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The main goal of the present paper is to study how polarization of photons affects their motion in a

gravitational field created by a rotating massive compact object. We study propagation of the circularly

polarized beams of light in a stationary gravitational field. We use (3þ 1)-form of the Maxwell equations

to derive a master equation for the propagation of monochromatic electromagnetic waves of the frequency

! with a given helicity. We first analize its solutions in the high frequency approximation using the

‘‘standard’’ geometrical optics approach. After that we demonstrate how this ‘‘standard’’ approach can be

modified in order to include the effect of the helicity of photons on their motion. Such an improved

method reproduces the standard results of the geometrical optics at short distances. However, it modifies

the asymptotic behavior of the circularly polarized beams in the late-time regime. We demonstrate that the

corresponding equations for the circularly polarized beam can be effectively obtained by modification of

the background geometry by including a small factor proportional to !�1 whose sign corresponds to

photon helicity. We obtain the modified equations for circularly polarized rays by using such a

‘‘renormalization’’ procedure, and calculate the corresponding renormalization term for the Kerr

geometry.
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I. INTRODUCTION

The main goal of the present paper is to study how
polarization of photons affects their motion in a gravita-
tional field created by a rotating massive compact object.

It is well known (see e.g. [1–3]) that the electromagnetic
field equations in an external gravitational field are for-
mally equivalent to the Maxwell equations in a flat space-
time written in Cartesian coordinates in the presence of a
‘‘medium’’ with the dielectric permittivity and magnetic
permeability tensors related to the spacetime metric.1

This approach was used to study different aspects of
propagation of electromagnetic waves in a gravitational
background [3,7–9]. In particular, using this approach it
was shown that for the motion of a photon in the external
stationary gravitational field its helicity is conserved [3,9].
This implies that in a stationary external gravitational field,
in the absence of photon creation, the state of the circular
polarization remains the same. In particular, scattering of
the incoming right (left) circularly polarized electromag-
netic radiation in an asymptotically flat spacetime results in
the outgoing right (left) circularly polarized radiation. For
such problems one can decompose an electromagnetic

wave into two independent noninteracting components of
the left and right circular polarization.2

If the wavelength of electromagnetic waves is much
smaller than the characteristic scale of the gravitational
field, one can use the geometrical optics approximation for
their description. In this approximation the wave equations
are reduced to the Hamilton-Jacobi equation for the eiko-
nal and transport equations for the amplitude of the wave.
The former is equivalent to geodesic equations for null
rays. If an electromagnetic wave is linearly polarized,
then in the geometrical optics approximation the vector
of polarization is parallelly propagated along the ray (see,
e.g., [10] and [11], p. 570). First order corrections to
the geometrical optics approximation were discussed by
Ehlers [10] and polarization effects in the Schwarzschild
metric were studied in [12,13].
In a general case, as a result of the bending of a light ray,

the polarization vector changes its direction. Besides this,
if the source of the gravitational field is rotating, the
polarization vector can rotate around the propagation
vector. This effect is a gravitational analogue of the
well-known electromagnetic Faraday effect, which
appears in magneto-active media [14,15]. This effect was
studied in the Kerr spacetime, where the equations of the
parallel transport along null geodesics can be solved
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1It is interesting to notice that the Maxwell equations in a

curved spacetime filled with a moving fluid with nontrivial
dielectric permittivity and magnetic permeability can be identi-
cally rewritten as the vacuum Maxwell equations in a specially
modified so-called Gordon’s optical metric. This result was
obtained by Gordon [4]. For recent discussion and applications
see, e.g., [5,6].

2If a gravitational field creates photons, an initially circularly
polarized beam of photons may have in the final state created
photons of different polarization. This can happen if the gravi-
tational field is time dependent, or stationary, for example, in the
case when the beam is propagating through the ergosphere of a
Kerr black hole, where the superradiant particle creation is
possible.
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exactly [16–19]. The relativistic effect of Faraday rotation
may be important for the explanation of the properties of
radiation from an accretion disk of a rotating black hole. In
particular, Laor, Netzer, and Piran demonstrated that this
effect can suppress polarization of the optical radiation
from the active galactic nuclei [20].

The effect of the gravitational Faraday rotation of the
spin of a photon is the result of the action of the photon’s
trajectory in a given gravitomagnetic field on the spin
orientation. One can expect a dual effect, namely, an action
of the helicity of the photon on its trajectory. Such an effect
is analogous to the optical Magnus effect that was studied
for the propagation of light in an optically inhomogeneous
medium [21]. In other words, when a polarized radiation
propagates near a rotating gravitating body, photons of the
opposite initial helicities are scattered differently [8,22]. It
was also shown that the scattering amplitude of the left
and right circularly polarized waves are different [3,9].
Because of these effects, one can expect a partial polariza-
tion of the initially unpolarized radiation scattered by the
Kerr black hole [3]. The helicity asymmetry due to the
gravitational deflection of unpolarized light by a rotating
body was calculated in [23,24].

The dependence of photons scattering by a rotating
black hole on their helicity is an effect beyond the lowest
order of the geometrical optics approximation. Suppose
that two beams of light of the same wavelength � but
opposite helicity pass near a rotating object of the mass
M and the angular momentum J at the distance L �
GM=c2. Then the expected angular difference of their
asymptotic trajectories is of the order of GJ�=ðc3L3Þ.
This estimation was obtained by Mashhoon [9,22] in the
weak field approximation for the gravitational field of a
rotating body.

The aim of this paper is to study the propagation of
circularly polarized beams of light in a stationary space-
time assuming that the gravitational field is not weak. This
paper is organized as follows. In Sec. II we discuss general
aspects of the geometrical optics approximation for the
polarized light propagation in an external stationary gravi-
tational field. This section contains references to the nu-
merious results related to our problem and its analogues for
the spin particle motion in a magnetic field. In Sec. III we
use ð3þ 1Þ-decomposition of a stationary gravitational
field and derive a three-dimensional master equation for
the propagation of monochromatic elecromagnetic waves
with a given state of helicity. The ‘‘standard’’ scheme of the
geometrical optics approximation applied to the master
equation is presented in Sec. IV. Section V describes a
modified approximation which takes into account the back
reaction of the photon polarization state on its trajectory.
We also demonstrate that the corresponding modification
of the photon equation of motion can be effectively ob-
tained by simple ‘‘renormalization’’ of the background
gravitational field, depending on the polarization of the

photon and its frequency. In order to illustrate this proce-
dure, we calculate the corresponding ‘‘renormalization’’
term for the Kerr geometry. General remarks and possible
applications of the developed formalism are discussed in
Sec. VI. The Appendix contains additional technical
results.
In this paper we use the system of units whereG¼c¼1

and the sign conventions for the metric and other geomet-
rical quantities adopted in the book by Misner, Thorne, and
Wheeler [11].

II. APPLICATION OF THE GEOMETRICAL
OPTICS TO THE POLARIZED LIGHT

BEAM PROPAGATION

Description of the light propagation by means of the
geometrical optics is an approximation. This approxima-
tion is valid when the wavelength of light � is much
smaller than other characteristic scales of the problem,
such as (i) the length lm at which the parameters of the
medium change significantly; (ii) the radius lR of the
spacetime curvature, and (iii) the radius lw of the curvature
of the wave front surface. Let l be the smallest of these
scales, then the condition of validity of the geometrical
optics approximations is " � �=ð2�lÞ � 1. Under this
condition one expects that the field is fast oscillating while
its amplitude changes slowly. The mathematical version of
these physical ideas are asymptotic formulas for solutions
of the corresponding field equations. The method of ob-
taining these asymptotics is well known (under different
names) and widely used both in physics and mathematics.
For example, in quantum mechanics it is called the WKB
method, and the smallness parameter " is proportional to
the Planck constant ℏ.
The general scheme of the construction of the asymp-

totic stationary solutions in the geometrical optics approx-
imations is the following (see, e.g., [25]):
(i) Let FðxÞ be a field defined on an n-dimensional

manifold with coordinates x. Write it in the form
FðxÞ ¼ fðxÞ expðiSðxÞ="Þ, and substitute this ansatz
into the field equation(s);

(ii) In the obtained relation select the leading in " terms.
A condition that the corresponding expression van-
ishes gives the eikonal equation, which is usually of
the form HðrS; xÞ ¼ 0;

(iii) In order to solve this first order partial differential
equation, one considers it as the Hamilton-Jacobi
equation for a particle with the Hamiltonian
Hðp; xÞ, where p � rS is the particle momentum,
and the initial conditions S ¼ S0ðxÞ ¼ const, such
that p0ðxÞ ¼ rS0ðxÞ.

(iv) Let ‘ be a parameter along the particle trajectory,
and let xð‘Þj‘¼0 ¼ x0, pð‘Þj‘¼0 ¼ p0 be the initial
conditions.

(v) Solve the Hamilton equations ofmotion for the initial
conditions. The set of the solutions fxð‘Þ; pð‘Þg
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determines an n-dimensional submanifold of the
phase space, which is known as a Lagrangemanifold.
Its characteristic property is that the symplectic form
vanishes on it. The function SðxÞ is the action defined
on the particle trajectories.

(vi) Next to the leading order in " equations give trans-
port equations that allow one to find the amplitude
F along the particle trajectories, and hence, deter-
mine it on the Lagrange manifold. At the points
where the projection of the latter on the configura-
tion space is regular, this projection defines the
required asymptotic expansion of the amplitude
fðxÞ � f0ðxÞ þ "f1ðxÞ þ . . . .

(vii) Points of the Lagrange manifold where its projec-
tion on the configuration space is singular form
caustics, which require special consideration (for
details see, e.g., [26,27] and the references therein).

In the application of the geometrical optics to the prob-
lem of the polarized light beam propagation, several new
features become important. First of all, the light amplitude
has not one but several components. As a result, the
transport equation for the amplitude propagation along
the particle trajectories has a matrix form. One of the
methods used in such case is based on the diagonalization
of the corresponding equations (see, e.g., [28,29]). A simi-
lar approach is used for the construction of the geometrical
optics asymptotic solutions of the Maxwell equations in
magneto-active media. In this case, after the diagonaliza-
tion one has independent modes. Moreover, the eikonal
equations for different modes are generally different (see,
e.g., [30,31] and the references therein). A remarkable
description of the general eikonal method for systems
with several components is given in [32].

Our main subject, spinoptics in a stationary gravitational
field, in many aspects is similar to more analyzed and
better-understood problem of a charged spin particle mo-
tion in an external electromagnetic field. A well-known
example of such a problem is the Stern-Gerlach experi-
ment. Observations show that when a quantum charged
particle with spin (electron) propagates through a region of
inhomogeneous magnetic field it gets deflected differently
for different spin orientations. In order to describe this
effect, one can use the WKB approximation to derive
quasiclasical equations of the electron motion. The prob-
lem is that the electron magnetic moment interacting with
the gradient of the magnetic field is proportional to ℏ, and
hence, it vanishes in the limit ℏ ! 0. As a result, a simple
application of the WKB does not allow one to obtain the
required result for the spin-dependent deflection of the
electron in the Stern-Gerlach experiment. This conclusion
made by Pauli [33] and supported by more accurate calcu-
lations [34–36] stimulated many interesting discussions
(see, e.g., the review [30] and the references therein).

A general resolution of this puzzle is the following. In
the Stern-Gerlach experiment one deals with a scattering

problem. That is why in the quasiclassical description one
needs to know the WKB asymptotic solution not only
locally, but globally as well. The spin-dependent terms,
which are small (of the order of ℏ), locally give a small
contribution to the electron trajectory. But as a result of the
accumulation of these spin-dependent corrections during
the scattering, their effect on the electron trajectory at the
later time is not small at all. In order to be able to describe
this effect and to construct the corresponding global WKB
solution one needs to include the lowest order spin-
dependent corrections in the eikonal equation. This results
in the global modification of the corresponding Lagrange
manifold. One can expect that this modification is locally
small, but becomes important in the late-time regime. This
approach was originally advocated by de Broglie [37]. It
was made more concrete ten years later by Schiller [38,39].
Several different approaches to the problem of motion of

a spin 1=2 particle in a magnetic field in the WKB ap-
proximation have been developed recently. The most con-
sistent approach is to include spin degrees of freedom into
the quasiclassical equations (see, e.g., [40–42]). As a re-
sult, the phase space of the particle becomes a direct
product of the standard 2n-dimensional phase space and
a two-dimensional sphere. The Hamiltonian defined on this
enlarged phase space describes both the spin rotation in-
duced by the electron motion in the magnetic field and the
backreaction of the spin rotation on the particle motion
[42]. In this scheme, the symplectic form is also modified
and is determined on the enlarged phase space [43]. A
similar geometrical approach to a theory of spinoptics in
refractive media can be found in [44,45].
Another way to include spin-field interaction is to mod-

ify the eikonal by including into it a term dependent on the
spin orientation, which is proportional to ℏ [46]. This
modification does not change the local WKB expansion
of the field and can be considered as its trivial redefinition.
However, these locally small corrections of the eikonal
equation result in the nontrivial change of the late-time
asymptotics of the particle trajectories. A similar result was
obtained in [47] where there was formulated a general
principle that can be used for identification of the terms
that must be included into the action S. The authors called
this method the modified geometrical optics.
An analogical effect of the photon spin on its motion is

known as the spin-Hall effect [48–52]. This intrinsic spin-
Hall effect, associated with the Berry phase, was observed
experimentally for the propagation of helical light beam
at a grazing angle inside a glass cylinder [48]. The
Hamiltonian and Lagrangian approaches to the problem
of evolution of spinning light in an inhomogeneous me-
dium are summarized, respectively, in the papers [53,54].
In our approach to the spinoptics in a stationary gravi-

tational field, we demonstrate how the next to the leading
order helicity-dependent corrections naturally arise in the
eikonal equations and develop the corresponding improved
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scheme, which allows one to describe the effect of the state
of circular polarization of the light beam on its motion. We
use the similarity of this problem to the better-understood
case of the spin particle motion in a magnetic field. In spite
of this similarity, the case of light motion has one essential
difference: photons are massless while electrons have
mass. In the quantum description of a photon, its state
can be characterized by the photon’s helicity. The spin
vector of massive particles can have an arbitrary orienta-
tion with respect to their velocity vector. In the classical
description of light, a state with a given helicity corre-
sponds to either right of left circular polarization of the
electromagnetic wave. The photon’s helicity is a conserved
quantity [3,9]. If an external gravitational field does not
create photons, the number of photons in a beam and their
helicity remain the same in the scattering process. In other
words, solutions of the source-free Maxwell equations in
an external gravitational field can be separated into the
sum of two solutions, one with right and another with left
circular polarization. In a general case, this decomposition
involves self-dual and anti-self-dual complex fields [55].
Thus, to study the spinoptics effects in a gravitational field,
it is natural to consider electromagnetic waves with a given
circular polarization. In our approach, we write such de-
coupled wave equations and apply the geometrical optics
approximation to each of the two sectors corresponding to
the right and left circularly polarized waves.

However, some problems remain. Namely, the Maxwell
equations form a set of eight first order partial differential
equations for six field variables, which are components of
the electromagnetic field tensor F��. This redundancy is

the consequence of the gauge invariance of electromag-
netic field. Using ð3þ 1Þ-decomposition we write the
complete set of the Maxwell equations in an equivalent
form of the master equation. The master equation follows
from the set of three first order partial differential equations
for three-dimensional complex vectors of the field compo-
nents with a given state of polarization. The form of the
master equation is used to develop the scheme of the
geometrical optics approximation. We shall also demon-
strate that the scheme is convenient and provides a natural
starting point for the new improved scheme, which is the
purpose of our work.

III. PROPAGATIONOFCIRCULARLY POLARIZED
LIGHT IN A STATIONARY SPACETIME

In this section we consider the propagation of a weak
electromagnetic field in a stationary gravitational field
background. In order to fix our notations we collect the
required equations.

A. ð3þ 1Þ decomposition of a stationary metric

A stationary spacetime possesses timelike Killing
vector �� generating the time-symmetry transformation.
The integral lines of this vector field obey the equation

dx�=dt ¼ ��. We use the Killing time t as a parameter
along the integral lines of �� and introduce three other
coordinates xi, i ¼ 1, 2, 3, which are constant along the
lines. The origin t ¼ 0 of the Killing time on each of the
lines is arbitrary. Thus, there exists an arbitrariness in
the choice of t:

t ! ~t ¼ tþ qðxiÞ; (1)

where qðxiÞ is some differentiable function of the coordi-
nates xi. One can choose the Killing time t and the coor-
dinates xi labeling the Killing trajectories as spacetime
coordinates (t � x0, xi).
In these coordinates the spacetime metric can be pre-

sented in the following form:

ds2¼g��dx
�dx�¼�hðdt�gidx

iÞ2þh�ijdx
idxj; (2)

where h ¼ ��2 > 0. In what follows, all the operations
involving the Latin indices i; j; . . . are performed by using
the metric �ij and its inverse �ij. In particular, the cova-

riant derivative in this metric is denoted as rið. . .Þ �
ð. . .Þ:i. We preserve the notation ð. . .Þ;� for the four-

dimensional covariant derivative defined with respect to
the metric g��.

The Killing equation ��;� þ ��;� ¼ 0 implies that the

metric functions in (2) are time independent. Under the
coordinate transformation (1) h and �ij remain invariant,

while gi’s transform as

gi ! ~gi ¼ gi þ q;i: (3)

It is possible to use the gauge transformation (1) to put
~gi:i ¼ 0. To find this transformation it is sufficient to use
qðxiÞ, which is a solution of the equation q:i:i ¼ �gi:i.
The metric tensor ���, which in a chosen coordinate

system has the components ��� ¼ �i
��

j
��ij, is propor-

tional to the projector onto a surface orthogonal to
�� ¼ ��

0,

��� ¼ h�1

�
g�� �

����

�2

�
: (4)

In a static spacetime, i.e., when gi ¼ 0, the metric �ij

reduces to the so-called optical metric (see, e.g., [56–58]
and the references therein). Spatial trajectories of light rays
are geodesics of the optical metric.
The metric functions in the ð3þ 1Þ decomposition of the

metric (2) are related to the four-dimensional metric func-
tions g�� as follows:

h ¼ �g00; gi ¼ g0i
h

; �g ¼ h4�; (5)

�ij ¼ � gij
g00

þ g0ig0j

g200
¼ gij

h
þ gigj: (6)

Here g � detðg��Þ and � � detð�ijÞ. Let us denote gi �
�ijgj. Then using the relation g��g

�� ¼ ��
� one obtains

�ij¼hgij; gi¼hg0i; g00¼�h�1ð1�gig
iÞ: (7)
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B. Maxwell equations in ð3þ 1Þ form in
a stationary spacetime

Consider a test electromagnetic field in a stationary
spacetime. In accordance with the ð3þ 1Þ decomposition
of the metric (2) one can also make a similar decomposi-
tion for the components of the electromagnetic field.
Following [57,58] we denote

Ei � Fi0; Bij � Fij; (8)

Di � h2F0i; Hij � h2Fij: (9)

These objects are not independent. Using the relations

Fi0 ¼ gi�g0�F
��; Fij ¼ gi�gj�F��; (10)

we derive

Di ¼ Ei �Hijg
j; Bij ¼ Hij � Eigj þ Ejgi: (11)

Let �ijk and �ijk be three-dimensional completely anti-

symmetric Levi-Civita symbols normalized by the condi-
tions �123 ¼ 1 and �123 ¼ 1, and

eijk � ffiffiffiffi
�

p
�ijk; eijk � 1ffiffiffiffi

�
p �ijk; (12)

be the corresponding completely antisymmetric tensors.
These tensors obey the relations

eijk:l ¼ 0; eijk:l ¼ 0: (13)

We introduce the following vectors:

Bi � 1
2e

ijkBjk; Hi � 1
2eijkH

jk: (14)

Using the relation

eijke
lmk ¼ �l

i�
m
j � �m

i �
l
j; (15)

we obtain

Bij ¼ eijkB
k; Hij ¼ eijkHk: (16)

To define a vector product of vectors A and B in a three-
dimensional space we shall use the following notation:

C ¼ ½A� B�; (17)

where

Ci ¼ eijkAjBk: (18)

For example,

½H� g�i ¼ 1
2e

ijkejlmH
lmgk ¼ Hikgk: (19)

Thus the relations (11) take the form

D ¼ E� ½g�H�; B ¼ Hþ ½g�E�: (20)

We shall introduce the following operations defined in a
three-dimensional space:

divA � ðr;AÞ ¼ Ai
:i ¼

1ffiffiffiffi
�

p ð ffiffiffiffi
�

p
AiÞ;i; (21)

ðcurlAÞi � ½r� A�i ¼ eijkAk:j: (22)

It is easy to check that the following relations are valid:

div ðfAÞ ¼ ðrf;AÞ þ fdivA; (23)

curl ðfAÞ ¼ ½rf�A� þ fcurlA; (24)

curl ½A�B�¼AdivB�BdivAþðB;rÞA�ðA;rÞB;
(25)

rðA;BÞ ¼ ½A� curlB� þ ½B� curlA�
þ ðA;rÞBþ ðB;rÞA; (26)

div ½A�B� ¼ ðB; curlAÞ � ðA; curlBÞ; (27)

div curlA ¼ 0: (28)

To prove the last relation we notice that its left-hand side
can be written as

eijkrirjAk ¼ eijkRijklA
l: (29)

Since the Riemann curvature tensor obeys the identity
R½ijk�l ¼ 0, this expression vanishes. The relations (23)–

(28) in a curved three-dimensional space with the metric
�ij have the same form as the corresponding relations in a

flat three-dimensional space.
Let us now present the source-free Maxwell equations in

a ð3þ 1Þ form. The first set of the Maxwell equations

F½��;�� ¼ 0; (30)

in a stationary spacetime gives

divB ¼ 0; curlE ¼ � _B: (31)

Here we denote _A � A;t.

The second set of the Maxwell equations

F��
;� ¼ 1ffiffiffiffiffiffiffi�g

p ð ffiffiffiffiffiffiffi�g
p

F��Þ;� ¼ 0; (32)

in a stationary spacetime gives

divD ¼ 0; curlH ¼ _D: (33)

The energy-momentum tensor of an electromagnetic field

T�� ¼ 1

4�

�
F��F�

� � 1

4
g��F�	F

�	

�
; (34)

satisfies the relation

T��
;� ¼ 0: (35)

Thus, for the Killing vector field �� ¼ ��
0 we have
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ð��T
��Þ;� ¼ 1ffiffiffiffiffiffiffi�g

p ð ffiffiffiffiffiffiffi�g
p

��T
��Þ;� ¼ 0: (36)

This relation implies

_E þ divV ¼ 0; (37)

where

E � 1

8�
½ðE;DÞ þ ðB;HÞ� (38)

is analogical to the electromagnetic energy density, and

V � 1

4�
½E�H�; (39)

is analogical to the Poynting vector.

C. Master equations for circularly polarized light

The system of Eqs. (31) and (33) can be rewritten in a
complex form. For this purpose we introduce the following
complex quantities:

F� � E� iH; G� � D� iB: (40)

In these notations the Maxwell Eqs. (31) and (33), and the
relations (20) take the form

divG� ¼ 0; curlF� ¼ �i _G�; (41)

G� ¼ F� � i½g� F��: (42)

In a stationary space a monochromatic wave can be
written as

E ¼e�i!tEþei!t �E; H¼e�i!tH þei!t �H ; (43)

D ¼ e�i!tDþ ei!t �D; B ¼ e�i!tBþ ei!t �B; (44)

where the bars over the vectors denote complex conjugate.
Substituting these relations into Eq. (40) we derive

F� ¼ e�i!tF� þ ei!t �F	; (45)

G� ¼ e�i!tG� þ ei!t �G	; (46)

where

F � ¼ E � iH ; G� ¼ D� iB: (47)

The complex positive frequency amplitudes F� and G�
describe left (for �) and right (for þ) circularly polarized
waves. In other words, for the right (left) circularly polar-
ized monochromatic radiation the quantities with the
label �(þ) vanish.

For the monochromatic waves the system of Eqs. (41)
and (42) reduces to

divG� ¼ 0; (48)

curlF� ¼ �!G�; (49)

G � ¼ F� � i½g�F��: (50)

Equation (48) is not independent. It follows from Eq. (49)
and the identity (28).
Eqs. (49) and (50) imply the ‘‘master equation’’

curlF� ¼ �!F� þ i!½g�F��: (51)

Solving this master equation for F�, we can find G� from
Eqs. (49) and (48) is satisfied automatically. The form of
the master equation implies that the left and right circularly
polarized waves are decoupled.

IV. ‘‘STANDARD’’ GEOMETRICAL
OPTICS APPROXIMATION

A. Eikonal ansatz

Let us briefly describe now how the ‘‘standard’’geomet-
rical optics in its three-dimensional form is adopted to
circularly polarized light propagation. Our main assump-
tion is that the characteristic wavelength � ¼ 2�!�1 is
much smaller than any other characteristic length scale l of
the problem. We shall use !�1 as a small parameter. In
fact, it always enters the expressions in the dimensionless
form " ¼ ð!lÞ�1. In what follows, we shall use !�1 as a
small parameter in our geometrical optics expansion.
Following the geometrical optics construction (see, e.g.,
[10] and [11], p. 570), we split a monochromatic wave into
a rapidly changing phase and slowly changing amplitude.
Such a split corresponds to the following eikonal ansatz:

F 	 ¼ f	ei!S : (52)

Here 	 ¼ �1 defines polarization of the wave, as defined
above, f	 is the complex valued amplitude, and S is the
real valued phase. We shall always consider a monochro-
matic wave of a fixed polarization, either 	 ¼ þ1
or 	 ¼ �1, and skip for brevity the superscript 	, which
we shall restore in the final expressions.
Substituting the eikonal ansatz (52) into Eq. (51) and

using Eq. (24) we derive

Lf ¼ 	!�1curlf : (53)

Here L is a linear operator acting in a three-dimensional
complex linear vector space,

Lf � f � i	½n� f�; (54)

where n � p� g and p � rS. The vector !p has the
meaning of the usual wave vector.
According to the standard prescription, the slowly

changing complex amplitude f can be expanded in inverse
powers of ! as follows:

f ¼ f0 þ!�1f1 þ!�2f2 þ . . . : (55)
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Here f0 is the leading order term in the geometrical optics
approximation, and the higher-order expansion coefficients
f i’s, i 
 1 define post-geometrical optics corrections.
Substituting the expansion (55) into Eq. (53) we obtain
the following equation:

Lf0 þ!�1½Lf1 � 	curlf0�
þ!�2½Lf2 � 	curlf1� þ . . . ¼ 0: (56)

B. Properties of the operator L

The leading order equation in the high frequency limit is

Lf0 ¼ 0: (57)

In an explicit form this equation reads

Li
jf

j
0 ¼ ½�i

j � i	eikjn
k�fj0 ¼ 0: (58)

In order to have a nontrivial solution f0, the determinant of
L must vanish. The corresponding relation gives

ðn;nÞ ¼ 1: (59)

This is the eikonal equation. It is easy to check that
Ln ¼ n. That is, n is an eigenvector of L with the eigen-
value 1.

To determine other eigenvalues of L it is sufficient to
find solutions of the characteristic equation

det½ð1� �Þ�i
j � i	eikjn

k� ¼ 0: (60)

Calculating the determinant (see the Appendix) one ob-
tains the following equation:

ð1� �Þ½ð1� �Þ2 � ðn;nÞ� ¼ 0: (61)

Using Eq. (59) one finds that the other two eigenvalues are
equal to 0 and 2.

To find the eigenvectors for � ¼ 0, 2 let us consider two
unit real vectors e1 and e2 such that

ðei;eiÞ¼1; ðe1;e2Þ¼ ðei;nÞ¼0; i¼1;2; (62)

½e1�e2�¼n; ½n�e1�¼ e2; ½n�e2�¼�e1: (63)

The set of vectors fn; e1; e2g forms a right-oriented ortho-
normal basis in a three-dimensional linear vector space.
Let us now define the following vectors:

m � 1ffiffiffi
2

p ðe1 þ i	e2Þ; �m � 1ffiffiffi
2

p ðe1 � i	e2Þ: (64)

The vector �m is the complex conjugate ofm. According to
Eqs. (62) and (63), these vectors satisfy the following
relations:

ðm;mÞ ¼ ðm;nÞ ¼ 0; ðm; �mÞ ¼ 1; (65)

½m� �m� ¼ �i	n; ½n�m� ¼ �i	m: (66)

The set of vectors fn;m; �mg forms a basis in a three-
dimensional complex linear vector space. One can check

that these vectors are the eigenvectors of L which corre-
spond to the eigenvalues f1; 0; 2g, respectively, and the
operator L in this basis has the form

L ¼
�������
1 0 0
0 0 0
0 0 2

�������: (67)

As expected, the operator L is degenerate and its matrix
rank is 2.
Using the expression (67) it is easy to see that the

solution of Eq. (57) is

f 0 ¼ 
m; (68)

where 
 is an arbitrary complex quantity. Thus, one has

ðn; f0Þ ¼ 0: (69)

The expressions (39) and (66) imply that the vector n is
parallel to the Poynting vectorV in the geometrical optics
approximation.
It is easy to check that because of the degeneracy of the

operator L, the following relation is valid for an arbitrary
vector a:

La ¼ nðn; LaÞ � i	½n� La�: (70)

This relation shows that Eq. (53) has a solution only if its
right-hand side obeys the linear constraint

curl f ¼ nðn; curlfÞ � i	½n� curlf�: (71)

This constraint is exact.

C. Ray trajectories

The ‘‘standard’’ eikonal Eq. (59)

ðrS � gÞ2 ¼ 1 (72)

does not depend on the state of polarization of the wave.
In fact, one can see that it coincides with the eikonal
equation for the massless scalar field ’, which obeys the
equation h’ ¼ 0.
Equation (72) has the form of the Hamilton-Jacobi

equation. To solve it one uses solutions of a dynamical
system defined by the following Hamiltonian:

H ðxi; piÞ � 1
2ðp� gÞ2 ¼ 1

2�
ijðpi � giÞðpj � gjÞ; (73)

and the canonical symplectic form

� ¼ X3
i¼1

dpi ^ dxi: (74)

The corresponding Hamilton equations are

dxi

d‘
¼ @H

@pi

¼ �ijðpj � gjÞ; (75)
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dpi

d‘
¼ �@H

@xi

¼ �jlgl;iðpj � gjÞ � 1

2
�jl

;iðpj � gjÞðpl � glÞ: (76)

The value of the Hamiltonian is constant on the ray tra-
jectories. We choose

H ¼ 1
2: (77)

This condition determines the choice of the parameter ‘
along the trajectories. One has�

dx

d‘

�
2 ¼ 1: (78)

Hence ‘ is the proper distance defined along an optical ray
trajectory in the metric �ij.

It is easy to show that the Hamilton Eqs. (75) and (76)
are equivalent to the following second order equation:

D2x

d‘2
¼

�
dx

d‘
� curlg

�
; (79)

where D=d‘ is the covariant derivative defined with re-
spect to the metric �ij along the trajectory.

Let �ðxÞ ¼ 0 be an equation of a two-dimensional
surface � that defines the initial position of the wave front.

Denote pð0Þ
i � ri�ðxÞ. For each initial point xi0 of � and

the corresponding value pð0Þ
i one can solve the Hamilton

Eqs. (75) and (76). The solutions define ray trajectories that
form a three-dimensional subspace of the six-dimensional
phase space called a Lagrange manifold. Its characteristic
property is that the symplectic form restricted to this sub-
space vanishes. The action S calculated on these trajecto-
ries is a function of the final point x,

S ðxÞ ¼
Z x

x0

ðp; dxÞ ¼
Z x

x0

�
1þ

�
g;
dx

d‘

��
d‘: (80)

In the three-dimensional configuration space such two-
dimensional family of rays covers a three-dimensional
region. We assume that through each point x passes only
one ray of this family, so that the expression (80) defines
the function SðxÞ. This function is the required solution of
the Hamilton-Jacobi Eq. (72) (see, e.g., [25–27]).

Before we discuss properties of the amplitude f let us
make two useful remarks.

(1) Equation (79) is analogical to the equation of mo-
tion of a nonrelativistic particle of the unit charge-
to-mass ratio in a three-dimensional space in the
presence of a magnetic field defined by the vector
potential g.

(2) This equation is nothing but a ð3þ 1Þ-dimensional
form of the four-dimensional geodesic equation for
a null ray in a stationary spacetime

D2x�

d�2
¼ 0; x� ¼ ðt; xiÞ; (81)

where � is an affine parameter along the null ray,
and D=d� is the covariant derivative defined along
trajectory of the null ray. Equation (79) can also be
derived from ð3þ 1Þ decomposition of the geodesic
Eq. (81) for null rays (see, e.g., [57]).

D. Transport equations

To derive the transport equations for the complex am-
plitude f we apply the operator curl to Eq. (53). Using
Eq. (54) we derive

curl f � i	curl½n� f� ¼ !�1	curl curlf : (82)

If one substitutes the expansion (55) into this equation the
leading order term gives the following relation:

curl f0 ¼ i	curl½n� f0�: (83)

This transport equation defines the complex amplitude f0.
Similar equations can be written for the higher-order co-
efficients f i>1’s.
Using the properties of the operator L we constructed a

local basis fn;m; �mg. The vector m is defined up to the
transformation m ! expðic Þm, where c is a function of
x. Let us choose the basis on the surface of the initial
position of the wave front � and define it along the ray
trajectories by the condition that it is Fermi propagated
along the tangent to the rays vector n. Denote w � rnn,
then the Fermi derivative of a vector a along a unit vector
field n is

F na � rna� ðn;aÞwþ ðw;aÞn: (84)

One hasF nn ¼ 0, and the scalar product of any two Fermi
propagated vectors is constant. Since ðm;nÞ ¼ 0 at the
initial surface, this orthogonality condition is valid along
ray trajectories. Thus, the condition thatm is Fermi propa-
gated takes the form

rnm ¼ �ðw;mÞn: (85)

This condition fixes gauge ambiguity in the choice of the
complex basis fn;m; �mg. We call such a choice of the basis
vector fields canonical.

Denote f0 � ð �f0; f0Þ1=2, then the complex polarization
vector in the canonical frame takes the form

f 0 ¼ f0�0; �0 ¼ mei’: (86)

To find the amplitude f0 and the phase ’ we proceed as
follows. Using Eq. (25) we present Eq. (83) in the form

curl f0¼ i	½ndivf0�f0divnþðf0;rÞn�rnf0�; (87)

where rn � ðn;rÞ. Equations (27) and (57) give

div f0 ¼ i	½ðf0; curlnÞ � ðn; curlf0Þ�; (88)

and Eqs. (26) and (69) give

ðf0;rÞn¼�½n�curlf0��½f0�curln��rnf0: (89)
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Substituting the expressions (88) and (89) into (87) and
using the relation (71) we derive the derivative of f0

along n

rnf0 ¼ 1
2½i	nðf0; curlnÞ � ½f0; curln� � f0divn�: (90)

Taking the scalar product of this expression and the com-

plex conjugate �f0 and using Eq. (23) we derive

rnf
2
0 þ f20divn ¼ divðf20nÞ ¼ 0: (91)

This expression implies conservation of the number of
photons in a stationary spacetime.

Using Eqs. (86), (90), and (91) we obtain the following
relation:

imrn’ ¼ 1
2ði	nðm; curlnÞ � ½m; curln�Þ � rnm: (92)

Analogously, we can define derivation of the vector n
along itself. Using Eqs. (26) and (59) we have

rnn ¼ �½n� curln� ¼ ½n� curlg�: (93)

Then, using Eqs. (66), (85), (92), and (93) we derive

rn’
	 ¼ 	

2
ðn; curlgÞ: (94)

Solving this equation we derive

’	 ¼ 	’; ’ ¼ 1

2

Z x

x0

ðcurlg; dxÞ: (95)

As above, the integral is evaluated along a ray trajectory
connecting a point on � and a point x. As a result, solving
the transport equation along the two-dimensional family of
rays determined by the Lagrange manifold one finds the
phase ’ðxÞ.

To summarize, the application of the ‘‘standard’’ geo-
metrical optics gives the following expression for the
vector field F 	:

F 	 � f	0 m
	ei!

~SðxÞ; (96)

~SðxÞ ¼
Z x

x0

�
1þ

�
~g;
dx

d‘

��
d‘; (97)

~g ¼ gþ 	

2!
curlg; (98)

where we restored the superscript 	.
To finish this section consider a superposition of the left

and right circularly polarized light beams of the same
amplitude

F ¼ Fþ þF�: (99)

This field describes a linearly polarized beam of light.
Using the expression (96) we find

F � ffiffiffi
2

p
f0k0e

i!S ; (100)

k 0 � e1 cos’� e2 sin’; ðk0; k0Þ ¼ 1: (101)

Here ’ is determined along each of the rays by the relation
(95). These relations show that the vector of the linear
polarization k0 rotates with respect to the Fermi propa-
gated basis with the angular velocity

d’

d‘
¼ 1

2
ðcurlg;nÞ: (102)

This is the well-known gravitational analogue of the
Faraday rotation (see, e.g., [14,15,59,60]).
Let us mention that applying similar steps as above to

the higher-order terms in Eq. (56) one can calculate the
post-geometrical optics corrections to the obtained
solution.

V. MODIFIED GEOMETRICAL OPTICS

A. Modified eikonal equation and ray trajectories

We already mentioned that in the ‘‘standard’’ geometri-
cal optics the eikonal equation does not depend on the
helicity. As a result, in such a formalism photons of differ-
ent helicity propagate identically. The spin of a photon
experiences a Faraday rotation, but an expected backreac-
tion of the spin on the photon’s trajectory is absent. We
already discussed this general problem in Sec. II. The
origin of this problem is that the ‘‘standard’’ geometrical
optics is valid locally. However, to describe the spin effects
for photon scattering one needs to modify this approach.
For this purpose one needs to include the lowest order
helicity corrections into the eikonal equation. Such a modi-
fication does not change the local results, and therefore is
in agreement with the ‘‘standard’’ geometrical optics lo-
cally. However, at large distances, due to the accumulation
of these small corrections, the trajectories of photons of
different helicity are modified considerably.
Equation (96) gives us hints how to make the required

modification. In this representation the equation for the
change of the amplitude f0 along the ray trajectory does
not depend on helicity. Moreover, the equation for the
Fermi transport does not depend on helicity either. The
only helicity-dependent term is the phase ’	. But it is
naturally combined with the geometrical optical phase S
[see the relations (97) and (98)]. In a general case, there is
an ambiguity in the interpretation of such a phase factor. It
is evident that the form of Eq. (96) remains the same if one
makes the following transformation:

f ! feic ; S ! S �!�1c ; (103)

of the vector amplitude f and the phase S.
The idea of the modified geometrical optics is to fix this

ambiguity by imposing the condition that the transport
equations for the vector amplitude f , at least in the leading
order, do not depend on helicity. This has a very nontrivial
consequence. Namely, in order to reproduce the expression

for ~SðxÞ in this gauge, one needs to modify the eikonal
equation. As a result, the effective Hamiltonian for light
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rays will be also modified by helicity-dependent correc-
tions. The corresponding Lagrange manifold for our prob-
lem will be also modified. At small distances this
modification is small, but at large distances the correspond-
ing corrections become important. Since the effective
Hamiltonian for light rays and the Largrange manifold
depend on helicity, they contain information about the
helicity influence on photon trajectories. As expected, the
corresponding helicity-dependent terms are suppressed by
the small factor !�1.

After these general remarks let us describe the modified
geometrical optics equations in detail. Let us rewrite the
main Eq. (53) by adding the term 1

2!
�1½curlg� f� to both

sides. The form of this modification is suggested by the
effective eikonal (97) and (98),

Lfþ i

2!
½curlg�f�¼	

!
curlfþ i

2!
½curlg�f�: (104)

Accordingly, we define the following new linear operator ~L
[cf. Eq. (54)]:

~Lf � f � i	½~n� f� ¼ 0; (105)

~n�p� ~g; p�r �S; ~g�gþ 	

2!
curlg: (106)

Then, Eq. (104) takes the form

~Lf ¼ 	

!
curlf þ i

2!
½curlg� f�: (107)

Substituting the expansion (55) into this equation and
taking the geometrical optics limit!�1 ! 0 in accordance
with the large distances asymptotic approximation, i.e., we
keep the term of the first order in !�1 which enters the
operator ~L, we derive [cf. Eq. (57)]

~L ~f0 ¼ 0: (108)

One can see that the operator ~L has the same properties
as the operator L. In particular, we have [cf. Eq. (59)]

ð~n; ~nÞ ¼ 1; (109)

where ~n is the eigenvector of ~L with the eigenvalue 1.
According to the definition of the vector ~n, the effective
eikonal equation reads [cf. Eq. (79)]

ðr~S � ~gÞ2 ¼ 1: (110)

This modified eikonal equation can be solved as above.
It coincides with the Hamilton-Jacobi equation for the
following modified Hamiltonian:

~H ðxi;piÞ¼ 1
2ðp� ~gÞ2� 1

2�
ijðpi� ~giÞðpj� ~gjÞ: (111)

The modified Hamilton equations are equivalent to the
following second order equation for photon trajectories
[cf. Eq. (79)]:

D2x

d‘2
¼

�
dx

d‘
� curlg

�
þ 	

2!

�
dx

d‘
� curl curlg

�
: (112)

This equation explicitly shows the effect of the helicity on
the ray trajectories. Repeating the steps of Sec. IV for g
replaced with ~g we derive the effective eikonal [cf. Eq. (97)]

~SðxÞ ¼
Z x

x0

½d‘þ ðg; dxÞ þ 	

2!
ðcurlg; dxÞ�: (113)

The main difference with the previous result is that the
integration in (113) is performed over the modified ray
trajectories corresponding to the vector ~n. The last term in
this equation depends on the helicity sign 	.

B. Modified transport equations

Let us now discuss modifications of the transport equa-
tions. To begin with, let us introduce the basis f~n; ~m; �~mg
such that the relations between the basis vectors are analo-
gous to the relations (65) and (66). Analogously, we define
[cf. Eq. (86)]

~f 0 ¼ ~f0 ~mei ~’; (114)

so that

ð~n; ~f0Þ ¼ 0: (115)

From the relation (70), which remains valid for the opera-
tor ~L and the vector ~n, and Eq. (107) we derive the
following relation:

curlf ¼ ~nð~n; curlfÞ � i	½~n� curlf� � i	

2
½curlg� f�

� i	

2
~nðcurlg; ½~n� f�Þ þ 1

2
ð~n; fÞcurlg

� 1

2
ð~n; curlgÞf : (116)

Applying the operator curl to Eq. (107) and using Eq. (105)
we derive

curlf� i	curl½~n�f�¼	

!
curlcurlfþ i

2!
curl½curlg�f�:

(117)

Substituting the expansion (55) into this equation we de-
rive the following equation corresponding to the geomet-
rical optics approximation [cf. Eq. (83)]:

curl ~f0 ¼ i	curl½~n� ~f0�: (118)

Repeating the same steps as in Sec. IVand using Eqs. (114)
and (115), and the relation (116) we derive [cf. Eq. (90)]

r~n
~f0¼1

2
½i	~nð ~f0;curl~nÞ�½ ~f0;curl~n�� ~f0div~n�

� i	

4
½~nð ~f0;curlgÞ� i	½ ~f0;curlg�þ ~f0ð~n;curlgÞ�:

(119)
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Using this expression, one can show that the following
relation holds [cf. Eq. (91)]:

div ð~f20 ~nÞ ¼ 0: (120)

That is, conservation of number of photons in a stationary
spacetime holds for the modified ray trajectories. Using the
expressions (114), (119), and (120) we obtain the following
relation [cf. Eq. (92)]:

i ~mr~n ~’¼1

2
ði	~nð ~m;curl~nÞ�½ ~m;curl~n�Þ� i	

4
½~nð ~m;curlgÞ

� i	½ ~m;curlg�þ ~mð~n;curlgÞ��r~n ~m: (121)

Analogously, using Eqs. (26), (106), and (109) we can
define derivation of the vector ~n along itself [cf. Eq. (93)],

r~n ~n¼�½~n�curl~n�¼½~n�curlg�þ 	

2!
½~n�curlg�: (122)

We use the basis f~n; ~m; �~mg, which is Fermi propagated
along the corresponding ray trajectories generated by ~n.
Then, using Eqs. (121) and (122) we derive [cf. Eq. (94)]

r~n ~’ ¼ 1

4!
ð~n; curl curlgÞ: (123)

Thus, in the geometrical optics limit !�1 ! 0 we have
~’ ¼ const, which implies that the polarization vector does
not rotate with respect to the basis f~n; ~m; �~mg.

To summarize, the expression for the field F 	 in the
modified geometrical optics approximation reads

F 	 � ~f	0 ~m	e
i!~SðxÞ; (124)

~SðxÞ ¼
Z x

x0

�
1þ

�
~g;
dx

d‘

��
d‘; (125)

~g ¼ gþ 	

2!
curlg: (126)

This result is similar to (96), but it contains an important
difference. To define the Fermi propagated basis and the
integration paths one must use the modified ray trajectories
defined by the tangent vector ~n.

Since a linearly polarized light is a superposition of the
right and left circularly polarized beams, we conclude
that the initially linearly polarized beam in a stationary
gravitational field splits into two beams with different
circular polarization. However, it is easy to check that
before this effect becomes important the beam split is
negligible, and the linear polarizion vector has the same
Faraday rotation (102).

C. Example: Kerr spacetime

Let us emphasize that in the developed scheme of the
modified geometrical optics we did not assume that the
gravitational field is weak. One can expect that spin-optical
effects might become significant for the light propagation
close to rotating black holes, where the gravity is evidently

very strong. We shall discuss this subject in detail in the
future publication. Just to give an example, here we present
the terms that control the helicity dependence of light rays
in the Kerr geometry.
The Kerr metric in the Boyer-Lindquist coordinates

x� ¼ ðt; r; �; �Þ can be presented in the form (2) with

h¼ð��a2sin2�Þ=�; gi¼�2aMr

�h
sin2��i

�; (127)

d‘2¼�ijdx
idxj¼ �

�h
dr2þ�

h
d�2þ�sin2�

h2
d�2; (128)

where

� ¼ r2 þ a2cos2�; � ¼ r2 � 2Mrþ a2: (129)

This metric represents a Kerr black hole of the massM and
the angular momentum J ¼ aM, where 0 � jaj � M.
For this metric we derive

ðcurlgÞi¼�4aM�r

�3
cos��i

r�2aMðr2�a2cos2�Þ
�3

sin��i
�;

(130)

ðcurl curlgÞi ¼ 4aM2

�3
�i

�: (131)

Note that Eq. (112) for photon trajectories contains an
extra term (131) that in the weak field approximation gives
the angular separation of the right and left circularly po-
larized beams of the order of GJ�=ðc3L3Þ, where L �
GM=c2 is the distance from the Kerr black hole. This result
is in agreement with the estimation obtained by Mashhoon
[9,22].

VI. SUMMARY

In this paper we studied the propagation of circularly
polarized monochromatic electromagnetic waves in a sta-
tionary spacetime. We presented the Maxwell equations in
ð3þ 1Þ form corresponding to ð3þ 1Þ decomposition of a
stationary spacetime. The Maxwell equations for circularly
polarized monochromatic waves reduce to the set of equa-
tions for the complex amplitude of such waves. This set of
equations can be solved if a solution to the corresponding
master equation for the complex amplitude is found. We
first described the ‘‘standard’’ procedure of finding solu-
tions to the master equation in the geometrical optics
approximation. We used the main result of this approxi-
mation (96) in order to develop an improved modified
scheme. This scheme locally gives the same results as
the ‘‘standard’’ geometrical optics, but for the scattering
problem it allows one to include the helicity corrections to
the photon equation of motion. It is interesting that tech-
nically, in order to obtain these modified equations, it is
sufficient to modify the gravitomagnetic vector potential
g by the well-defined correction that has the form
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1
2	!

�1curlg. Let us emphasize that the obtained results are

valid beyond the weak field approximation for the gravi-
tational field, and hence, they allow one to study the
polarization effects in strong gravity. Using the proposed
scheme one can calculate the post-geometrical optics cor-
rections to the obtained solution.

One can interpret the obtained results in a slightly differ-
ent manner. As a result of spin-orbit interaction, photons
with different circular polarization move in a slightly
modified metric. This modification depends on the fre-
quency of a photon !. Such ‘‘renormalization’’ approach
allows one to conclude that due to the scattering of circu-
larly polarized ‘‘white’’ light, which contains different
frequencies, one may observe a peculiar ‘‘rainbow effect’’.
Another effect is that linearly polarized beam of light
propagating in a stationary gravitational field splits into
two components of the right and left circular polarization.
These and other polarization effects might be important for
propagation of polarized photons near the horizon of rap-
idly rotating black holes.
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APPENDIX: CALCULATION OF DETERMINANT

Suppose that 
 is some scalar quantity, I is a unit 3� 3
matrix, and A is an antisymmetric 3� 3 matrix, respec-
tively. Then one has

detð
IþAÞ ¼ 
3 � 


2
trðA2Þ: (A1)

The antisymmetric matrix A can be written in the form

Aij ¼ �ijka
k; (A2)

where �123 ¼ �123 ¼ 1 and ai ¼ 1
2 �

ijkAjk. Using this rep-

resentation one obtains

tr ðA2Þ ¼ �2a2 ¼ �2aia
i: (A3)

Thus,

detð
IþAÞ ¼ 
3 þ 
aia
i: (A4)
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