

ducting cosmic string piercing a Euclidean charged dilaton
black hole. As was mentioned above, it turned out that it is
possible for the currents to be carried by fermionic degrees
of freedom confined to the cosmic string core [33]. If one
takes into account the electromagnetic one, then the cos-
mic string will behave as superconducting. It can be
performed by extending the Uð1Þ �Uð1Þ Lagrangian by
adding the following fermionic sector:

SFE ¼
Z ffiffiffiffiffiffiffi�g

p
d4x½ �c��D�c þ ����D��

þ i~�ð�c TC���� �cC ��TÞ�; (17)

where ~� is a coupling constant while the Dirac operator
satisfies the relation of the form as

D� ¼ r� þ iReRB� þ iQeqA�: (18)

We take that A� ¼ A� ¼ �qM cos	. The covariant deriva-

tive for spinor fields is given by the standard relation
r� ¼ @� þ 1

2!
ab
� �a�b. Dirac gamma matrices forming

the chiral basis for the problem in question yield

�0 ¼ 0 I
I 0

� �
; �a ¼ 0 ia

�ia 0

� �
; (19)

where the Pauli matrices are provided by

0 ¼ 1 0
0 1

� �
; 1 ¼ 0 1

1 0

� �
; (20)

2 ¼ 0 �i
i 0

� �
; 3 ¼ 1 0

0 �1

� �
: (21)

Moreover, the charge conjugation matrix implies

C ¼ �i2 0
0 i2

� �
; (22)

Cy ¼ CT ¼ �C: (23)

In what follows we consider the line element of the
Euclidean spherically symmetric static black hole with a
vortex passing through it. Its metric is given by (4), with
the line element on the S2 sphere defected by the presence
of the vortex. Hence, it yields

d�2 ¼ C2ðrÞðd	2 þ ~b2 sin	2d�2Þ; (24)

where ~b ¼ 1� 4� is a cosmic string parameter.
For the above metric the curved spacetime gamma ma-

trices are related to those given by Eq. (19) by the relations
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FIG. 2. Plot of the gauge X for the different values of the
coupling constant � and for the winding number N ¼ 1:0.
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�� ¼ A�1 0 I
I 0

� �
; �r ¼ B�1 0 i1

�i1 0

� �
; (25)

�	 ¼ C�1 0 i2

�i2 0

� �
;

�� ¼ 1

C~b sin	

0 i3

�i3 0

� �
:

(26)

In the spacetime under consideration spinors c and � and
their complex conjugations must be regarded as indepen-
dent fields. Following this idea, variation of the fermion
action SFE with respect to c and � fields implies the
following equations of motion,

��D�c � i~���C ��T ¼ 0;

��D� ��y � i~���Cc � ¼ 0;
(27)

plus the analogous relations achieved by conjugations of
the adequate relations in question.

With the above definitions one finds the exact form of
the Dirac operator. Accordingly, it yields the result that

6D ¼ ��D� ¼ 0 Dþ
D� 0

� �
; (28)

where we have denoted by Dþ and D� the following parts
of the Dirac operator defined above:

Dþ ¼ �D� þ ikDk; (29)

D� ¼ �D� � ijDj: (30)

Consequently, with the remark that in Euclidean spacetime
c and �c must be treated as independent fields, we implic-
itly choose c and � as left-handed, while �c and �� are
right-handed. Namely, they can be brought to the forms

c ¼ c L

0

� �
; � ¼ �L

0

� �
; (31)

�c ¼ 0
c R

� �
; �� ¼ 0

�R

� �
: (32)

Returning to the equations of motion, they can be
rewritten as

Dþc R þ i~���ð�i2��
LÞ ¼ 0;

D��L þ i~���ði2c �
RÞ ¼ 0:

(33)

As in Ref. [32] we choose the following forms of c and �
spinors:

c L ¼ fL��; �R ¼ gR�þ; (34)

c R ¼ fR��; �L ¼ gL�þ; (35)

where �� we choose as the right- and left-handed ones.
They obey the relation of the form as i23�� ¼ ���,
which ensures that fermions propagate along the cosmic

string. On the other hand, taking into account the normal-
ization conditions h��j��i ¼ 1, one arrives at the explicit
form of ��. Namely, they may be written in the form as

�þ ¼ 1ffiffiffi
2

p 1
�1

� �
; �� ¼ 1ffiffiffi

2
p 1

1

� �
: (36)

By virtue of the above, one can readily verify that they
satisfy the following:

i1�� ¼ �i��; �i2�� ¼ ���; (37)

3�� ¼ ��; 0�� ¼ ��: (38)

IV. S WAVES

First of all, we shall elaborate the s-wave case. The
behavior of the Dirac operator acting on the S2 sphere
with a magnetic monopole and pierced by an Abelian
vortex will be crucial in this case. Namely, on evaluating
the action of the Dirac operator DS2 on the �þ spinor, we
find that it is proportional to ��. Having in mind the
orthogonality condition for �� one can draw the conclu-
sion that the only admissible eigenvalue of k is k ¼ 0.
Taking into account the explicit form of the Dirac operators
and Eqs. (34)–(37), after a little algebra, equations of
motion (33) reduce to

A�1ði@� þ R
ðP� NÞÞf�R þ
�
B�1@r � 1

2
A�1B�1@rA

þ B�1C�1@rC

�
f�R þ ~��gL ¼ 0; (39)

and

A�1ð�i@� þ R
ðP� NÞÞgL þ
�
B�1@r þ 1

2
A�1B�1@rA

þ B�1C�1@rC

�
gL þ ~���f�R ¼ 0: (40)

In what follows we assume that the time dependence of gL
and fR will be of the form gLð�; rÞ ¼ e�i!g�gLðrÞ and
fRð�; rÞ ¼ e�i!f�fRðrÞ, where !f=g�C. The explicit form

of the field � given by Eq. (10), as well as Eqs. (39) and

(40), enables us to deduce that e�i!g� ¼ e�iN
�ei!
�
f
�.

Consequently, it leads to the condition

!g ¼ N
�!�
f: (41)

As was argued in Ref. [32] the action of the operators R and
Q appearing in the definition of the covariant derivative
given by Eq. (18) can be defined as Rf ¼ ~rf and Rg ¼
�ð~rþ 1Þg, while Qf ¼ qf and Qg ¼ �qg. On this ac-
count it is customary to rewrite equations of motion as
follows:

EUCLIDEAN DILATON BLACK HOLE VORTEX AND DIRAC . . . PHYSICAL REVIEW D 84, 044029 (2011)

044029-5



A�1ð�!�
f þ ~r
ðP� NÞÞf�R þ

�
B�1@r � 1

2
A�1B�1 d

dr
A

þ B�1C�1 d

dr
C

�
f�R þmferXgL ¼ 0; (42)

A�1ð�N
þ!�
f � ð~rþ 1Þ
ðP� NÞÞgL þ

�
B�1@r

þ 1

2
A�1B�1 d

dr
Aþ B�1C�1 d

dr
C

�
gL þmferXf

�
R ¼ 0;

(43)

where for brevity we have denoted mfer ¼ ~��.

A. Nonextremal Euclidean dilaton black hole

First we elaborate the behavior of Dirac fermions in the
vicinity of the black hole event horizon. We shall begin
with considering the nonextremal case of the dilaton
Euclidean black hole. Condition AðrþÞ ¼ 0 determines

the outer black hole event horizon, while C2ðrþÞ ¼ A
4� ,

A is the area of the event horizon. Having in mind the
form of the line element (4), we assume the regularity of
the solution at rþ. On this account, we can choose locally
cylindrical coordinates in which the aforementioned metric
is regular. Namely, one has that r̂ ¼ �E=2�AðrÞ, where�E

is the period of the Euclidean time. Moreover, regularity
yields that ðA2Þ0jrþ ¼ 4�

�E
: To proceed further, let us suppose

that f�R and gL are provided by the following:

f�R ¼ xþðr̂Þ exp
�Z �

1

2

ðP� NÞ

A

�mferX

�
dr̂þ i!�

f�

�
;

(44)

gL ¼ x�ðr̂Þ exp
�Z �

1

2

ðP� NÞ

A

�mferX

�
dr̂� i!�

g�

�
:

(45)

It helps us to rewrite the equations of motion (42) and (43)
in the form

d

dr̂
x� �

�
~rþ 1

2

� ðP� NÞ
r̂

x� � 1

r̂

�
!� � 1

2

�
�mferXðx� � xþÞ ¼ 0; (46)

where we set !þ ¼ !�
f=
 and !� ¼ !g=
.

One can draw a conclusion that f�R and gL are of the
order of unity as we reach the event horizon, i.e., r̂ ! 0.
They can be regarded as hair on the Euclidean dilaton
black hole in the sense of the nontrivial field configurations
maintained by the black hole event horizon. The same
observation was revealed in the case of the Euclidean RN
black hole solution pierced by superconducting string [32].
Returning to the relations (46), we observe that they re-
semble equations of motion obtained for cosmic string
with fermion modes in flat Minkowski spacetime [32].

An alternative way of treating the problem is to expand
the metric coefficients of the considered line element in the
vicinity of the black hole event horizon. They will be given
by the following:

A2ðrÞ ’ aðrþÞðr�rþÞ; B2ðrÞ ’ bðrþÞðr� rþÞ�1;

C2ðrÞ ¼ C2ðrþÞ: (47)

Next, changing the variables described by the relations

�2 ¼ 4bðrþÞðr� rþÞ; T ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
aðrþÞ
bðrþÞ

s
�; (48)

it can be shown that the line element of the nonextremal
Euclidean black hole yields

ds2 ¼ �2dT2 þ d�2 þ C2ðrþÞd�2: (49)

On the other hand, the asymptotic behavior of the back-
ground solutions subject to the equations of motion for
Abelian vortex fields are provided by [20,32]

X� ðr� rþÞjNj=2 ¼ �jNj;

P� N �Oðr� rþÞ ¼ N þOð�2Þ:
(50)

Returning to the equations of motion for the Dirac fermion,
one can easily verify by the above relations that they
reduce to the forms

d

d�
f�R �

�!�
f þ 1

2

�

�
f�R þmfer�

jNjgL ¼ 0; (51)

d

d�
gL þ

��N
þ!�
f þ 1

2

�

�
gL þmfer�

jNjf�R ¼ 0: (52)

It will be interesting to consider the influence of the wind-
ing number N on the behavior of the fermion modes in
question. We shall elaborate two limiting cases of the
aforementioned problem, i.e., the case when jNj 	 1 and
the case for which the winding number tends to 1.
We shall begin with the case jNj 	 1. The close in-

spection of formulas (51) and (52) reveals that the mass

term proportional to �jNj can be neglected because of the
fact that � ! 0 near the black hole event horizon. On this
account, one has

d

d�
f�R �

�!�
f þ 1

2

�

�
f�R ¼ 0;

d

d�
gL þ

��N
þ!�
f þ 1

2

�

�
gL ¼ 0:

(53)

It can be easily checked that the solutions of the above set
of differential equations imply

f�R ¼ c1�
!�

f
þð1=2Þ; gL ¼ c2�

N
�!�
f
�ð1=2Þ; (54)

where c1 and c2 are constants.
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Consistent with the requirement of the finiteness of the
solutions in question on the black hole event horizon we
arrive at the condition

N
� 1

2

 Reð!fÞ 
 � 1

2
: (55)

It could be also verified, by the direct calculations, that gL
and fR belong to the square integrable class of functions,
i.e.,

R�
0

ffiffiffi
g

p
d�jgLj2 <1 and

R�
0

ffiffiffi
g

p
d�jfRj2 <1.

In the case when jNj � 1, equations of motion for the
Dirac fermion fields are as follows:

d

d�
f�R �

�!�
f þ 1

2

�

�
f�R þmfer�

jNjgL ¼ 0;

d

d�
gL þ

��!g þ 1
2

�

�
gL þmfer�

jNjf�R ¼ 0;

(56)

where we have used relation (41) to eliminate N depen-
dence in the second term on the left-hand side of Eq. (56).
In order to solve Eq. (56), we assume the following Ansatz
for the spinors f�R and gL:

f�R ¼ �!�
f
þð1=2Þ ~f; gL ¼ �N
�!�

f
�ð1=2Þ~g: (57)

Defining � ¼ jNj þ N
� 2!�
f � 1 and after a little of

algebra we get

d

d�
~fþmfer�

�~g ¼ 0;
d

d�
~gþmfer�

2jNj�� ~f ¼ 0:

(58)

From the first equation we find that ~g ¼ �1=mfer�
�� d

d�
~f.

Substituting the expression for d
d�

~f into the second equa-

tion of the underlying system, we reach the second order

differential equation for ~f; i.e., one gets

d

d�

�
��� d

d�
~f

�
�m2

fer�
2jNj�� ~f ¼ 0: (59)

Having in mind the explicit form of f�R and gL given
by (57), and the condition for �, one finds that

N
� 1

2

 Reð!fÞ 
 � 1

2
: (60)

After some further calculations in which we make use of
the so-called Lommel’s transformation for Bessel func-
tions, i.e., we look for the solution of Eq. (59) in the
form of

~f ¼ �pG�ð��aÞ; (61)

whereG� is the Bessel function while p, �, a are constants,
it can be shown that the solution of (59) can be written in
the form of

~f ¼ C1�
ð1þ�Þ=2I�

�
im

N þ 1
�Nþ1

�

þ C2�
ð1þ�Þ=2K�

�
im

N þ 1
�Nþ1

�
; (62)

where C1 and C2 are constants while �¼1þ�=2ðNþ1Þ.
I� stands for the modified Bessel function of the first kind
while K� is the Macdonald’s function. Assuming that
C2 ¼ 0 and having in mind the behavior of I� when
� ! 0, one can conclude that the spinor function near
the event horizon tends to the constant value described
by I0. This condition leads us to � ¼ �1 and to the
conclusion that for !�

f ¼ Nð1þ 
Þ=2 one gets the greatest
value of hair near the black hole event horizon.

B. Extremal dilaton black hole

In the following section we shall discuss zero fermion
modes in the background of the extremal Euclidean dilaton
black hole with a vortex passing through it. In the extreme
black hole case the outer event horizon coincides with the
inner one, i.e., r� ¼ rþ. In order to describe the system we
use coordinates given by relation (47)with the only modi-
fication in the C2ðrÞ coefficient. Because of the condition
for the black hole is an extremal one, we have

C2ðrÞ ¼ cðrþÞðr� rþÞ: (63)

By virtue of this relation the line element describing the
near-horizon geometry of the extremal Euclidean dilaton
black hole yields

ds2 ¼ �2dT2 þ d�2 þ cðrþÞ
4bðrþÞ�

2d�2: (64)

Thus, in this picture, equations of motion are provided by

d

d�
f�R þ

�
���1!�

f �
1

2
��1 þ ��1

�
f�R þmfer�

NgL ¼ 0;

d

d�
gL þ

�
��1ð�N
þ!�

fÞ þ
1

2
��1 þ ��1

�
gL

þmfer�
Nf�R ¼ 0: (65)

As in the previous case of the nonextremal Euclidean
dilaton black hole, we first we consider the jNj 	 1

case. The mass term proportional to �jNj � 0 will tend to
zero. Then, the solutions of (65) may be written in the
following form:

f�R ¼ d1�
!�

f
�ð1=2Þ; gL ¼ d2�

N
�!�
f
�ð3=2Þ; (66)

where d1 and d1 are constants. The finiteness and the
regularity conditions on the event horizon imply that the
following conditions are satisfied:

N
� 3

2

 Reð!fÞ 
 1

2
: (67)
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On the other hand, in the case when jNj � 1, equations of
motion may be rewritten in the form of

d

d�
f�R þ

�1�!�
f � 1

2

�

�
f�R þmfer�

NgL ¼ 0;

d

d�
gL þ

�3
2 � N
þ!�

f

�

�
gL þmfer�

Nf�R ¼ 0:

(68)

Introducing the Ansatz for fermion zero modes given by

f�R ¼ �!�
f
�ð1=2Þ ~f; gL ¼ �N
�!�

f
�ð3=2Þ~g; (69)

we obtain the same set of equations as described by rela-
tions (58). Having in mind formula (69) and the require-

ment of the finiteness of ~f and ~g on the black hole event
horizon, we reach the condition for Reð!fÞ. Thus, the
result is provided by

N
� 3

2

 Reð!fÞ 
 1

2
: (70)

For the completeness of our research we remark that by the
same procedure as we followed in the case of the nonex-
tremal Euclidean black hole we can cast the set of the first
order ordinary differential equations into the second order

one for ~f, which has a solution in terms of generalized
Bessel functions. The range of the parameters and conclu-
sions about hair on the extremal Euclidean dilaton black
hole is the same as in the nonextremal case.

V. k > 0 DIRAC FERMION MODES

Now, we turn our attention to the case when k > 0. Our
main aim will be to solve Eq. (33) and to discuss the
behavior of Dirac fermions in the case in question.
Spinors c and � are singled out in such a way to corre-
spond with the case k ¼ 0. Namely, one has that

i�2�3 ~�� ¼ �~��, where ~� is a linear combination of �.
It can be done by preferring the basis in the form

�0 ¼ 0 I
I 0

� �
; �1 ¼ 0 i3

�i3

� �
;

�2 ¼ 0 i2

�i2

� �
; �3 ¼ 0 i1

�i1

� �
:

(71)

Thus, the zero mode condition can be cast into i21 ~�� ¼
� ~��, which provides the following relation:

~�þ ¼ 1
0

� �
; ~�� ¼ 0

1

� �
: (72)

In the case under consideration, the exact form of the Dirac
operators will be given by the expressions

Dþ¼A�1ð@�þiRðP�NÞ
Þ0

þ
�
B�1@r�1

2
B�1A�1@rAþB�1C�1@rC

�
i3þDS2

C
;

(73)

D�¼A�1ð@�þiRðP�NÞ
Þ0

þ
�
�B�1@r�1

2
B�1A�1@rA�B�1C�1@rC

�
i3þDS2

C
;

(74)

where the Dirac operator on an S2 sphere with a magnetic
monopole pierced by an Abelian vortex yields

DS2 ¼ i2

�
@	 þ 1

2
cot	

�
þ 1

�
i@�
~b sin	

þQeM ~b�1 cot	

�
:

(75)

Moreover, the action of the DS2 operator on c and �
spinors implies

iDS2c ¼ kc ; iDS2� ¼ k�; (76)

where k are eigenvalues of the operator in question. As far
as spinors c and � are concerned, we set them to be linear

combinations of ~��:

c R ¼ fþ
f�

� �
; �L ¼ gþ

g�

� �
: (77)

By virtue of the above, equations of motion are provided
by the following relations:

A�1ð@� þ iRðP� NÞ
Þfþ þ
�
B�1@r � 1

2
A�1B�1@rA

þ B�1C�1@rC

�
ifþ � ik

C
fþ � i���g�� ¼ 0; (78)

A�1ð@� þ iRðP� NÞ
Þf� �
�
B�1@r � 1

2
A�1B�1@rA

þ B�1C�1@rC

�
if� � ik

C
f� þ i���g�þ ¼ 0; (79)

A�1ð@� þ iRðP� NÞ
Þgþ þ
�
�B�1@r � 1

2
A�1B�1@rA

� B�1C�1@rC

�
igþ þ ik

C
gþ þ i���f�� ¼ 0; (80)

A�1ð@� þ iRðP� NÞ
Þg� �
�
�B�1@r � 1

2
A�1B�1@rA

� B�1C�1@rC

�
ig� þ ik

C
g� � i���f�þ ¼ 0: (81)

In order to get the regular solutions on the Euclidean
black hole event horizon, we take only fþ and g� compo-
nents to be nonzero. Consequently, this choice reduces the
number of equations to the following set of equations:
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A�1ði@� þ ~rðP� NÞ
Þf�þ þ
�
B�1@r � 1

2
A�1B�1@rA

þ B�1C�1@rC� k

C

�
f�þ � ��g� ¼ 0; (82)

A�1ði@� þ ð~rþ 1ÞðP�NÞ
Þg� þ
�
�B�1@r

� 1

2
A�1B�1@rA�B�1C�1@rC� k

C

�
g� þ���f�þ ¼ 0:

(83)

The dependence on the Euclidean time will be given by
Eq. (41). First, we shall proceed to study equations of
motion for the nonextremal Euclidean dilaton black hole.
As in the preceding section when k ¼ 0, we study the
behavior of Dirac fermions near the event horizon of the
Euclidean dilaton black hole. Suppose that f�þ and g� yield

f�þ ¼ xþðr̂Þ exp
�Z �

1

2

ðP� NÞ

A

�mferX

�
dr̂þ i!�

f�

�
;

g� ¼ x�ðr̂Þ exp
�Z �

1

2

ðP� NÞ

A

�mferX

�
dr̂� i!g�

�
;

(84)

where r̂ is defined in the same manner as in the s-wave
case. In terms of the above relations the considered set of
equations implies

d

dr̂
x� �

�
~rþ 1

2

� ðP�NÞ
r̂

x� � 1

r̂

�
!� � 1

2

�
x� �

ffiffiffiffiffiffiffi
4�

A

s
kx�

�mferXðxþ þ x�Þ ¼ 0; (85)

where we set !þ ¼ !�
f


 and !� ¼ !g


 . As we take into

account that near the black hole event horizon AðrÞ ’
2�r̂=�E, one concludes that the situation is similar to the
zero mode case and the spinors in question are of order of
unity. Thus, they constitute hair on the considered
Euclidean black hole.

As in Sec. IVA, to proceed further, we expand the line
element in the vicinity of the black hole event horizon. The
corresponding relations for spinors g� and f�þ may be
written as

d

d�
g�þ

�!�
f�N


�
þ 1

2�
þ k

CðrþÞ
�
g��mfer�

jNjf�þ¼0;

d

d�
f�þ�

�!�
f

�
þ 1

2�
þ k

CðrþÞ
�
f�þ�mfer�

jNjg�¼0: (86)

One elaborates two cases of the cosmic string winding
number. We shall begin with jNj 	 1. One can neglect
the mass term in relations (86) and the adequate solutions
can be expressed in terms of

f�þ ¼ C1�
!�

f
þð1=2Þeðk=CðrþÞÞ�; (87)

g� ¼ C2�
�!�

f
þN
�ð1=2Þe�ðk=CðrþÞÞ�; (88)

where we denote C1 and C2 as constants. On the other
hand, the requirement of regularity on the black hole event
horizon implies the following:

N
� 1

2

 Reð!fÞ 
 � 1

2
: (89)

One can remark that it has the same form as in the k ¼ 0
case.
Proceeding to the case of jNj � 1 it turned out that

equations of motion can be simplified by setting the fol-
lowing Ansätze for the Dirac spinors in question:

g� ¼ ��!�
f
þN
�ð1=2Þe�ðk=CðrþÞÞ�~g;

f�þ ¼ �!�
f
þð1=2Þeðk=CðrþÞÞ� ~f:

(90)

Consequently, one can readily verify that we arrive at the
expressions

d

d�
~g�mfer�

2jNj��e
R

bd� ~f ¼ 0; (91)

d

d�
~f�mfer�

�e�
R

bd�~g ¼ 0; (92)

where we have denoted b ¼ k=CðrþÞ.
As in the previous considerations, extracting from

Eq. (92) ~g and setting in the remaining expression enables

one to obtain the second order differential equation for ~f.
Namely, it has the form

d

d�

�
e
R

bd���� d

d�
~f

�
�m2

fer�
2jNj��e

R
bd� ~f ¼ 0: (93)

Consequently, from the relations in (90) we have the
following:

N
� 1

2

 Reð!fÞ 
 � 1

2
: (94)

Summing our results for the nonzero Dirac fermion modes
in the spacetime of the nonextremal Euclidean dilaton
black hole with a superconducting fermion vortex, we
draw a conclusion that for both N 	 1 and N � 1, k > 0
does not modify the intervals of admissible values of !f.

We attain the same conditions on Reð!fÞ as in the case

when k ¼ 0. Namely, relations (55) and (89), as well as
Eqs. (60) and (94), have the same forms. However, despite
the fact that the form of Eq. (93) is similar to that studied
before, it seems that it has no solution in terms of the
known special functions.

Extremal dilaton black hole and nonzero
fermion modes

In what follows, we shall establish some main features
of the behavior of nonzero Dirac fermion modes in the
vicinity of the event horizon of an extremal Euclidean
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dilaton black hole pierced by a vortex. Using the coordi-
nate transformation (47) and (63) we arrive at the following
set of the first order differential equations for g� and f�þ:

d

d�
g� þ

�!�
f � N
þ 3

2 þ ~k

�

�
g� �mfer�

jNjf�þ ¼ 0;

(95)

d

d�
f�þ þ

�!�
f þ 1

2 � ~k

�

�
f�þ �mfer�

jNjg� ¼ 0; (96)

where we have denoted ~k ¼
ffiffiffiffiffiffiffiffiffiffi
4bðrþÞ
cðrþÞ

q
k.

As in the previous sections we start with the case of
jNj 	 1 and neglect the mass term. Next, we take into
account the Ansatz for Dirac fermions

g� ¼ D1�
�!�

f
þN
�ð3=2Þ�~k; (97)

f�þ ¼ D2�
!�

f
�ð1=2Þþ~k; (98)

where D1 and D2 are constants. Inspection of the resultant
equations of motion leads us to the conclusion that the
admissible range of Reð!fÞ is given by

N
� 3

2
� ~k 
 Reð!fÞ 
 1

2
� ~k: (99)

Next, our attempts will be to study the case when jNj � 1.
Without loss of generality, we assume the following
Ansatz:

g� ¼ ��!�
f
þN
�ð3=2Þ�~k~g; (100)

f�þ ¼ �!�
f
�ð1=2Þþ~k ~f: (101)

Hence, the underlying equations of motion simplify to the
form

d

d�
~g�mfer�

2jNj� ~� ~f ¼ 0; (102)

d

d�
~f�mfer�

~�~g ¼ 0; (103)

where now we set

~� ¼ jNj þ N
� 1� 2~k� 2!�
f: (104)

The same reasoning as in the previous section leads us to

the second order differential equation for ~f, which yields

d

d�

�
�� ~� d

d�
~f

�
�m2

fer�
2jNj� ~� ~f ¼ 0: (105)

It can be established from Eqs. (100) and (101) that the
following is satisfied:

N
� 3

2
� ~k 
 Reð!fÞ 
 1

2
� ~k: (106)

It is worth pointing out that in both casesN 	 1 andN � 1
one has diminishing of the admissible interval of Reð!fÞ.
On the other hand, the form of Eq. (105) is the same as
relation (59) so the arguments in the preceding section
can be repeated, leading to the conclusion that the solution
of (105) may be written as a combination of modified
Bessel function of the first kind plus Macdonald’s function.
We also conclude that the condition for the largest hair in

the near-horizon limit will be diminished by the value of ~k.

It will be provided by !�
f ¼ ðNð1þ 
Þ � 2~kÞ=2.

VI. CONCLUSIONS

In our paper we have analyzed the problem of an
Abelian Higgs vortex on the Euclidean dilaton black hole
in the presence of Dirac fermion modes. Fermions were
coupled to the fields in question as in Witten’s model of
superconducting string [33]. Assuming the complete sepa-
ration of the degrees of freedom of the fields in our con-
siderations we examined behavior of Dirac fermion modes
in the vicinity of the Euclidean dilaton black hole event
horizon. We studied both the case of zero and k > 0 Dirac
fermion modes. We took into account dilaton theory with
arbitrary coupling constant � determining the interaction
between the dilaton and Uð1Þ-gauge field. Moreover, we
elaborated a nonextremal and extremal Euclidean dilaton
black hole pierced by a vortex as a background of our
considerations.
For zero Dirac fermion modes we obtain a different

interval of the Reð!fÞ parameter for different kinds of

the considered Euclidean black holes. It happened that
for a nonextremal one, we get N
� 1=2 
 Reð!fÞ 

�1=2 for the winding number N 	 1 and for N � 1. On
the other hand, for an extremal Euclidean dilaton black
hole one has that N
� 3=2 
 Reð!fÞ 
 1=2 for both

aforementioned cases of choosing N. Having these in
mind, one can draw a conclusion that for the nonextremal
black hole the admissible interval is bigger compared to the
interval for the extremal black hole. For both kinds of the
considered black holes when N 	 1 one reaches effec-
tively massless fermions in the near-horizon region. On the
other hand, for the winding number N � 1 the fermion
mass term is not a crucial ingredient of the underlying
equations of motion.
For the case when k > 0, we did not observe any

modification of the range of Reð!fÞ for nonextremal

black holes. On the contrary, in the case of the extremal
Euclidean dilaton black hole, the nonzero value of k di-
minishes the admissible intervals of Reð!fÞ.
By virtue of the above, one can readily see that local-

ization of the Dirac fermions strongly depends on the string
winding number as well as the value of the black hole
surface gravity 
. It just leads to the conclusion that in
some situations (the adequate value of 
 which is bounded
with the black hole mass) the presence of a black hole can
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destroy superconductivity, in the sense of not satisfying
the inequalities for Reð!fÞ. It turned out that superconduc-
tivity was achieved when one had to do this with a small
black hole.

To conclude one remarks that spinor fields �c and � can
be regarded as hair on the Euclidean dilaton black hole in
the dilaton gravity theory with the arbitrary coupling con-
stant �, for both extremal and nonextremal black holes.
Hair on the considered black holes can be understood in the
sense that there is a nontrivial spinor field configuration
supported by the black hole event horizon.

Moreover, citing the same arguments as presented in
Ref. [32] reveals that the background of a magnetically
charged Euclidean dilaton black hole pierced by a
vortex is a lack of the physical effect of the discrete
charge. Fermions’ condensate appears outside the event
horizon.

Namely, it was stated in [32] that in the case of a
Euclidean RN black hole superconducting cosmic string
system one has to do this with another Uð1Þ-type global
symmetry which is orthogonal to the symmetries Uð1ÞR
and Uð1ÞQ (orthogonal in the sense that the trace of the

product of the operators connected with those symmetries
is equal to zero). But this global symmetry is anomalous

because of the fact that the aforementioned trace of the
operators’ products is not equal to zero. It leads to the
conclusion that this symmetry is spontaneously broken in
the background of a black hole and any alleged discrete
charge can be absorbed by making a Uð1Þ-type transfor-
mation. Summing it all up, in the background of magneti-
cally charged black holes one has the lack of the physical
effect of the discrete charge. On the contrary, the vicinity of
the black hole event horizon is furnished with a fermion
condensate violating global anomalous symmetry.
The key point of this phenomenon is that for zero modes

there is no contribution to the partition function as well
as to the other correlation functions which do not involve
the essential number of fermions. There is no contribution
to the temperature of a black hole by a discrete electric
charge and the screened electric charge does not acquire an
exponentially small probability outside the event horizon
of the considered black hole. However, this is not the case
for k � 0.
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