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Inspiral of compact stellar remnants into massive black holes (MBHs) is accompanied by the emission

of gravitational waves at frequencies that are potentially detectable by space-based interferometers. Event

rates computed from statistical (Fokker-Planck, Monte-Carlo) approaches span a wide range due to

uncertaintities about the rate coefficients. Here we present results from direct integration of the post-

Newtonian N-body equations of motion describing dense clusters of compact stars around Schwarzschild

MBHs. These simulations embody an essentially exact (at the post-Newtonian level) treatment of the

interplay between stellar dynamical relaxation, relativistic precession, and gravitational-wave energy loss.

The rate of capture of stars by the MBH is found to be greatly reduced by relativistic precession, which

limits the ability of torques from the stellar potential to change orbital angular momenta. Penetration of

this ‘‘Schwarzschild barrier’’ does occasionally occur, resulting in capture of stars onto orbits that

gradually inspiral due to gravitational wave emission; we discuss two mechanisms for barrier penetration

and find evidence for both in the simulations. We derive an approximate formula for the capture rate,

which predicts that captures would be strongly disfavored from orbits with semi-major axes below a

certain value; this prediction, as well as the predicted rate, are verified in the N-body integrations. We

discuss the implications of our results for the detection of extreme-mass-ratio inspirals from galactic

nuclei with a range of physical properties.
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I. INTRODUCTION

Compact stellar remnants—white dwarfs, neutron stars,
and stellar-mass black holes (BHs)—can be captured by
massive black holes (MBHs) at the centers of galaxies
like the Milky Way, without suffering tidal disruption in
the process. Such extreme-mass-ratio inspirals (EMRIs)
are a potential source of low-frequency gravitational waves
(GWs) for space-based GW interferometers [1–4]. Capture
orbits for EMRIs can be very eccentric [5], displaying
extreme versions of relativistic precession. Typical
EMRIs will have low, instantaneous GW amplitudes, but
signals can potentially be observed over * 105 cycles as
the compact objects gradually lose energy and spiral in,
allowing the signal-to-noise ratio to be built up over time
using matched filtering or other techniques [6–8]. Detailed
information about the structure of spacetime is encoded in
the GW signal, permitting strong-field tests of theories of
gravity [9–11].

Predictions of the EMRI event rate span a wide range,
from�10�9 yr�1 to�10�6 yr�1 per galaxy [12–17]. There
are two basic sources of uncertainty. Only stars originating
from tightly bound orbits, & 10 mpc (milliparsecs),

can complete their inspiral without being scattered prema-
turely into the MBH or onto a wider orbit. But the number
and distribution of stars and stellar remnants at these radii is
essentially unconstrained, even in the Milky Way [18], and
estimates of the event rate must therefore be based on
extrapolation of the stellar distribution observed on much
larger scales, or on theoretical models. In addition, the
collisional dynamics of relativistic star clusters around
MBHs are poorly understood.
This paper addresses the second source of uncertainty.

We present results from long-term (106–107 yr), direct

N-body simulations of clusters of compact stars around a

MBH. Relativistic corrections to the equations of motion

are included up to 2.5 post-Newtonian (PN) order [[19],

hereafter Paper I]. These new simulations permit an essen-

tially exact treatment of the interplay between stellar re-

laxation and GW emission, avoiding the approximations

that must be made in statistical (Fokker-Planck, Monte-

Carlo) treatments.
In such a statistical treatment of EMRI, Hopman and

Alexander [16] have shown that the dynamical evolution

leading to capture on an inspiral orbit is driven by ‘‘reso-

nant relaxation’’ (RR)[20] due to the residual torques from

the stellar background. They argued that relativistic, in-

plane (Schwarzschild) precession plays a critical role in

suppressing the stellar torques on eccentric orbits, thereby

allowing the stars to follow quasi-periodic EMRI orbits,
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rather than be strongly torqued into direct plunge orbits;
the latter would produce non-periodic, broadband GW
events that would be difficult to detect.

The simulations presented here reveal that the interplay
between Newtonian torques and relativistic precession not
only limits the effectiveness of stellar relaxation before it
can drive stars into plunge orbits, but in fact creates a
dynamical barrier, the ‘‘Schwarzschild barrier,’’ which
repels stars back to less eccentric orbits, thereby strongly
mediating the EMRI rate. We develop a Hamiltonian
model for the behavior of orbits near this barrier and use
it to identify two modes by which stars can cross the barrier
and become EMRIs. Evidence for both modes of barrier
penetration are found in the N-body simulations.

In Sec. II, we summarize the computational techniques
and the N-body initial conditions. In subsequent sections,
we present results from integrations in which the PN terms
are absent, or included only at the 2.5 PN (GW emission)
level (Sec. IV); and in which all PN terms up to and
including 2.5 PN are included (Sec. V). In Sec. V, we
also present an extended discussion of orbital dynamics
near the Schwarzschild barrier based on a Hamiltonian
formulation. Section VI discusses the implications of our
results for the rate of EMRI production in real galaxies and
Sec. VII sums up.

We confine ourselves in this paper to non-rotating,
i.e. Schwarzschild, MBHs. The consequences of spin will
be discussed in a subsequent paper.

II. MODELS AND METHODS

The N-body systems considered here consist of a
single massive particle, representing a massive black hole
(MBH), and 50 lower-mass particles representing stellar
remnants (referred to below, interchangeably, as either BHs
or stars). Each BH particle had a mass 5� 10�5 that of the
MBH particle. If the latter is assigned a mass of

M� ¼ 1� 106M�; (1)

the BH particles have masses ofm ¼ 50M�. This value is
somewhat larger than the predicted masses of the BHs that
form in stellar collapse, i.e. 10–20M� [21]. The choice for
m=M� was motivated by the need to integrate the N-body
systems for a time of order the two-body relaxation time,
which scales as m�2 for a system of fixed N. Alternatively,
if m is set to 10M�, M� ¼ 2� 105M�; however, we
note that the existence of MBHs with M� & 106M� is
speculative.

Unless otherwise stated, we adopt M� ¼ 1:0� 106M�
below when quoting N-body results in physical units. In
most cases, the dynamical theory used to interpret the
N-body results will allow the event rates derived here to
be scaled approximately to systems of different m andM�.

The initial orbital elements of the BH particles were
selected randomly from the distribution

Nða; e2Þdade2 ¼ N0dade
2 (2)

with a and e the semi-major axis and eccentricity of the
Keplerian orbit about the MBH. Equation (2) corresponds
to an isotropic (in velocity) distribution with configuration-
space density

nðrÞ ¼ n0

�
r

r0

��2
: (3)

This is roughly the expected radial dependence for a re-
laxed population around a MBH [17,22,23]. The initial
distribution in semi-major axis was truncated above a ¼
a2 ¼ 10 mpc and below a ¼ a1 ¼ 0:1 mpc. Setting
N ¼ 50 and m ¼ 50M�, the enclosed, distributed mass
becomes

M?ð<rÞ � 250M�~r; ~r & 10; (4)

where ~r is the radius in units of mpc and the subscript ‘‘?’’
indicates the distributed mass; i.e., the stars.
While the values of N andm=M� were chosen primarily

on the basis of computational convenience, the models
adopted here are not necessarily poor representations of
real galactic nuclei. Steady-state models of the center of
the Milky Way galaxy [15,17] typically find that the dis-
tributed mass within �100 mpc of the MBH is dominated
by stellar BHs (as opposed to other types of stellar
remnant, or stars) with M?ðr < 10 mpcÞ � 103M�.
Expressed in terms of the gravitational radius defined in
Eq. (10), and assuming � / r�2, a distributed mass of
103M� within 10 mpc implies

M?ð<rÞ � 200

�
r

104rg

�
: (5)

By comparison, the scaling adopted above implies that for
our models,

M?ð<rÞ � 120

�
r

104rg

�
: (6)

The N-body integrator is described elsewhere [24,25]; it
includes PN accelerations of orders up to and including 2.5
(i.e. c�5) in the interactions between the MBH and star
particles. The algorithm was modified for the current study
to allow merger of star particles with the MBH. The
condition for a merger was an instantaneous separation
[26]

r � rcapt ¼ 8rg (7)

or�4� 10�4 mpc ifM� ¼ 106M�. The angular momen-
tum and eccentricity of an orbit that just grazes the capture
sphere are (in the Keplerian approximation)

Lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM�rcapt

q
; em ¼ 1� rcapt

a
: (8)

For a1 � a � a2 and using the adopted value of rcapt, the

eccentricity of a capture orbit satisfies
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4� 10�5 & 1� em & 4� 10�3: (9)

The mass of a merged particle was added to that of the
MBH in such a way that linear momentum was conserved.

An EMRI event was defined as any merger occurring
from an orbit with semi-major axis, at the moment of
capture, less than 0.01 mpc. Mergers occurring from orbits
with larger a were recorded as ‘‘plunges’’.

While capture in its final stages would be driven by
energy loss due to emission of GWs, as represented here
by the 2.5 PN terms, the capture rate is determined pri-
marily by dynamical interactions that take place far beyond
rg. In order to better understand the dynamical mecha-

nisms leading to capture, three series of N-body integra-
tions were carried out, incorporating different subsets of
the full PN equations of motion defined in Paper I.

Series I: No PN terms were included. Stars were never-
theless allowed to merge with the MBH if they passed
within rcapt (plunges).

Series II: The 2.5 PN terms were included. As a result,
some stars (‘‘EMRIs’’) were captured onto orbits for which
the time scale for GWenergy loss is less than the time scale
for scattering by other stars.

Series III: All PN terms (1 PN, 2 PN, 2.5 PN) were
included.

In each series, at least eight different Monte Carlo real-
izations of the same initial conditions were integrated
forward in time. Models from Series I and II were inte-
grated for a time of 107 yr, based on the scalings adopted
above. For models from Series III, inclusion of the addi-
tional PN terms caused the integrator to run more slowly,
and most integrations were terminated after 2–3 Myr.
Calculations were carried out on GRAVITYSIMULATOR, the
32-node cluster at RIT.

III. BASIC SCALES OF LENGTH AND TIME

Here we define length and time scales associated with an
idealized model consisting of a central MBH and a smooth,
spherical distribution of surrounding stars. Other time
scales, associated with collisional (relaxation) processes,
are defined below.

The length scale associated with the event horizon of the
MBH is

rg � GM�
c2

� 4:80� 10�5 mpc; (10)

where the numerical value assumes M� ¼ 1:0� 106M�.
Ignoring the contribution of the stellar BHs to the gravi-

tational potential, the (Newtonian) orbital period of a test
mass around the MBH is

Pr ¼ 2�a3=2ffiffiffiffiffiffiffiffiffiffiffi
GM�

p � 2:96~a3=2 yr; (11)

where ~a is the test mass’s semi-major axis in units of mpc;
the second relation again assumes M� ¼ 1:0� 106M�.

Approximating the stellar BHs as a smooth mass distri-
bution, �ðrÞ ¼ mnðrÞ with nðrÞ given by Eq. (3), their
contribution to the gravitational potential is

�?ðrÞ ¼ GM0

r0
ln

�
r

r0

�
þ constant; (12)

where M?ð<rÞ ¼ M0ðr=r0Þ; setting r0 ¼ 1 mpc gives
M0 ¼ 250M� in our models.
Deviation of the potential from that of a point mass

induces a precession in the (fixed) plane of an orbiting
star, the ‘‘mass precession.’’ Orbital perturbation theory
[e.g. [27]] gives for the precession rate, in the limit
M0 	 M�,

d!

dt
� �M � ��r

M?ðr < aÞ
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ; (13)

where

�r � 2�

Pr

¼ ðGM�Þ1=2a�3=2 � ð0:47 yrÞ�1~a�3=2 (14)

is the radial frequency and e is the orbital eccentricity.
Precession is retrograde, i.e. in the opposite sense to the
orbital motion. For the adopted mass model [28],

tM �
�������� �

�M

��������� ð1:18� 104 yrÞgðeÞ~a1=2; (15a)

gðeÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p : (15b)

In the limit e ! 1, Eq. (13) predicts �M ! 0; i.e. radial
orbits do not precess.
The PN accelerations also contribute to the in-plane

precession. To lowest order, the Schwarzschild contribu-
tion is

�GR ¼ 3

c2
ðGM�Þ3=2

ð1� e2Þa5=2 ¼ �r

3rg

að1� e2Þ (16)

in the opposite (prograde) sense, and

tGR �
�������� �

�GR

��������� ð1:02� 104 yrÞð1� e2Þ~a5=2: (17)

While we defer a detailed treatment of spin effects to a
subsequent paper, we note here that the Kerr contribution
to the in-plane precession is smaller than (16) by a factor

��ðrg=pÞ1=2, where � is the dimensionless spin parameter

of the MBH and p ¼ ð1� e2Þa is the semi-latus rectum.
Excepting very shortly before a merger, this factor would
be much smaller than unity in our simulations.

IV. SERIES I AND II

As discussed in more detail below, including the rela-
tivistic terms in the N-body equations of motion resulted
in much lower EMRI rates than expected based on
Newtonian dynamics of a compact cluster around a
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MBH. The essential element that differs between the rela-
tivistic and non-relativistic dynamics turns out to be the
1 PN precession of the periapse, Eq. (16). In order to
quantify the magnitude of the differences, two sets of
experiments were carried out in which some or all of the
relativistic terms were omitted. Integrations from Series I
were based on the Newtonian equations of motion. Series
II included also the 2.5 PN terms, allowing capture of stars
onto inspiral orbits via GW energy loss. In integrations
from both Series I and Series II, the 1 PN (Schwarzschild)
precession is absent.

A. Series I

Figure 1 shows, for one integration in Series I, the
evolution of semi-major axis a and eccentricity e for
each of the 50 stars, until a time of 2 Myr. Star-star
gravitational scattering induces substantial changes in the
orbital angular momenta over these time scales, while the
energy (i.e. semi-major axis) remains nearly constant.

Whenever the periapse distance rp � að1� eÞ drops

below rcapt the star is captured. Almost all such events

are plunges since no GW energy loss occurs, and since
essentially no stars have initial semi-major axes less than
0.01 mpc, the condition defined above for a capture to be
classified as an EMRI. In the simulation shown in Fig. 1, 17
out of the 50 stars are captured by t ¼ 2 Myr and 30 stars
are captured by t ¼ 10 Myr.

Figure 2 shows the time-averaged capture rate as a
function of time, defined as the number of mergers occur-
ring in time t divided by t. Events from each simulation in
the series were summed and the result was divided by the
number of simulations; in other words, the plotted rates
refer to a cluster with Nðt ¼ 0Þ ¼ 50. The capture rate
drops with time, since both the number of stars available
to merge, and the number of stars acting as scatterers,
decrease with time.

FIG. 1 (color). A simulation from Series I (Newtonian). a and
e are the semi-major axis and eccentricity, respectively, of the
two-body system consisting of one star and the MBH; rperi ¼
ð1� eÞa and rapo ¼ ð1þ eÞa. Different colors correspond to

different particles (since the total number of colors available
was 12, each color is used for more than one particle). Dashed
lines indicate the capture radius, rcapt ¼ 8rg.

FIG. 2 (color online). Time-averaged capture rates, defined as the total number of events until time t divided by t, computed from the
complete set of runs in each series. Series I: dashed line is the prediction of Eqs. (26) and (27) for C1 ¼ 0:5. The solid (black) curved
lines in the Series II and Series III panels are the total event rates, EMRI plus plunges.
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In this (Newtonian) regime, the mechanism expected to
dominate the scattering of stars onto high-eccentricity
orbits around a point mass is RR [16,20]. Because the
smooth gravitational potential has symmetries that restrict
the orbital evolution (i.e. to fixed ellipses in the case of a
Newtonian point mass), perturbations on a test star are not
random but correlated. This leads to coherent changes

�L ¼ Tt on times t & tcoh by the residual torque jTj �ffiffiffiffi
N

p
Gm=r exerted by the N randomly oriented, orbit-

averaged mass distributions of the surrounding stars. The
coherence time is set by the mechanism that most rapidly
causes orbits to precess, randomizing T. In these non-
relativistic simulations, that mechanism is mass preces-
sion, Eq. (15a). The accumulated change over tcoh,
j�Lcohj � jTtcohj, then becomes the mean free path in L
space for the long-term (t 
 tcoh) random walk in L. The
effective relaxation time associated with RR satisfies

j�Lcohj
Lc

ffiffiffiffiffiffiffi
t

tcoh

s
�

ffiffiffiffiffiffiffi
t

tRR

s
; (18)

i.e.

tRR ¼
�

Lc

�Lcoh

�
2
tcoh; (19)

where Lc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�a

p
is the angular momentum of a circu-

lar orbit with radius r � a. These relations should be
understood as correct only in an order-of-magnitude sense.

In the coherent regime, the change in orbital angular
momentum is��������dLdt

��������� ffiffiffiffi
N

p Gm

a
� �s

Lc

P

ffiffiffiffi
N

p
m

M�
; (20)

where N is roughly the number of stars within a sphere of
radius a, and �s is a dimensionless factor of order unity
[29,30].

The precession time due to the distributed mass,
Eq. (15a), can be written

tM � ð1:2� 104 yrÞgðeÞ~a1=2
�

M�
106M�

��
M0

250M�

��1
;

(21)

where M?ð<rÞ ¼ M0~r and M0 ¼ 250M� for the models
considered here.

Identifying tM with tcoh, and writing Nð<rÞ ¼
M?ð<rÞ=m, Eqs. (19)–(21) give

tRR � ��2
s gðeÞ�1 M�

m
PðaÞ (22a)

� 5:9� 104 yr

�2
sgðeÞ

�
M�

106M�

�
1=2

�
m

50M�

��1
~a3=2: (22b)

We note that M? has dropped out. This is only valid for
values ofM? large enough that tcoh ¼ tM is shorter than all
other time scales of interest.

In the expression for tRR, the form of the density profile
is still reflected in the dependence of g on e, which, for the
assumed initial mass distribution, is strongly dependent on
e as e ! 1 (Eq. (15b)). However, what matters for the
coherence breaking is the relative precession of the test
particle’s orbit with respect to the other orbits. Hence, it is
reasonable to average gðeÞ in Eq. (22) over the eccentricity
distribution for all the stars, Eq. (2):

�g �
Z 1

0
gðeÞde2 ¼ 3

2
: (23)

In what follows, we ignore changes in �g due to evolution
of M?ðrÞ.
Because the integration time is long compared with tRR,

we expect a quasi-steady-state to be set up in the angular
momentum distribution at each a, such that the rate of loss
of stars into the capture sphere is roughly equal to the rate
at which new stars are being scattered onto low-angular-
momentum orbits. In this regime, the (differential) rate at
which stars are scattered into the MBH at each a is given
approximately by:

�ða; tÞda � Nða; tÞda
lnðLc=LmÞtRR (24)

[e.g. [31]]. The logarithmic term can be interpreted as
the approximate number of relaxation times required for
an orbit to diffuse in angular momentum from e � 0
to e � em [32].
Using Eq. (22), the differential capture rate can be

written

�ða; tÞda ¼ C1

m

M�
Nða; tÞda

lnð1� e2mÞ�1=2PðaÞ ; (25)

where �2
s �g and all other uncertainties have been absorbed

into the fitting parameter C1, assumed independent of a
and t.
Equating �ða; tÞ with �dNða; tÞ=dt and using Eqs. (8)

and (11), the evolution equation for Nða; tÞ becomes

@N

@�
¼ � Nða; �Þ

~a3=2 lnða=rcaptÞ
; � � t=t1; (26a)

t1 ¼ ð5:9� 104 yrÞC�1
1

M�=m
2� 104

�
M�

106M�

��1=2
; (26b)

with solution

Nð~a; �Þ ¼ Nð~a; 0Þe��=�1 ; (27a)

�1 ¼ ~a3=2 lnða=rcaptÞ: (27b)

Figure 3 plots the predicted, cumulative number of events
versus time, compared with the results from the Series I
integrations. The agreement is good for C1 � 0:5. The
mean capture rate is given by t�1

R
a2
a1
½Nða;0Þ�Nða;tÞ�da;

this is plotted, withC1 ¼ 0:5, as the dashed line in Fig. 2(a).
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B. Series II

Series II integrations included the 2.5 PN terms in the
equations of motion, allowing some stars to be captured
onto orbits that inspiral gradually into the MBH via GW
energy loss.

The energy loss time scale associated with the 2.5 PN
terms is [33]

tGW �
��������1

a

da

dt

��������
¼ 5

64

c5a4

G3M2�m
ð1� e2Þ7=2

�
1þ 73

24
e2 þ 37

96
e4
��1

� 1:2� 1014 yr

�
m

50M�

��1
�

M�
106M�

��2
~a4ð1� eÞ7=2;

(28)

where the latter expression assumes e � 1. In this limit,
GW inspiral occurs along lines of fixed slope in the
a, (1� e) plane until shortly before the merger:

�ð1� eÞ
1� e

� ��a

a
; (29)

such that rp ¼ ð1� eÞa is approximately constant [33].

In order to avoid plunging, a star must reach a high enough
eccentricity that the GW time scale is shorter than the time
for gravitational encounters to scatter the star onto a differ-
ent orbit.

From Eqs. (IVB)-(29), the time required for GWs to
change e by of order 1� e is �tGW. In the case of
gravitational encounters, changes in angular momentum
are equivalent to changes in eccentricity since a is nearly
conserved. The time tL for encounters to change L by of
order itself is

ð�LÞ2 � L2 ¼ L2
c

tL
tRR

; (30)

i.e.

tL ¼
�
L

Lc

�
2
tRR � 2ð1� eÞtRR; (31)

with tRR the RR time scale defined above. Equating tL with
tGW then gives the condition for capture onto an inspiral
orbit:

að1� eÞ � 1

2

�
340�

3

�
2=5

rg; (32)

i.e. capture requires a periapse distance of �5rg. This is

slightly smaller than the separation at which mergers were
assumed to take place in the simulations (Eq. (7)).
Given the approximate nature of Eq. (32), one expects

capture onto inspiral orbits for some fraction, of order
unity, of stars that would otherwise plunge into the
MBH. Figure 4 shows the cumulative histogram of capture
events for the integrations of Series II. Roughly 1=4 (54 out
of 206) events were EMRIs. Time-averaged capture rates
are shown in Fig. 2(b). These results are consistent with
expectations.
As shown in the next section, these results are substan-

tially changed by the inclusion of the 1 PN and 2 PN terms
into the equations of motion.

V. SERIES III

Figure 5 shows the evolution on the (ar, 1� er) plane of
all 50 stars in an integration from Series III. Integrations
in this series included all PN terms (1 PN, 2 PN, 2.5 PN).
The quantities ar, er are the 1 PN generalizations of the
Keplerian semi-major axis and eccentricity respectively;

FIG. 3. Open circles show the number of stars captured up
until time t in the combined runs from Series I; values are
normalized to an initial total number of 50. Plotted events are
all ‘‘plunges.’’ Solid lines show the predictions of Eqs. (26) and
(27) for C1 ¼ ð0:3; 0:5; 0:7Þ.

FIG. 4 (color online). Distribution of initial semi-major axes
for the capture events from Series II. Red (unfilled) histogram
shows the plunges; blue (crosshatched) histogram shows the
EMRIs. Elapsed time is 107 yr.
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to this PN order, the periapse and apoapse distances are
given, respectively, by ð1� erÞar and ð1þ erÞar [34].

Over the course of the 2 Myr interval plotted in Fig. 5,
only one capture occurs: an EMRI. The plunge events that
dominated the integrations from Series I and II are absent.
The mean capture rates computed from all integrations
in Series III are shown in Fig. 2. The mean capture rate is
&1Myr�1, with 74% of the events EMRIs. By comparison,
in Series I and II, the mean capture rate was* 10 Myr�1 at
early times, and almost all events were plunges.

The proximate reason for the much lower event rate in
the integrations from Series III is suggested by Fig. 5: there
is an apparent barrier in orbital eccentricity, or angular
momentum, which very few stars cross on Myr time scales.
Furthermore, the single star that is captured in that figure
appears to require a time much longer than �ð1� erÞtRR
to cross the gap. The barrier is illustrated more clearly
in Fig. 6, based on another integration from Series III.

This figure shows that there is some ‘‘barrier penetration’’
for orbits with small semi-major axis; we discuss the
reasons below.

A. The Schwarzschild barrier

Adding the 1 PN terms to the equations of motion results
in precession of the argument ! of orbital periapse, with
an orbit-averaged frequency given by Eq. (16). For low
eccentricity orbits, the rate of this Schwarzschild preces-
sion [35] is comparable to that produced by the distributed
mass, Eq. (13), at the radii of interest here. But whereas the
latter rate tends to zero as e ! 1, the Schwarzschild pre-
cession rate diverges, as �ð1� eÞ�1. The effective time
over which background torques can act is determined by
the fastest mechanism that changes the relative orientation
of a star with respect to the gravitational field produced by
all the other stars. For a highly eccentric orbit, this mecha-
nism is Schwarzschild precession and its associated time
scale tends to zero as e ! 1.
We suggest that the angular momentum barrier be iden-

tified, in a qualitative way, with the value of L at which the
torques become ineffective due to the orbit’s rapid
Schwarzschild precession.
The residual torque produced by an otherwise-spherical

distribution of stars, at r � a, is of order

T � Gm

a

ffiffiffiffiffiffiffiffiffiffi
NðaÞp � 1ffiffiffiffiffiffiffiffiffiffi

NðaÞp GM?ðaÞ
a

; (33)

where M?ðaÞ ¼ mNðaÞ is the distributed mass within

radius r ¼ a. Writing L ¼ ½GM�að1� e2Þ�1=2 for the

FIG. 5 (color). A simulation from Series III (all PN terms). ar
and er are the 1 PN generalizations of the semi-major axis and
eccentricity; rperi ¼ ð1� erÞar and rapo ¼ ð1þ erÞar. Different
colors correspond to different particles (the number of different
colors is 12 so each color is used for more than one particle).
Dashed (black) lines show the assumed capture radius, rcapt ¼
8rg. In the top frame, the dotted (red) line is the Schwarzschild

barrier, Eq. (36), and the dash-dotted (blue) line is the approxi-
mate condition for GW capture, Eq. (62).

FIG. 6 (color online). Illustrating the angular momentum
barrier when all PN terms are included, in two short time
segments extracted from a Series III integration.
(a) 4�105 yr� t�8�105 yr; (b) 1�106 yr� t�1:4�106 yr.
Dashed (black) line is the capture radius; dotted (red) line is the
predicted angular momentum barrier, Eq. (36). Stars that lay
initially to the left of the barrier were excluded. This integration
produced no EMRIs. The time interval plotted,�t ¼ 4� 105 yr,
is somewhat longer than the RR time scale of Eq. (22) and much
longer than ð1� erÞtRR. Note the ‘‘barrier penetration’’ at small
values of ar.
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angular momentum of a test star, the time scale over which
this fixed torque changes L is

��������1

L

dL

dt

���������1� ffiffiffiffiffiffiffiffiffiffi
NðaÞp M�

MðaÞ
�
a3ð1� e2Þ

GM�

�
1=2

: (34)

The condition that this time be shorter than the relativistic
precession time, �=�GR, is

‘ > ‘SB � rg
a

M�
M?ðaÞ

ffiffiffiffiffiffiffiffiffiffi
NðaÞp

; (35)

where we have written ‘ � L=Lc ¼ ð1� e2Þ1=2.
Evaluating the quantities in Eq. (35) for the N-body mod-
els, the critical semi-major axis becomes

~a ¼ CSBð1� e2Þ�1=3; (36)

where CSB is a constant of order unity. Equation (36),
with CSB ¼ 0:7, is plotted as the dotted (red) lines in
Figs. 5–7 and 12.

Assuming that the condition (36) holds for all values
of a, the normalizing constantCSB can be interpreted as the
value of ~a when e ¼ 0; i.e. as the minimum value of ~a for
which the barrier exists. One expects that orbits with semi-
major axes larger than this minimum value (and smaller
than a maximum value, defined below), and that approach
the barrier from the right on Figs. 5 or 6, will have a hard
time crossing it, since torques become inefficient near the
barrier.

We develop these ideas more quantitatively in the next
subsection. Before doing so we present a more quantitative
model for the behavior of low-angular-momentum orbits
under the combined influence of relativistic precession and
Newtonian torques.

Figure 7(a) shows the evolutionary track of a star from
a Series III integration. The star first strikes the barrier at
t � 1:8� 105 yr; the eccentricity then oscillates several
times at roughly fixed amplitude before decreasing again,
carrying the star away from the barrier at t * 2:2� 105 yr.
During each bounce, the argument of periapse ! advances
by �2�.

Many other examples of ‘‘bounce’’ near the angular
momentum barrier were extracted from the N-body inte-
grations. While differing in detail, all such orbits exhibited
a variation in eccentricity near the barrier with a period
roughly equal to the period of Schwarzschild precession.

This feature suggests that the torques responsible for
angular momentum changes near the barrier are due to a
distortion of the stellar potential, expressed about the
location of the MBH particle, that is lopsided or dipole in
character. (A quadrupole distortion would cause changes in
L at twice the frequency of circulation, etc.). That the
dominant component of the torquing potential should
have such a form is not unreasonable, since if one repre-
sents

the gravitational potential from N orbit-averaged stars
in a multipole expansion, the largest terms are expected
be the monopole (due to the spherical cluster), followed

by the dipole (due to
ffiffiffiffi
N

p
departures from spherical

symmetry), etc.
We also verified that the behavior of orbits like that

plotted in Fig. 7 was unchanged if the mass of the test
particle was drastically reduced. These tests confirmed that
the variations in orbital angular momentum in the test
particle’s orbit were not a spurious result of motion of
the black hole particle induced by the test star’s precession.
We used the following simple potential to model the

motion of a test star subject to a lopsided force from all the
other stars:

�ðrÞ ¼ �GM�
r

þ�sVðrÞ � SðaÞa cos�: (37)

The second term on the right-hand side of (37) is the
potential of the spherical star cluster. For the models
considered here,

FIG. 7 (color online). (a) A bounce orbit extracted from a
Series III N-body integration. Plotted are the semi-major axis,
argument of periapse and eccentricity versus time, at low (upper)
and high (middle) time resolutions. In the plots of eccentricity
versus time, the lower (red) curved lines show the predicted
location of the angular momentum barrier, Eq. (36), with CSB ¼
0:7. Changes in the predicted barrier location reflect changes in
the semi-major axis. (b) A solution to the equations of motion
(41) that reproduces the important features of the N-body orbit in
(a). The duration of the bounce phase is roughly the coherence
time for the background (stellar) potential. Additional details are
given in the text.
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VðrÞ ¼ ln

�
r

r0

�
; �s ¼ GM0

r0
; M0 ¼ M?ðr < r0Þ:

(38)

The third term represents the lopsided distortion of the
stellar potential; the amplitude S, which has dimensions
of acceleration, is assumed to depend on the test-orbit’s
semi-major axis as

SðaÞ � Gm
ffiffiffiffiffiffiffiffiffiffi
NðaÞp

a2
� GM?ðaÞ

a2
ffiffiffiffiffiffiffiffiffiffi
NðaÞp : (39)

The corresponding density is

�Dðr; �Þ ¼ SðaÞa
2�G

cos�

r2
: (40)

The integrated mass corresponding to the lopsided compo-
nent is zero.

Because of the dominance of the first term in Eq. (37),
the radial period of an orbit is shorter than all other orbital
time scales. In Appendix A we express the Hamiltonian
corresponding to the potential (37) in terms of Delaunay
action-angle variables and average over the radial motion,
including the orbit-averaged term that generates the
Schwarzschild precession. The result is a set of four equa-
tions that describe the rates of change of the (osculating)
Keplerian elements ðL; Lz;!;�Þ:
d!

d�
¼‘�2�AM‘=ð1þ‘ÞþAD sin!

�
�‘

e
siniþ e

sini

‘2z
‘3

�
;

(41a)

d‘

d�
¼�ADesinicos!; (41b)

d�

d�
¼�ADe

‘z
‘2

sin!

sini
; (41c)

d‘z
d�

¼0; (41d)

where we have defined the dimensionless elements ‘ ¼
L=I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, ‘z ¼ Lz=I and cosi ¼ ‘z=‘ in terms of

the radial action I ¼ ðGM�aÞ1=2, and the dimensionless
time is � � �0t, where

�0 ¼ �r

3GM�
c2a

: (42)

In defining the Delaunay variables, the plane of refer-
ence has been taken to be the ðx; yÞ plane and the reference
direction is the x-axis; thus an orbit in the ðx; zÞ plane has
sini ¼ 1, and for such an orbit,! ¼ �=2 corresponds to an
orientation parallel to the z-axis, the assumed direction of
the lopsided distortion. In the case of an orbit in the ðx; yÞ
plane, sini ¼ 0, ‘z ¼ ‘, and the orientation of the orbit is
determined by !þ�; according to Eqs. (41a) and (41c),
the terms in ðd=d�Þð!þ�Þ that are proportional to AD

sum to zero in this case.

The dimensionless parameters AM and AD specify the
strength of the spherical and lopsided components of the
distributed mass:

AM ¼ 1

3

M?ðaÞ
M�

a

rg
; (43a)

AD ¼ 1

3

S

GM�=a2
a

rg
� 1

3
ffiffiffiffi
N

p M?ðaÞ
M�

a

rg
: (43b)

We note that AM=AD � N1=2, which is of order unity in the
models considered here. Thus whenever it is relevant to
neglect AM, AD is also negligible.
After averaging, the first and third terms in Eq. (37)

result in the same equations of motion as in the classical
Stark problem [e.g. [36]]. The corresponding solutions
[e.g. [37]] consist of circulation in �, with period

PStark ¼ 4�

3S

ffiffiffiffiffiffiffiffiffiffiffi
GM�
a

s
; (44)

oscillations in i, e and ! have the same period, while the
z-component of the angular momentum is fixed. The ec-
centricity reaches a maximum value that depends on Lz;
for Lz ¼ 0 ( i.e. for i ¼ �=2, emax ¼ 1), while for Lz � 0
the maximum eccentricity is less than one.
In the case considered here, precession of a sufficiently

eccentric orbit is dominated by the Schwarzschild term, the
first term on the right-hand side of Eq. (41a). Such an orbit
circulates in a nearly fixed plane and the eccentricity varies
with a period equal to the period of circulation. If ‘ is
sufficiently small, we can write d!=d� � h‘i�2 with h‘i
the time-averaged angular momentum. Equations (41) then
have approximate solution

1� ‘ðtÞ
h‘i � h‘iAD sini cosð�tÞ; (45a)

� ¼ 3

c2
ðGM�Þ3=2
h‘2ia5=2 : (45b)

In this limit, the amplitude of the angular momentum
oscillations,

‘þ � ‘� � 2h‘i2AD sini; (46)

decreases quadratically with h‘i.
We now return to the full equations of motion (41) in

order to test whether the detailed behavior of stellar
trajectories near bounce in the N-body integrations is
consistent with our simple model. In the N-body models,
the dimensionless parameters that appear in the equations
of motion are

AM � 1:8~a2; (47a)

AD � 1:2~a3=2; (47b)

�0 � ð3:26� 103 yrÞ�1~a�5=2; (47c)

and the Schwarzschild precession period is
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PGR � 2�

�GR

� 2:1� 104 yrð1� e2Þ~a5=2: (48)

The N-body orbit in Fig. 7(a) exhibits �6 full circula-
tions in ! in a time �3:5� 104 yr, corresponding to a
precessional period of �6� 103 yr. The semi-major axis
for this star during the bounce is 3:5 & ~a & 5 and the
eccentricity is �2:8 & log10ð1� eÞ & �2:1. Inserting
~a ¼ 4 and log10ð1� eÞ ¼ �2:5 into Eq. (48) gives PGR �
4� 103 yr which is quite consistent with the observed
precessional period.

Figure 7(b) shows a solution to Eqs. (41) that reproduces
the other important features of the N-body orbit near
bounce. We set AD ¼ 10 and AD ¼ 30 i.e., ~a � 4; the
initial values of the orbital elements were logð1� eÞ ¼
�2:1,! ¼ ��=2,� ¼ 0, and i ¼ 0:35�. Variations in�
and i (not shown here) were similar in amplitude for the
N-body and numerically computed orbits.

We carried out similar comparisons for other orbits near
the barrier. While differing in details, all the cases exam-
ined could be adequately represented via solutions to our
simple Hamiltonian (A6).

The assumptions made in deriving the Hamiltonian (A6)
are not specific to orbits near the barrier. Figure 8 summa-
rizes the properties of orbits, of arbitrary angular momen-
tum but restricted to the x� z plane ( sini ¼ �=2), in the
potential of Fig. 7(b). Orbits can either circulate (small
angular momentum) or librate (large angular momentum).
There is a critical value of the angular momentum, at the
time the orbit is oriented parallel to the z-axis (i.e. the
direction of the lopsided distortion), such that the preces-
sion rate _! ¼ 0 and the orbit remains fixed in orientation;
from Eq. (41a) this occurs when ‘ ¼ ‘crit where

0 ¼ 1� AM

‘3crit
1þ ‘crit

� AD

‘3critffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ‘2crit

q (49)

or ‘crit � 0:310 in Fig. 8. Away from this value, librating
orbits experience both their minimum and maximum an-
gular momenta when precessing past the z-axis; first in one
sense (when the mass precession term dominates) and then
in the other (when the Schwarzschild term dominates).
Libration changes to circulation when the orbit precesses
by an angle�� from its starting point along the z-axis. The
minimum angular momentum reached by the orbit at the
libration/circulation boundary is labeled ‘min on Fig. 8; in
this potential, ‘min � 0:045.

Figure 9 shows two orbits from this plane, one circulat-
ing and one librating. We note here one property common
to both types of orbit: stars tend to spend more time
with high angular momentum than with low angular mo-
mentuml. The reasons for this behavior are apparent in
the equations of motion (41). (1) For large ‘, d‘=d� is
small; i.e. the orbit-averaged effects of the torque are
small. (2) Orbits tend to linger at values of ! correspond-
ing to large ‘ since the Schwarzschild precession rate is

proportional to ‘�2. (The latter trend reverses for orbits so
circular that mass precession dominates the Schwarzschild
precession.)
Combining Eqs. (35) and (43b),

‘SB � ð2ADÞ�1 (50)

or ‘SB � 0:05 for AD ¼ 10. Not coincidentally, this is
roughly equal to ‘min � 0:045. Figure 8 shows that ‘min

specifies not only the minimum angular momentum
achievable by librating orbits, but is also roughly the
minimum ‘ reached by orbits whose angular momentum
changes by of order itself over one period; these were the
two assumptions made in deriving (35).
At the same time, it is clear from Fig. 8 that orbits with

‘� 	 ‘min do exist. Apparently, such orbits are rarely
reached in the N-body integrations. We discuss the reasons
in the next subsection.

FIG. 8. Properties of two-dimensional ( sini ¼ �=2) solutions
to the equations of motion (41), with AM ¼ 30, AD ¼ 10. h‘i is
the dimensionless angular momentum, ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, averaged

over one precessional or librational period P. Top panel: mini-
mum and maximum angular momenta reached by the orbit over
one period. Filled circles (‘‘L’’) are librating orbits while open
circles (‘‘C’’) are circulating orbits. The dashed lines at ‘ ¼ ‘crit
mark the angular momentum at which the precession rate,
d!=dt, is zero. The dotted line marked ‘min is the minimum
angular momentum reached by librating orbits; it is argued
in the text that this is essentially the angular momentum
corresponding to the Schwarzschild barrier, Eq. (35). Bottom
panel: Librational/precessional periods as a fraction of the
Schwarzschild period, computed from Eq. (16) after replacing
(1� e2) by h‘i2.
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B. Barrier penetration. I

Here we address the question of how orbits evolve after
striking the angular momentum barrier. The mechanism
(‘‘tunneling’’) explored in this section, which is based on
RR, will turn out to be less important as a source of barrier
penetration than the mechanism presented in the next
section, based on non-resonant relaxation (NRR). We
nevertheless explore it in some detail since doing so will
lead to insights about why the barrier is so ‘‘hard’’ on time
scales comparable to the RR time.

The Hamiltonian model just presented assumed a fixed
gravitational potential. The (constant) term responsible for
the torques was assumed to arise from the time-averaged
potential of the N stars. In reality, the background potential
must change as the orbits of all the stars evolve (e.g.
precess), leading to quasi-random changes in the direction
and amplitude of the torque that acts on a single star. The
changes in the background torques are responsible both for
moving a star toward the barrier and moving it away. As we
show here, such changes can also result in barrier
penetration.

In Sec. IV, the mass precession time,

tM � �

j�Mj � 1:8� 104 yr~a1=2
�

M�
106M�

��
M0

250M�

��1
;

(51a)

was taken as the ‘‘coherence time’’ over which the back-
ground torques can be assumed constant. We emphasize
that the relevant time here is the precession time for a

typical orbit, hence we have set gðeÞ ¼ �g ¼ 3=2 in
Eq. (21); the fact that some (high-e) orbits precess much
faster due to relativity is not important.
A second relevant time scale is the so-called vector

resonant relaxation (VRR) time, the time for orbital planes
to change due to their mutual torques [e.g. [15]]:

tRR;v � �

�r

M�
m

ffiffiffiffi
N

p � 1:3� 104 yr~a

�
M�

106M�

��1
� ~N
5

��1=2
;

(52)

where we have written ~N ¼ Nð<~aÞ=~a; ~N � 5 in the

N-body models. Since tM � tRR;v=
ffiffiffiffi
N

p
, one normally as-

sumes tM 	 tRR;v. However, the small values of N con-

sidered here, together with the approximate nature of
Eq. (52), means that the two time scales are essentially
the same in these models at all radii of interest.
Furthermore, VRR leads to full randomization of orbital
orientations in the sense that it changes orbital planes as
well as orientations within the plane; mass precession
leaves the orbital planes unchanged. For these reasons,
we adopt tRR;v as the coherence time in the remainder of

this section.
The time-independent model presented above implicitly

assumed that tcoh was long compared with orbital preces-
sional periods. In fact, the ratio of the coherence time to the
Schwarzschild precession time is

tcoh
tGR

� 3
rg
a

M�
m

1ffiffiffiffi
N

p 1

1� e2
(53a)

� 3

2
A�1
D ð1� e2Þ�1: (53b)

Using Eq. (35) to relate a to e along the barrier,�
tcoh
tGR

�
SB

� 3
a

rg

m

M�

ffiffiffiffi
N

p
(54a)

� 6AD � 7:2~a3=2; (54b)

where the final expression refers to the N-body models and
uses Eq. (47b). Equations (54) suggest that for orbits near
the barrier with ~a * 1 the background potential should
remain constant for several Schwarzschild precessional
periods. This is consistent with the observed behavior of
orbits like the one in Fig. 7(a) (~a � 4), which precesses a
few times before (presumably) changes in the background
potential cause the orbit to evolve away from the barrier. In
the case of orbits with ~a & 1, the two time scales can be
assumed to be comparable in our models.
One way to penetrate the barrier is suggested by Fig. 8.

Random changes in the background potential (e.g. in the
direction of the lopsided term) could have the effect of
moving orbits progressively to the left and downward on
that plot. This is because the minimum angular momentum
reached by an orbit over a precessional period, ‘�, depends
both on the instantaneous value of ‘, and on the relative
orientation of the orbit and the torquing term. A sequence

FIG. 9. Two orbits from Fig. 8. (a) h‘i ¼ 0:225 (circulating);
(b) h‘i ¼ 0:402 (librating). ! ¼ �=2 corresponds to orientation
along the z axis. The dotted lines in the right-hand panels
indicate ‘min.

STELLAR DYNAMICS OF EXTREME-MASS-RATIO INSPIRALS PHYSICAL REVIEW D 84, 044024 (2011)

044024-11



of correlated changes in the direction of the torque could
result in gradual transition down the narrow ‘‘neck’’ at
the lower left of the diagram, toward arbitrarily small
values of h‘i.

This mechanism can be simply modeled if we assume
that (1) changes in the background potential are instanta-
neous, separated by time �tcoh, and (2) tcoh 
 tGR, so
that the orbital phase is essentially random at the time
that the potential changes. The first assumption is not likely
to be satisfied in all cases and we relax it below; however,
we will argue that it corresponds to the highest probability
for barrier penetration.

Consider first the two-dimensional case; i.e. sini ¼ �=2.
Assume as well that the orbit is sufficiently far down the
neck that the angular momentum follows Eq. (45),

‘0ð!Þ � h‘i0½1� h‘i0AD cosð!�!0
DÞ�; (55)

where !0
D is the initial orientation of the lopsided distor-

tion. Now let the direction of the distortion instantaneously
change, to !1

D. The new orbit follows

‘1ð!Þ � h‘i1½1� h‘i1AD cosð!�!1
DÞ�: (56)

If the change occurs when ! ¼ !1, then

h‘i1½1� h‘i1AD cosð!1 �!1
DÞ�

¼ h‘i0½1� h‘i0AD cosð!0 �!0
DÞ�: (57)

The change in h‘i, �h‘i � h‘i1 � h‘i0 is
�h‘i � �h‘i2AD½cos�ð1� cos�Þ � sin� sin��; (58)

where � ¼ !1 �!0
D and � ¼ !1

D �!0
D; in this simple

model, both angles are random variables. Decreases in h‘i
are clearly allowed, although the amplitude of the step size
becomes increasingly small, �h‘i � h‘i2, as h‘i decreases.

There is an additional reason why evolution toward
small h‘i is disfavored. Equations (55) assume a constant
rate of circulation in ! and ignore the eccentricity depen-
dence of the averaged torque, Eq. (41c). But as noted
above, away from the limit of small h‘i, orbits violate
both assumptions, and tend to linger at high values of ‘.
As a result, changes in the potential are most likely to occur
when ‘ is large.

For these two reasons, we do not expect the mechanism
discussed in this section to be effective at moving stars very
far to the left of the Schwarzschild barrier; indeed we will
argue in a subsequent paper [38] that evolution to lower ‘
via this mechanism is exponentially suppressed (and this is
the basis for assigning the name tunneling.) However, the
ineffectiveness of RR at breaching the barrier is important
in explaining why the barrier is observed to be so ‘‘hard,’’
at least on time scales comparable to tRR.

We tested this model of barrier penetration using a
Monte-Carlo code. The 3d equations of motion (41) were
re-derived for an arbitary orientation of the lopsided

distortion. Starting from some randomly-chosen initial
values, an orbit was evolved in this fixed potential for a
time tcoh. The orientation of the lopsided distortion was
then randomized and the integration was continued in the
new potential, followed by another randomization of the
potential, etc. In addition to the parameters AD; AM defined
in Eqs. (43) and (47), this Monte-Carlo model has the
additional parameter

R � �0tcoh ¼ 3�

2AD

� 4~a�3=2; (59)

the dimensionless time between potential reorientations,
where the final expression uses Eq. (47b). The number of
Schwarzschild precessional periods between potential
re-orientations is �R=2�h‘i2.
Monte-Carlo experiments were carried out for the fol-

lowing sets of parameters:

AM ¼ 7; AD ¼ 3; R ¼ 1:4ð~a � 2Þ
AM ¼ 30; AD ¼ 10; R ¼ 0:5ð~a � 4Þ
AM ¼ 120; AD ¼ 30; R ¼ 0:2ð~a � 8Þ:

For each choice of parameters, 1000 Monte-Carlo experi-
ments with different initial seeds were carried out, and
each experiment embodied 1000 re-orientations of the
potential.
Figure 10 shows the resulting, time-averaged angular

momentum distributions. Also plotted there is the expected
location of the Schwarzschild barrier, computed using
Eq. (50). While the latter is by nature approximate,
Fig. 10 reveals a tail toward low angular momenta rather
than a sharp cutoff at any value of ‘; orbits sometimes
reach values of ‘ that are� an order of magnitude smaller
than the predicted ‘SB.
The angular momentum distributions in the N-body in-

tegrations are shown in Fig. 11. At all radii, there is a sharp
cutoff in the distribution at some value of (1� e). At large
distances, ~a ¼ 4 and 8 (this cutoff lies close to ‘ ¼ ‘SB),
while at smaller radii, the distribution extends beyond the
expected barrier location (see also Fig. 6). By comparison,
while the angular momentum cutoff in the Monte-Carlo
experiments is also quite sharp, it occurs at ‘ values that
are somewhat lower than ‘SB for all values of a.
The assumption that the potential changes suddenly

every �tcoh is unrealistic. In reality, changes in the back-
ground potential are due to the combined precession of
individual orbits, which is a gradual process. One conse-
quence is that adiabatic invariance will be respected for
orbital actions whose conjugate angles are varying on time
scales much shorter than tcoh. This is not the case if the
potential changes instantaneously, as in the model just
considered. For instance, if the period of Schwarzschild
precession of an orbit is short compared with tcoh, its
angular momentum will be nearly conserved. From
Eq. (54), this condition is satisfied for N-body orbits near
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the barrier when ~a is sufficiently large; e.g. for ~a ¼ 4,
tcoh=tGR � 60. For ~a � 1, this ratio is & 10, suggesting
that adiabatic invariance will not be strictly enforced. This
is a plausible explanation for the better success of the
Monte-Carlo model at smaller radii.

To test this idea, we carried out a second set of Monte-
Carlo experiments in which changes in the background
potential were continuous with respect to time. The total
change in the orientation of the torquing potential after
each tcoh was the same as in the first set of experiments, but
now the vector describing the distortion was rotated at a
fixed rate, along a great circle, from its initial to final
orientations during each interval.

Figure 10 shows the results. As expected, the angular
momentum distributions are now truncated more sharply at

small values. In the case of ~a ¼ 8, the distribution falls to
zero at ‘ � ‘SB. As ~a is decreased, the distributions extend
progressively farther below the barrier, approaching more
closely to the results of the first set of experiments. These
distributions are quite consistent with those from the
N-body models, Fig. 11.

FIG. 10 (color online). Angular momentum distributions from
Monte-Carlo simulations in which the potential was re-oriented
suddenly (top panel) or smoothly (bottom panel) each tcoh. Red
line (rightmost): ~a ¼ 2; black: ~a ¼ 4; blue line (leftmost): ~a ¼
8. Dashed lines show the predicted barrier location, Eq. (50).

FIG. 11 (color online). Time-averaged angular momentum
distributions of stars in the Series III N-body integrations, in
three intervals of semi-major axis. The distributions were com-
puted using all stars with instantaneous ~a values in a range
�log10~a ¼ �0:05 centered on the stated value, over the time
interval 0 � t � 2� 106 yr. The solid (black) curved lines ex-
clude stars that eventually become EMRIs; the dotted (blue)
curved lines include these stars. Crosshatched (grey) areas show
the predicted location of the Schwarzschild barrier, Eq. (36),
given the lower and upper limits on ~a. Hatched (blue) areas show
the capture angular momentum for EMRIs, Eq. (62). Solid
rectangles show the angular momentum at the assumed capture
radius around the MBH.
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As noted above, the semi-empirical criterion (36) im-
plies that there is a minimum value of a, ~a & CSB � 0:7
using the adopted value of CSB, below which there is no
barrier. A straightforward prediction is that stars with
initial values of the semi-major axis below �0:7 mpc
should be able to form EMRIs, at a rate that is unaffected
by the arguments presented in this section. We show below
that this is in fact the case.

Nevertheless, a robust result of the work presented in
this section is that RR itself is ineffective at coaxing stars
much past the Schwarzschild angular momentum barrier.
Rather, these results imply that the barrier should be
‘‘hard,’’ at least on time scales comparable with tRR or
tcoh, or 10

4–105 yr in these simulations.

C. Barrier penetration. II

As noted above (cf. Figure 2), one or two stars per Myr
were captured by the MBH, on average, in the Series III
integrations, most of them as EMRIs. Fig 12 shows several
examples.

In Newtonian systems, classical, ‘‘two-body’’ (non-
coherent) scattering is much less effective than RR at
changing stars’ angular momenta when the motion is
nearly Keplerian. But this is not necessarily the case for
stars on orbits near or beyond the Schwarzschild barrier,
where RR is effectively quenched by the rapid relativistic

precession. In this section we consider the extent to which
classical, or non-resonant (NR), relaxation can explain the
EMRI events in the N-body integrations.
The orbit-averaged NR relaxation time tNR for stars of

semi-major axis a in our model (a n / r�2 density cusp
around a MBH) is

tNR � 4:6 Myr~a1=2
�

M�
106M�

�
3=2

�
m

50M�

��2
� ~N
5

��1
; (60)

with ~N the number of stars within 1 mpc (Appendix B).
Suppose that NR were the only mechanism capable of

changing stars’ angular momentum leftward of the
Schwarzschild barrier. The condition for capture onto a
GW-dominated orbit would then be obtained by replacing
tRR by tNR in Eq. (31):

tGW ¼ 2ð1� eÞtNR: (61)

We find from Eqs. (IVB), (60) and (61) the critical value of
~a at which this condition is satisfied:

~aGW¼2:0~r5=7g

�
M�

m ~N ln�

�
2=7ð1�eÞ�5=7

�9�10�3

�
M�

106M�

��
m

50M�

��2=7
� ~N
5

��2=7ð1�eÞ�5=7;

(62)

where ~N is the number of stars with a � 1 mpc.
Equation (62) is plotted as the dot-dashed (blue) line in

Fig. 12. After crossing this line, stars can be seen to remain
near to it for some time as their energy drops. This diagram
suggests that Eq. (62) accurately specifies the region where
GW approximation for the electron self-energy (GW) en-
ergy loss and gravitational scattering are equally impor-
tant, consistent with our assumption that NR relaxation is
the dominant mechanism for angular momentum evolution
in this part of the ða; eÞ diagram.
Given a criterion for when a star enters the GW regime,

we can then ask how often the barrier penetration described
in the previous section would have resulted in EMRIs.
Before doing so, we note two characteristic radii asso-

ciated with aGW. When

a * 0:8 mpc

�
M�
m

�
1=3

�
M�

106M�

��5=8
~N�1=24; (63)

the Schwarzschild barrier lies to the left of the GW line. In
the N-body models considered here, the critical value is
~a � 20 beyond ~amax ¼ 10. At and above such radii, the
Schwarzschild barrier would not be an impediment to
EMRI formation, and the EMRI rate (per interval of
semi-major axis) would be similar to what was found
above in the Series II integrations. This limit is probably
of only academic interest, however, since in standard mod-
els of nuclei, almost all EMRIs would originate from orbits
with & 0:01 pc.
At the other extreme in radius, the Schwarzschild barrier

lies to the right of e ¼ 0. In the N-body models, the

FIG. 12 (color). Evolutionary tracks for a subset of the stars
from Series III integrations that became EMRIs. Dotted (red)
line is the Schwarzschild barrier, Eq. (36). Dash-dotted (blue)
line is Eq. (62), a prediction for the critical eccentricity at which
GW energy loss dominates the evolution, assuming that the
gravitational perturbations are dominated by NRR. Dashed
(black) line shows the assumed capture radius.
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intersection occurs at ~a ¼ CSB � 0:7; in general, Eqs. (35)
and (62) give for this condition

a & 1:6� 10�3 pc

�
M�
m

�
2=3

~N�1=3: (64)

Since the barrier does not exist at these radii, the differen-
tial capture rates would also be similar to what was ob-
served in the Series III simulations.

For values of the semi-major axis between these two
extremes (0:7 & ~a & 10 in the N-body models), the
Schwarzschild barrier exists and lies to the right of the
critical eccentricity for GW emission. EMRI formation
at these radii requires a substantial degree of barrier
penetration.

We tabulated how often in the Monte-Carlo experiments
from the previous section a star passed the GW boundary.
Since not every experiment resulted in such an event, the
mean event time, in each set of experiments, was computed
using a formula from survival analysis [39]:

�t ¼ 1

Ne

XNe

i¼0

ti þ NMC � Ne

Ne

T; (65)

where NMC is the total number of experiments, Ne is
the number of experiments in which the star satisfied the
condition (62) at least once, ti is the time at which this first
occurred, and T is the total elapsed time per experiment.

The results are presented in Table I, for the first (sharp
changes, �t1) and second (smooth changes, �t2) sets of
Monte-Carlo experiments. As expected, for large ~a, the
two times are similar since the barrier is no impediment.
At smaller radii, the mean times are interestingly short only
in the first set of experiments; in the second set, no events
were observed. We note a certain ‘‘conspiracy’’: at small a,
the degree of barrier penetration is greater, but the GW line
lies farther from the Schwazschild barrier.

Next we consider the effectiveness of NRR at penetrat-
ing the barrier. Several factors are relevant:

(1) Because RR is so rapid to the right of the barrier,
the angular momentum distribution in this region
should remain close to that associated with an
isotropic phase-space density; i.e. Nð‘Þd‘ �
constant� ‘d‘. This contrasts with the case [e.g.
[31]] where NR alone determines the phase space
density, leading to a logarithmic decrease in N with
respect to ‘ near the loss-cone boundary.

(2) The angular momentum of a star near the barrier
oscillates, at roughly the Schwarzschild frequency,
with amplitude �‘¼‘þ�‘��‘þ�‘SB (Eq. (46)).
To push a star past the barrier, a NR perturbation
will require a finite amplitude �‘NR * �‘.

(3) Stars remain near the barrier only for a time �tcoh;
after this, the direction of the background torque
changes, and the star random-walks to larger angu-
lar momenta, as discussed in the previous section.

The change in ‘ due to NR over an interval of time equal
to tcoh is

ð�‘ÞNR �
�
tcoh
tNR

�
1=2

: (66)

This change is large enough to move a star leftward of the
barrier if

ð�‘ÞNR * �‘ ¼ ‘þ � ‘SB � ‘þ � ‘� � 2h‘i2AD: (67)

Let ‘maxðaÞ be the largest value of ‘þ for which this
condition is satisfied. Writing

‘þ � h‘i þ 1

2
ð‘þ � ‘�Þ � h‘i þ h‘i2AD (68)

and eliminating h‘i in Eqs. (67) and (68) then gives

‘max � 1

2
ð�‘ÞNR þ ð2ADÞ�1=2ð�‘Þ1=2NR : (69)

At every a, we expect stars with ‘þ & ‘maxðaÞ to be
scattered leftward of the barrier in a time tcoh. The fraction
of stars at a with ‘SBðaÞ � ‘ � ‘maxðaÞ is

FðaÞ � ‘2maxðaÞ � ‘2SBðaÞ (70)

and the time scale for stars to be lost past the barrier is
therefore

tlossðaÞ �
��������1

N

dN

dt

���������1� FðaÞ�1tcohðaÞ: (71)

We evaluate ð�‘ÞNR using each of the two choices for
tcoh discussed above: the mass precession time, Eq. (51a),
which gives

ð�‘ÞNR;M � 4:4� 10�2 (72)

in the N-body models; and the VRR time, Eq. (52), for
which

ð�‘ÞNR;RRv � 5:3� 10�2~a1=4: (73)

Tables II and III give the computed values of F and
F�1tcoh for the two choices of tcoh. Predicted loss rates are
similar for high a values, and in both cases, NR is predicted
to fail to breach the barrier when ~a & 2–3.
Figure 13 plots histograms of the capture events in the

Series III integrations. As predicted, the number of events
falls sharply for ~a & 2–3 mpc. A few captures also occur

TABLE I. Mean times to EMRI formation in the Monte-Carlo
experiments

~a �t1 (yr) �t2 (yr)

2 3:1� 108 
 
 

4 2:8� 108 
 
 

8 1:2� 108 1:5� 108

STELLAR DYNAMICS OF EXTREME-MASS-RATIO INSPIRALS PHYSICAL REVIEW D 84, 044024 (2011)

044024-15



from orbits with ~a & 1, roughly the minimum value for
which the barrier is present.

We can also compare predicted and measured event
rates. From Fig. 2, the mean capture rate at early times in
the Series III integrations is �1� 2� 10�6 yr�1. (Four
out of 19 of the events were associated with orbits below
the Schwarzschild barrier, reducing the mean rate of
barrier-crossing events slightly.) The number of stars
initially with ~a * 2–3 is �35–40, and the loss times in
Table II are roughly 1� 107 yr at these radii. The pre-
dicted event rate is therefore 3–4� 10�6 yr�1—in reason-
able agreement with the measured values given the
crudeness of the model. We note that our model can be
expected to overestimate the capture rate since it ignores
the possibility of a star returning to the right of the barrier
after crossing it.

Wewill present a more detailed calculation of the barrier
penetration rate due to NR in a later paper [38].

VI. DISCUSSION

Here we discuss briefly how the key results from the
N-body experiments can be extended to nuclear star clus-
ters with more general properties. We treat this topic in
more detail in Papers II and III [38,40]. In particular, we do
not attempt here to derive absolute EMRI rate estimates for
general clusters.

We begin by collecting some of the important relations
derived above and expressing them in more general form.

Combining the parameter dependence of Eq. (35) with
the empirical normalization of Eq. (36), we find for the
angular momentum that defines the Schwarzschild barrier:

ð1� e2ÞSB � 1:9

�
CSB

0:7

�
2
�
rg
a

�
2
�
M�
m

�
2 1

N

� 0:23

�
CSB

0:7

�
2
�

a

mpc

��2
�

M�
106M�

�
4

�
�

m

10M�

��2
�
N

102

��1
; (74)

here and below, N is the number of stars within radius a.
NðaÞ / a was not assumed in deriving this expression.
However, that assumption was made in deriving Eq. (62),
the condition that GW emission dominate stellar encoun-
ters. We can generalize that relation to a cluster with
arbitrary density profile using the approximate scaling of
the NR relaxation time:

TABLE II. NR loss rates: tcoh ¼ tM.

~a tcoh (yr) ‘2max � ‘2SB tloss (yr)

2 1:2� 104 
 
 
 
 
 

3 1:6� 104 4:9� 10�5 3:1� 108

4 1:8� 104 2:1� 10�3 8:5� 106

5 2:0� 104 2:5� 10�3 8:1� 106

6 2:2� 104 2:5� 10�3 8:9� 106

8 2:5� 104 2:2� 10�3 1:2� 107

10 2:8� 104 1:9� 10�3 1:5� 107

TABLE III. NR loss rates: tcoh ¼ tRR;v.

~a tcoh (yr) ‘2max � ‘2SB tloss (yr)

2 2:6� 104 
 
 
 
 
 

3 3:9� 104 5:6� 10�3 7:2� 106

4 5:2� 104 7:2� 10�3 7:4� 106

5 6:5� 104 7:5� 10�3 9:0� 106

6 7:8� 104 7:3� 10�3 1:1� 107

8 1:4� 105 6:9� 10�3 1:5� 107

10 1:3� 105 6:6� 10�3 2:0� 107

FIG. 13 (color online). Distribution of semi-major axes for the
capture events from Series II (top) and Series III (bottom). Red
(unfilled) histogram shows the plunges; blue (crosshatched)
histogram shows the EMRIs; the total is indicated in black. In
the upper panel, the initial value of a is used; in the lower panel,
the value of a during the final crossing of the Schwarzschild
barrier was used. In both panels, the elapsed time is 2� 106 yr.
To the left of the dashed vertical line in the lower panel, NRR is
predicted to be ineffective at pushing stars past the
Schwarzschild barrier. To the left of the dash-dotted vertical
line, the Schwarzschild barrier does not exist.
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tNR / M2�
m2

Pr

N
(75)

[e.g. [16]], together with the exact, orbit-averaged expres-
sion for tNR in the case nðrÞ / r�2, Eq. (60), to write

tNR � 6 Myr

�
a

mpc

�
3=2

�
M�

106M�

�
3=2

�
m

10M�

��2
�
N

102

��1
:

(76)

The condition for GW emission to dominate relaxation
then becomes

ð1� e2ÞGW � 2� 10�3

�
a

mpc

��1
�

M�
106M�

�
7=5

�
�

m

10M�

��2=5
�
N

102

��2=5
: (77)

If physical capture by the MBH is assumed to occur when
r � rcapt, rcapt ¼ �rg, then the critical eccentricity for

capture is

ð1� e2Þcapt � 8� 10�4

�
�

8

��
a

mpc

��1
�

M�
106M�

�
: (78)

We define aplunge to be the value of a such that

ð1� e2Þcapt ¼ ð1� e2ÞGW; at larger a, all stars plunge.

We find that aplunge is defined implicitly by

Nð<aplungeÞ � 1:1� 103
�
�

8

��5=2
�

M�
106M�

��
m

10M�

��1
:

(79)

The Schwarzschild barrier intersects the GW line when

�
a

mpc

��
N

102

�
3=5 � 120

�
CSB

0:7

�
2
�

M�
106M�

�
13=5

�
m

10M�

��8=5

(80)

and it intersects the capture line when

�
a

mpc

��
N

102

�
� 300

�
CSB

0:7

�
2
�
�

8

��1
�

M�
106M�

�
3
�

m

10M�

��2
:

(81)

One of these two relations defines the effective upper limit
to the radial extent of the Schwarzschild barrier. Setting
e ¼ 0 in Eq. (74) gives the lower radial limit:

FIG. 14 (color online). Illustrating the critical curves defined in the text for nuclear star clusters obeying density laws nðrÞ / r�	,
with various slopes and normalizations. Dashed (black) line: capture radius (rp ¼ 8rg); dash-dotted (blue) line: radius at which GW

emission dominates stellar perturbations, Eq. (77). The Schwarzschild barrier, Eq. (74), is shown as the red line; it is solid where
conditions allow EMRI formation. Below the horizontal line, NRR is expected to be inefficient at pushing stars past the barrier
(Eqs. (80), (81), and (83).) M� ¼ 106M� and m ¼ 10M� were assumed.
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�
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�
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�
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�
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�

m

10M�

��2
:

(82)

Another key parameter is the minimum value of a for
which NRR is able to penetrate the Schwarzschild barrier
(Sec. VC). Combining Eqs. (51a), (66), (69), (50), and (74),
we find that the critical value of a satisfies the implicit
relation�

a

mpc

�
penetrate

� 15

�
CSB

0:7

��
M�

106M�

�
5=2

�
m

10M�

��3=2

�
�
N

102

��1=2
: (83)

In deriving this expression, we have equated tcoh with tM.
We apply these expressions to nuclear star clusters

obeying

nðrÞ ¼ n0r
�	 (84)

; i.e.

N � Nð<aÞ ¼ N<1~a
3�	; (85)

where ~a � a=mpc and N<1 is the number of stars with
a � 1 mpc. Combining Eqs. (85) and (83), we find

~a penetrate �
�
140

�
CSB

0:7

��
M�

106M�

�
5=2

�
�

m

10M�

��3=2
N�1=2

<1

�
2=ð5�	Þ

: (86)

Figure 14 plots the relations defined above for clusters
of m ¼ 10M� BHs around a M� ¼ 106M� MBH. We
chose likely values of 	 and N<1 following the discussion
in Ref. [19]. As in the N-body models, there is generally
a rather small range of a values from which EMRIs
can form: small enough that GW emission can overcome
stellar perturbations, but large enough that NRR can push
stars past the Schwarzschild barrier. Interestingly, for suf-
ficiently dense clusters, this range can go to zero, implying
essentially no EMRIs; however, it appears that the required
densities are one or two orders of magnitude larger than
expected for real galactic nuclei [19].

VII. CONCLUSIONS

(1) N-body integrations have been used, for the first
time, to directly simulate the long-term evolution
of relativistic clusters of compact stars around
MBHs, both Schwarzschild and Kerr, and to com-
pute the rate of EMRIs.

(2) When relativistic terms are omitted from the equa-
tions of motion, stars are scattered into the MBH at
rates that are in good agreement with those expected
from the theory of RR..

(3) Relativistic precession suppresses RR, leading
to an effectively maximum value of the eccentri-
city at each value of the semi-major axis. This
‘‘Schwarzschild barrier’’ strongly inhibits EMRI
formation, leading to capture rates that are factors
�10–100 lower than in the non-relativistic case.

(4) We use an approximate Hamiltonian formulation of
the perturbed equations of motion to explore two
possible mechanisms for barrier penetration: one
related to RR and the other to NRR. We show that
NR is effective at penetrating the Schwarzschild
barrier only for orbits with semi-major axes above
a certain value, and this prediction is verified in the
N-body integrations. Approximate expressions for
the capture rate are derived and shown to be con-
sistent with the rates observed in the simulations.

ACKNOWLEDGMENTS

D.M. was supported in part by the National Science
Foundation under Grants No. AST 08-07910 and 08-
21141, and by the National Aeronautics and Space
Administration under Grant No. NNX-07AH15G. T. A.
was supported by ERC Starting Grant No. 202996, and
by DIP-BMBF Grant No. 71-0460-0101. C.M.W. was
supported in part by the National Science Foundation
under Grants No. PHY 06-52448 and 0965133, the
National Aeronautics and Space Administration Grant
No. NNG- 06GI60G, and the Centre National de la
Recherche Scientifique, Programme Internationale de la
Coopération Scientifique (CNRS-PICS) Grant No. 4396.
Parts of this research were carried out while C.M.W. was a
visitor to the Institut d’Astrophysique de Paris, and while
D.M., S.M. and C.M.W. were visitors to the Benoziyo
Center for Astrophysics, Weizmann Institute of Science;
the hospitality of these two institutes is gratefully acknowl-
edged. We thank P. Amaro-Seoane, B. Baror, and P. Saha
for useful discussions.

APPENDIX A: HAMILTONIAN MODEL

Here we use standard techniques [e.g. [27]] to derive the
equations describing the rates of change of the Keplerian
(osculating) elements of a star moving in the potential (37):

�ðrÞ ¼ �GM�
r

þ�p;�p ¼ �s ln

�
r

ro

�
� Sa cos�

(A1)

and including the time-averaged effects of Schwarzschild
precession.
We begin by transforming from Cartesian coordinates to

Delaunay variables [e.g. [41]] which are action-angle var-
iables in the Kepler problem. The Delaunay action varia-

bles are the radial action I ¼ ðGM�aÞ1=2, the angular
momentum L, and the projection of L onto the z axis Lz.
The conjugate angle variables are the mean anomalyw, the
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argument of the periapse !, and the longitude of the
ascending node �. In the Keplerian case, five of these
are constants; the exception is w which increases linearly
with time at a rate

�r ¼ ðGM�Þ2=I3: (A2)

The Hamiltonian, averaged over w, is

�H ¼ � 1

2

�
GM�
I

�
2 þ ��p; (A3a)

��p �
I dw

2�
�p ¼ 1

2�

Z 2�

0
dEð1� e cosEÞ�pðrÞ: (A3b)

In the final term, E is the eccentric anomaly, where r ¼
að1� e cosEÞ and the eccentricity is e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� L2=I2
p

.

After the averaging, �H is independent of w, and I is
conserved, as is the semi-major axis a. We are left with

four variables and with ��p as the effective Hamiltonian of

the system.
The orbit-averaged Hamiltonian describes slow, preces-

sional dynamics. Superposed on the slow variations de-
scribed by the averaged dynamics are fast oscillations, with

frequencies�ðGM�=a3Þ1=2 and with fractional amplitudes

� � að�� ��Þ=GM�. If � 	 1, i.e. if M� 
 M?, we can
ignore these fast oscillations.

After expressing the Cartesian coordinates in terms of
the Delaunay variables, the results of the averaging are

��p ¼ ��M þ ��D þ ��GR; (A4a)

��M ¼ GMðaÞ
a

½CðaÞ þ FðeÞ�; (A4b)

CðaÞ ¼ ln

�
a

r0

�
þ 1� ln2;

FðeÞ ¼ lnð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
; (A4c)

��D ¼ Sae sini sin!; (A4d)

��GR ¼ � 3G2M2�
c2a2

ð1� e2Þ�1=2: (A4e)

The averaged dipole potential, ��D, is expressed in terms of
the orbital inclination i, where cosi ¼ Lz=L; i ¼ 0 for an
orbit that is perpendicular to the major axis of the dipole.

The last term, ��GR, reproduces the orbit-averaged rate of
Schwarzschild periapse advance, Eq. (16). The longitude
of the ascending node,�, does not appear due to symmetry
of the potential about the z-axis.

In the limit e ! 1, FðeÞ ! �‘2=2.
We define a dimensionless time � ¼ �0t, where

�0 ¼ �r

3GM�
c2a

; (A5)

the Schwarzschild precession frequency in the limit
e ! 0. Dropping constant terms (including terms that

depend only on semi-major axis a), the dimensionless
Hamiltonian describing the perturbed motion becomes

H �
��p

�0I
¼ �ð1� e2Þ�1=2 þ AMFðeÞ þ ADe sini sin!;

(A6)

with AM, AD defined in Eq. (43). The equations of motion,

@!

@�
¼ @H

@‘
;

@‘

@�
¼ �@H

@!
;

@�

@�
¼ @H

@‘z
;

@‘z
@�

¼ � @H

@�
¼ 0

(A7)

are given explicitly in Eqs. (41).

APPENDIX B: NON-RESONANT RELAXATION

Here we summarize the orbit-averaged equations
describing changes in angular momentum due to NRR
and derive the angular-momentum diffusion coefficient
for the N-body models [e.g. [32,42,43]].
In terms of the binding energy per unit mass E ¼

�v2=2þ c ðrÞ ¼ GM�=2a, where c ðrÞ ¼ GM�=r, and
the normalized angular momentum R � L2=L2

c ¼ ‘2 ¼
1� e2, the Fokker-Planck equation describing diffusion
in angular momentum due to NR is

@N

@t
¼ 1

2

@

@R

�
hð�RÞ2i @N

@R

�
; (B1)

where

NðE; RÞdEdR ¼ Nða; eÞdade (B2)

is the number density of stars in (energy, angular momen-
tum) space, and hð�RÞ2i is the diffusion coefficient in R;
i.e. the sum, over a unit interval of time, of ð�RÞ2 due to
encounters.
Taking the limit R ! 0 and averaging over one orbital

period, this becomes

@N

@t
¼ �


@

@R

�
R
@N

@R

�
; (B3)

where �
ðEÞ is the orbit-averaged diffusion coefficient:

�
ðEÞ � PrðEÞ�1
I dr

vr

lim
R!0

hð�RÞ2i
2R

(B4)

and the integral is over one full radial period. �
ðEÞ is
precisely the orbit average of the inverse angular momen-
tum relaxation time defined by Hopman & Alexander [44]
and henceforth we write �
�1 � tNR.
Let fðEÞ be the phase-space number density of stars; it is

related to NðEÞ by

fðEÞ ¼ 1ffiffiffi
2

p
�3

ðGM�Þ�3E5=2NðEÞ (B5)

¼ f0E
	�3=2: (B6)
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The latter expression assumes nðrÞ / r�	; the N-body
models have 	 ¼ 2. The local diffusion coefficient is
expressible in terms of fðEÞ via

lim
R!0

hð�RÞ2i
2R

¼ 32�2r2G2m2 ln�

3L2
c

� ð3I1=2 � I3=2 þ 2I0Þ; (B7a)

I0ðEÞ ¼
Z E

0
fðE0ÞdE0; (B7b)

In=2ðE; rÞ ¼ f2½c ðrÞ � E�g�n=2

�
Z c

E
f2½c ðrÞ � E0�gn=2fðE0ÞdE0; (B7c)

where ln� � ln½M�=ð2mÞ� is the Coulomb logarithm; in
the N-body models ln� � 9.

The orbit averages are

�IðEÞ ¼ 1ffiffiffi
2

p
Z GM�=E

0

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p IðE; rÞ; (B8)

setting 	 ¼ 2, the value in the N-body models, we find

�I0ðEÞ ¼ 5
ffiffiffi
2

p
�

48
f0E

�2ðGM�Þ3; (B9a)

�I1=2ðEÞ ¼ �

16
ffiffiffi
2

p ðln16� 2Þf0E�2ðGM�Þ3; (B9b)

�I3=2ðEÞ ¼ �

96
ffiffiffi
2

p ð11� 12 ln2Þf0E�2ðGM�Þ3 (B9c)

and

3 �I1=2 � �I3=2 þ 2 �I0 ¼ C	f0E
�2ðGM�Þ3; (B10a)

C2 ¼ 7�
ffiffiffi
2

p
192

ð12 ln2� 1Þ (B10b)

� 1 18533 ; (B10c)

so that

�
ðEÞ ¼ C2

64�
ffiffiffi
2

p
3

G2m2 ln�fðEÞ: (B11)

We note that �
ðEÞ / fðEÞ, a result that holds for
arbitrary 	.
Equations (2), (B2), and (B5) combine to give f in

terms of a:

fðaÞ ¼ 1

4�3
ðGM�Þ�3=2N0a

�1=2; (B12)

where N0 ¼ r�1Nð<rÞ ¼ a�1Nð<aÞ. Then

�
�1ðaÞ � tNRðaÞ ¼ C�1
2

3
ffiffiffi
2

p
�2

32

ðGM�Þ3=2
G2m2N0 ln�

a1=2:

(B13)
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