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We study how the frequencies and damping times of oscillations of a newly born, hot proto-neutron star

depend on the physical quantities which characterize the star quasistationary evolution which follows the

bounce. Stellar configurations are modeled using a microscopic equation of state obtained within the

Brueckner-Hartree-Fock, nuclear many-body approach, extended to the finite-temperature regime. We

discuss the mode frequency behavior as a function of the lepton composition, and of the entropy gradients

which prevail in the interior of the star. We find that, in the very early stages, gravitational wave emission

efficiently competes with neutrino processes in dissipating the star mechanical energy residual of the

gravitational collapse.
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I. INTRODUCTION

The birth of a proto-neutron star (PNS) in a core-
collapse supernova is a very difficult phenomenon to
model, since it requires not only accurate descriptions of
the microphysics of the collapsing matter, in particular, of
neutrino transport and related processes, but also of the
violent dynamical processes occurring in the contracting-
exploding star, which need to be treated in the framework
of general relativity (see [1] for a recent review).

The description of the subsequent PNS evolution is also
challenging, because a PNS is a hot and rapidly evolving
object. The physical processes which contribute to the star
cooling and contraction, such as nuclear and weak inter-
actions and energy and lepton number transport by
neutrino diffusion, have to be included in dynamical simu-
lations. Thus, most simulations of gravitational core col-
lapse to a PNS end shortly after the core bounce and the
launch of the supernova explosion—typically after a few
hundreds of milliseconds—and only a few dynamical
simulations extend to the first minute of the PNS life [2–5].

In this paper we are interested in this latest phase of the
PNS life, when shock waves, neutrino winds, convection
instabilities, and accretion flows are no longer dominant
and the star cooling and contraction proceed on time scales
of seconds, so that the evolution is quasistationary. In
particular, wewant to study how the frequencies and damp-
ing times of the PNS quasinormal modes of oscillation
depend on the internal structure of the star. The main
motivation is that the oscillations of a newly born PNS
may be associated to gravitational wave signals with size-
able amplitudes, and with frequencies lower than those
typical of mature neutron stars. This would favor their
detection by the next generation of ground-based interfer-
ometers LIGO/Virgo and their future version, the Einstein
Telescope [6–8].

The available dynamical simulations of the post-bounce
evolution of a PNS indicate that, typically, the star goes

through the following main steps. After the core bounce, a
shock wave propagates through the outer PNS mantle,
leaving behind a low-entropy core in which neutrinos are
trapped, surrounded by a low-density, high-entropy enve-
lope. The mantle accretes matter from the outer layers and
rapidly contracts, losing energy due to electron captures
and thermal neutrino emission. The supernova explosion
lifts off the stellar envelope and, in a few tenths of seconds,
due to extensive neutrino losses, the lepton pressure de-
creases and the envelope contracts. At this stage the PNS
radius is about 20–30 km; the subsequent evolution can be
described as a sequence of equilibrium configurations; this
quasistationary evolution is the phase of interest for us.
Simulations show that the diffusion of high-energy neu-

trinos (of the order of a few hundred MeV) from the low-
entropy core to the high-entropy envelope, from which
they finally escape with energies of the order of a few
tens of MeV, generates a large amount of heat within the
star, producing temperatures up to several tens of MeV; as
a result, the core entropy approximately doubles, whereas
the entropy of the envelope decreases. In a few tens of
seconds the PNS becomes lepton poor, but it is still hot.
The net number of neutrinos in the interior is low, but
thermally produced neutrino pairs of all flavors are abun-
dant, and dominate the emission; the star cools down and
entropy gradients are gradually smoothed out, while the
average neutrino energy decreases, and neutrinos mean
free path increases; after approximately one minute it
becomes comparable to the stellar radius, and the star
becomes neutrino transparent. By this time, the tempera-
ture has dropped to 1–5 MeV (�1–5� 1010 K) and the
star has radiated off almost all of its binding energy,
becoming what we call a neutron star (NS).
This brief summary of the first minute of the PNS life is

deliberately imprecise, because the details of the evolution
depend on the assumptions on which the simulation is
based. For instance, in [2–4], where the first minute after
the core bounce is considered, the evolution is treated as a
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sequence of quasistationary states: the thermodynamical
variables and the lepton fractions are determined by solv-
ing evolution equations (for instance Boltzmann’s equation
to model neutrino transport), whereas at each time step
the stellar structure is found by solving the Tolman-
Oppenheimer-Volkov equations. In [5], instead, all
quantities are determined through a time-evolution core-
collapse code, which has been extended in order to
describe the first �20 s of the post-bounce processes.
However, there are features which are common to different
studies; indeed, starting from an initial configuration char-
acterized by a low-entropy core and a high-entropy enve-
lope, due to neutrino processes the star goes smoothly
through the following phases:

(i) the entropy increases in the core while decreasing in
the envelope;

(ii) entropy gradients gradually smooth out while the
star is still hot;

(iii) the star progressively cools down, and the overall
entropy decreases;

(iv) the evolution ends in the ‘‘cold’’, zero entropy,
neutron star configuration.

We remark that both in [2–4] and in [5] the equation of
state (EOS) of baryonic matter is a finite-temperature,
field-theoretical model solved at the mean-field level.

In this paper, instead, we employ a microscopic EOS
obtained within the Brueckner-Hartree-Fock (BHF) nu-
clear many-body approach extended to the finite-
temperature regime, as we shall discuss in Sec. III. Our
aim is to explore how the frequencies and damping times of
the PNS quasinormal modes depend on the physical quan-
tities which characterize the quasistationary configura-
tions, which are essentially the entropy profile (which
will appear to be the most important in this respect) and
the lepton composition. Furthermore, we want to model
different stages of a possible evolutive sequence of sta-
tionary configurations.

PNSs are expected to be rapidly rotating; in our study we
neglect rotation, since we are primarily interested in the
effects of the thermal and chemical evolution on the star
oscillation frequencies, and in comparing the results with
those of previous works which use different EOSs to model
the PNS. We do not expect these effects to change signifi-
cantly in a rotating star. However, it should be mentioned
that quasinormal mode frequencies are affected by the star
rotation [9–11]: the degeneracy in the harmonic index m is
removed, and modes with m> 0 have frequencies lower
than those of a nonrotating star. This enhances detection
chances, since ground-based inteferometers are more sen-
sitive at lower frequencies.

The article is organized as follows. In Sec. II we briefly
explain how to compute the complex values of the quasi-
normal mode frequencies using the relativistic theory of
stellar perturbations. In Sec. III the derivation of the equa-
tion of state of hot nuclear matter used to model the PNS

evolution is shortly illustrated. In Sec. IV we discuss how
the different stages of a PNS quasistationary evolution are
simulated by constructing stellar configurations with ap-
propriate entropy and lepton fraction profiles. In Sec. V we
compute and discuss the stellar parameters and the quasi-
normal mode frequencies for the various configurations.
Conclusions are drawn in Sec. VI.

II. THE QUASINORMAL MODES OF
NEUTRON STARS

A. Stellar perturbations

In order to find frequencies and damping times of the
quasinormal modes (QNMs) of a star, we need to solve the
equations describing nonradial perturbations of a (spheri-
cally symmetric) star in general relativity, which we briefly
recall.
The perturbed spacetime metric is expanded in tensor

spherical harmonics, as (we use geometrized units, assum-
ing c ¼ G ¼ 1)

ds2 ¼ �ec ð1þ r‘H‘m
0 Y‘me

i!tÞdt2
þ e�ð1� r‘H‘m

2 Y‘me
i!tÞdr2

� 2i!r‘þ1H‘m
1 Y‘me

i!tdtdr

þ r2ð1� r‘K‘mY‘me
i!tÞðd#2 þ sin2�d’2Þ; (1)

where ! is the frequency, Y‘mð#;’Þ are the scalar spheri-
cal harmonics, and H‘m

i ðrÞ, K‘mðrÞ describe the metric
perturbations with polar parity, i.e., those transforming as
ð�1Þ‘ under a parity transformation. In this paper we
do not consider perturbations with axial parity, which
transform as ð�1Þ‘þ1. The functions c ðrÞ; �ðrÞ describe
the unperturbed metric, and are found by solving the
Tolman-Oppenheimer-Volkov equations. The four-
velocity of the generic fluid element is

u� ¼ u�0 þ �u�

¼ ðe�c =2; 0; 0; 0Þ þ i!e�c =2ð0; �r; ��; ��Þ; (2)

where �� is the fluid element Lagrangian displacement,

expanded in vector spherical harmonics

�rðt; r; #; ’Þ ¼ e�=2r‘�1W‘mðrÞY‘mð#;’Þei!t;

�#ðt; r; #; ’Þ ¼ �r‘V‘mðrÞ@#Y‘mð#;’Þei!t;

�’ðt; r; #; ’Þ ¼ �r‘V‘mðrÞ@’Y‘mð#;’Þei!t:

(3)

The fluid is also characterized by its pressure and energy
density

pðrÞþ�pðt;r;#;’Þ¼pðrÞþr‘�p‘mðrÞY‘mð#;’Þei!t;

"ðrÞþ�"ðt;r;#;’Þ¼"ðrÞþr‘�"‘mðrÞY‘mð#;’Þei!t:
(4)

We denote with � the Eulerian perturbations, and with �
the Lagrangian perturbations, so that for instance the
Lagrangian perturbation of the pressure is
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�p ¼ �pþ �r @p

@r
; (5)

i.e.,

�p‘m ¼ �p‘m þ e��=2

r
W‘m @p

@r
: (6)

Einstein’s equations, linearized in the perturbations, yield
a system of ordinary differential equations for the per-
turbed functions. Different equivalent sets of equations
have been derived in the literature, using different gauge
choices or different combinations of the relevant equations
[12–15]. In this paper we use the formulation of Lindblom
and Detweiler [13,14], consisting of a system of four
first-order differential equations for the functions
fH‘m

1 ; K‘m;W‘m; X‘mg, where
X‘m ¼ �ec =2�p‘m; (7)

and algebraic relations which allow to compute the remain-
ing functions fH‘m

0 ; H‘m
2 ; V‘mg in terms of the others (see

Appendix A). To close the system, an EOS, relating the
energy density " and the pressure p, has to be assigned.

B. The quasinormal mode frequencies

A QNM is a solution of the perturbation equations,
which is regular at the center, continuous on the surface,
and which behaves as a pure outgoing wave at infinity.
Since in general relativity a nonradial oscillation is asso-
ciated with gravitational wave (GW) emission, such solu-
tions belong to complex frequencies:

! ¼ �þ i

�GW
; (8)

where � ¼ 2	
 and 
 is the pulsation frequency; �GW is
the damping time of the mode due to gravitational wave
emission. If the mode is unstable, its imaginary part is
negative and ��GW is the growth time of the instability.

The procedure to find the QNM frequencies is the fol-
lowing: (i) We choose a value of l and a complex value of
! (since the background is spherical, the equations do not
depend on the index m). (ii) We integrate Eqs. (A1), by
imposing that the solution is regular at the center and that
�p ¼ 0 at the stellar surface [Eqs. (A3) and (A4)]. (iii) We
impose that the solution and its first derivative are continu-
ous on the stellar surface, and find the metric perturbations
outside the star. (iv) In vacuum, the perturbed equations
reduce to a simple, second-order differential equation (the
Zerilli equation (A6)), which we integrate up to radial
infinity. (v) We check whether the solution satisfies the
outgoing wave boundary condition at infinity (A8) which
identifies a quasinormal mode; we then repeat the proce-
dure for different values of !. The values of ! which
satisfy the outgoing wave condition can be found using a
Newton-Raphson method.

The polar QNMs are classified, following a scheme
introduced by T.G. Cowling in Newtonian theory [16],
on the basis of the restoring force which prevails when
the generic fluid element is displaced from the equilibrium
position. Thus, we have a g-mode if the restoring force is
mainly provided by buoyancy or a p-mode if it is due to a
pressure gradient. The frequencies of the g-modes are
lower than those of the p-modes, and the two sets are
separated by the frequency of the fundamental (f-)
mode, which is related to a global oscillation of the fluid.
In general relativity there exist further modes, named
w-modes [17], that are purely gravitational, since they
barely excite the fluid motion. Other classes of modes are
associated to NS features which are not included in the
present model, like rotation, magnetic fields, the crust
rigidity.

C. Sound speed

A neutron star at the end of its evolution is cold and
isentropic, matter is in beta-equilibrium and can be de-
scribed by a barotropic EOS p ¼ pð"Þ. Conversely, when
the star is young and hot the EOS cannot be expressed in a
barotropic form, since the pressure depends nontrivially on
the entropy and on the composition, i.e.,

p ¼ pð"; s; xiÞ: (9)

Therefore, to solve the perturbed equations the profiles of
entropy and particle fractions, respectively sðnÞ and xiðnÞ,
are also needed. In Eq. (9) n is the baryon number density,
s ¼ S=A is the entropy per baryon, and xi ¼ ni=n is the
fraction of the ith particle. Usually matter is locally in beta
equilibrium and neutrinos are trapped, therefore the depen-
dence on the composition fxig reduces to a dependence on
the lepton fraction Ye ¼ xe þ x
e

only.

The perturbed equations (A1) depend explicitly on the
sound speed c2s , which relates the Lagrangian perturbations
of pressure and energy density,

�p ¼ c2s�": (10)

c2s is defined as the following thermodynamical derivative

c2s ¼
�
@p

@"

�
adiabatic

; (11)

where ‘‘adiabatic’’ means that the derivative is performed
keeping fixed the entropy and the fractions of those particle
species which do not change during the pulsation [18].
To clarify this statement, let us consider a fluid element

oscillating with period tosc about the equilibrium position.
The following equation holds:

�p ¼
�
@p

@"

�
s;xi

�"þ
�
@p

@s

�
";xi

�sþX
i

�
@p

@xi

�
";s
�xi: (12)

Since we are considering adiabatic perturbations, the fluid
element does not exchange heat with its surroundings and
�s ¼ 0. Furthermore, the displaced fluid element has
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a composition different from the surrounding fluid even
though nuclear reactions, acting on a time scale treact, tend
to eliminate this difference. The two limiting cases are:

(i) treact � tosc; in this case the fluid element composi-
tion does not change during the oscillation, i.e.,
�xi ¼ 0, and by combining Eqs. (10) and (12) we
find

c2s ¼
�
@p

@"

�
s;xi

: (13)

(ii) treact � tosc; the fluid element composition changes,
becoming that of the surrounding fluid. By replacing
the composition profile xi ¼ xið"; s; YeÞ in (9), it is
possible to express the EOS as p ¼ pð"; s; YeÞ.
Equations (10) and (12) then give

c2s ¼
�
@p

@"

�
s;Ye

: (14)

for beta-stable, neutrino-trapped matter.
For the PNSs in quasistationary evolution we consider

in this paper, typical oscillation periods are of the order
tosc � 10�3 s, while weak interaction time scales are [19]

tð1Þreact � 5� 106 s

ðT=109 KÞ6 ; tð2Þreact � 20 s

ðT=109 KÞ4 (15)

for modified and direct Urca processes, respectively. In the
first seconds of a PNS life T � ð1–4Þ � 1011 K, thus

tð1;2Þreact � tosc. Therefore the stellar pulsations always occur
in local beta equilibrium. Time scales of strong nuclear
reactions are even smaller.

D. Some considerations on the f- and g-modes

For old, cold neutron stars, the frequency of the f-mode,

f, is in the range 1–3 kHz, and the damping time, �f, is of

the order of a few tenths of seconds. According to the
Newtonian theory of stellar pulsations, 
f scales as the

square root of the star average density, and this behavior is
maintained in the relativistic theory, according to which the
damping time scales as �f � R4=M3 [20–22].

The g-modes are directly related to the thermodynam-
ical properties of the star. Indeed, their presence can be
traced back to the Schwarzschild discriminant [23],

SðrÞ ¼ dp

dr
� c2s

d"

dr
¼ dp

dr

�
1� c2s

c2s0

�
; (16)

where c2s0 ¼ dp=dr
d"=dr . The radial acceleration of a fluid ele-

ment displaced from equilibrium by �r is

a ¼ � e��=2

ð"þ pÞ2c2s

��������
dp

dr

��������SðrÞ�r: (17)

Therefore, if SðrÞ> 0 the fluid element oscillates about the
equilibrium position, whereas if SðrÞ< 0 it is accelerated
away from equilibrium. It follows that, if in some region of

the star SðrÞ< 0, this region is convectively unstable and
the star admits a set of unstable g-modes, otherwise the
g-modes are stable. If SðrÞ vanishes identically, the star
does not have g-modes (all g-modes degenerate to zero
frequency). This is the case if the neutron star is cold and
old, since the EOS is barotropic and c2s ¼ p;r

";r
. Similar

information is contained in the Brunt-Väisälä frequency
which, in a relativistic framework, is defined as [24]

N2ðrÞ ¼ ec��

ð"þ pÞc2s
c ;r

2
SðrÞ: (18)

It has been shown that, although the Brunt-Väisälä fre-
quency changes by many orders of magnitude throughout
the star, it allows to estimate some g-mode frequencies of
Newtonian stars. For instance, in [25] the frequency of
higher-order g-modes of main sequence stars is computed
using the following formula

�g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

ð2�þ ‘þ ne þ 1
2Þ 	2

Z R

0
dr

jNðrÞj
r

; (19)

where R is the stellar radius, � is the order of the g-mode,
and ne is the effective polytropic index of the outer layers
of the star. However, the Brunt-Väisälä frequency cannot
be used to estimate neutron star g-mode frequencies [24];
these frequencies can only be found by solving the pertur-
bation equations, as we do in the present paper. Never-
theless the following considerations will be useful to
interpret the results we will show in the following.
Equation (19) indicates that higher frequency values cor-
respond to larger values of SðrÞ (i.e., of jNðrÞj) inside the
star. Since we shall assume dYe=dr ¼ 0 (see Sec. IV), we
have

SðrÞ ¼ dp

dr
�

�
@p

@"

�
s;Ye

d"

dr
¼

�
@p

@s

�
";Ye

ds

dr
; (20)

we may expect that higher g-mode frequencies correspond
to larger entropy gradients.

E. The damping time of quasinormal modes

A QNM of a PNS is characterized by the pulsation
frequency and by the damping time �GW. Its value is
important because it shows how fast the pulsation energy
can be dissipated through gravitational wave emission, and
it must be compared to the time scale �diss associated with
other dissipative processes which may compete with GW
emission. These include viscosity, heat transport, neutrino
diffusion, etc. (phenomena which we are neglecting in our
model). In the first minute of life of a PNS, �diss � 10–20 s
[26,27] (see also the discussion in [6]). Thus, if
�GW � �diss, the oscillations are mainly damped by gravi-
tational wave emission, and vice versa. We also remark
that, if a QNM is unstable, the instability can grow only if
�GW � �diss.
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As long as �GW � �diss, when a star oscillates in a
QNM, the pulsation energy changes in time as [12]

EpulsðtÞ � Epulsð0Þe�2t=�GW ; (21)

and the power radiated in gravitational waves is

LGW ¼ � _Epuls � 2Epuls=�GW: (22)

Thus, smaller QNM damping times are associated with a
more efficient gravitational wave emission. In the case of
cold NSs, the f-mode has always the smallest damping
time, but this is not always the case for PNSs, as we shall
discuss later.

Although we shall compute the damping times of all
modes by direct integration of the perturbed equations, it is
useful to give some approximate formula which will allow
us to explain some results of the next sections. From
Eq. (22) we find

�GW � 2Epuls=LGW: (23)

The (approximate) expressions of Epuls and LGW (the latter

is obtained using the quadrupole formalism) can be found
in [24,28] and are, in terms of the perturbation functions
defined in this paper,

Epuls � 1

2
�2

Z R

0
drr2‘ð"þ pÞeð��c Þ=2½jW‘mj2

þ ‘ð‘þ 1ÞjV‘mj2� (24)

and

LGW � 4	

75
�6

��������
Z R

0
drr4�"‘m

��������
2

; (25)

where

�"‘m ¼ �r‘
�
e�c =2

c2s
X‘m þ ";r

e��=2

r
W‘m

�
: (26)

III. THE EQUATION OF STATE OF HOT
NUCLEAR MATTER

A. BHF many-body approach

One of the most advanced microscopic approaches to the
EOS of nuclear matter is the Brueckner theory [29], re-
cently extended to the finite-temperature regime within the
Bloch-De Dominicis formalism [30]. In this approach, the
essential ingredient is the two-body scattering matrix K,
which, along with the single-particle potential U, satisfies
the self-consistent equations

h12jKðWÞj34i ¼ h12jVj34i þ Re
X
30;40

h12jVj3040i

� ½1� nFð30Þ�½1� nFð40Þ�
W � E30 � E40 þ i"

�h3040jKðWÞj34i (27)

and

Uð1Þ ¼ X
2

nFð2Þh12jKðWÞj12iA; (28)

where 1; 2; . . . generally denote momentum, spin, and iso-
spin. Here V is the two-body interaction, W ¼ E1 þ E2

represents the starting energy, and Ei ¼ k2i =2mi þUðkiÞ
the single-particle energy; nFðkÞ is the Fermi distribution at
finite temperature. For assigned partial densities and tem-
perature, Eqs. (27) and (28) have to be solved self-
consistently along with the following equations for the
auxiliary chemical potentials ~�i,

ni ¼
X
k

nFi ðkÞ ¼
X
k

1

e�ðEiðkÞ� ~�iÞ þ 1
; (29)

and the baryon number density is n ¼ P
ini.

At finite temperature the EOS, and all thermodynamical
quantities, can be obtained from the grand-canonical po-
tential density !. In the Bloch-De Dominicis approach, !
can be written as the sum of a mean-field term and a
correlation contribution [29,31],

! ¼ �X
k

�
1

�
lnð1þ e��ðEk� ~�ÞÞ þ nFðkÞUðkÞ

�

þ 1

2

X
k

nFðkÞUðkÞ: (30)

In this framework, the free energy density is

f ¼ !þ n ~�; (31)

and all remaining thermodynamical quantities of interest,
namely, the ‘‘true’’ chemical potential �, pressure p, en-
tropy per baryon s, and energy density " can be computed
from it as

� ¼ @f

@n
; (32)

p ¼ n2
@ðf=nÞ
@n

¼ �n� f; (33)

s ¼ � 1

n

@f

@T
; (34)

" ¼ fþ Tnsþmnn (35)

(mn neutron mass). Since at zero temperature the non-
relativistic microscopic approaches do not correctly repro-
duce the nuclear matter saturation point, n0 � 0:17 fm�3,
E=A � �16 MeV, three-body forces (TBF) among nucle-
ons are usually introduced in order to correct this defi-
ciency. Given the current lack of a complete microscopic
theory of TBF, we have adopted the phenomenological
Urbana model [32], which consists of an attractive term
due to two-pion exchange with excitation of an intermedi-
ate � resonance and a repulsive phenomenological central
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term. For simplicity, we reduce the TBF to a density-
dependent two-body force by averaging over the position
of the third particle, assuming that the probability of hav-
ing two particles at a given distance is reduced according to
the two-body correlation function. The corresponding EOS
at zero temperature reproduces the nuclear matter satura-
tion point correctly [33–35], and fulfills several require-
ments from the nuclear phenomenology. In all calculations
presented in this paper we use the Argonne V18 nucleon-
nucleon potential [36] together with the phenomenological
Urbana TBF.

Results for symmetric nuclear matter and purely neutron
matter have been obtained for different values of the
temperature, and are discussed in [37–40]. In particular,
in Ref. [39] useful numerical parametrizations of the EOS
are given that are employed in the current work.

The Brueckner approach provides a realistic modeling
of nuclear matter only at densities above about half normal
nuclear matter density. Below this threshold, clustering
sets in, and the system becomes inhomogeneous.
Therefore, in this ‘‘low-density’’ regime another theoreti-
cal approach has to be used, and we employ the EOS of
Shen [41], which is essentially a liquid-drop-type model at
finite temperature.

Of course, since two different theoretical descriptions of
the same state of matter are involved, the joining of the two
EOSs requires the thermodynamical observables to be
continuous functions of the baryon density. In practice
we perform a Maxwell construction by equating pressure
and chemical potentials of the low- and high-density sec-
tors, and verify that the other thermodynamic variables do
not exhibit significant discontinuities at the transition
point. In this way, a very wide range of baryon density is
spanned, from the iron density at the surface up to 8–10
times the nuclear saturation density in the core. Further
details are discussed in the following subsection.

B. Composition and EOS of hot stellar matter

In neutrino-trapped �-stable nuclear matter, the chemi-
cal potential of any particle i ¼ n, p, l is uniquely deter-
mined by the conserved quantities, baryon number Bi,
electric charge Qi, and weak charges (lepton numbers)

LðeÞ
i , L

ð�Þ
i :

�i ¼ Bi�n �Qið�n ��pÞ þ LðeÞ
i �
e

þ L
ð�Þ
i �
�

: (36)

For stellar matter containing nucleons and leptons as rele-
vant degrees of freedom, the chemical equilibrium condi-
tions read explicitly as

�n ��p ¼ �e ��
e
¼ �� þ� �
�

: (37)

At given baryon number density n, these equations have to
be solved together with the charge neutrality conditionX

i

Qixi ¼ 0; (38)

and those expressing conservation of lepton numbers

Yl ¼ xl � x�l þ x
l
� x �
l

; l ¼ e; �: (39)

When neutrinos have left the system, their partial densities
and chemical potentials vanish and the above equations
simplify accordingly. We fix the muon fractions to Y� ¼ 0,

and let Ye assume a finite value different from zero in
neutrino-trapped matter.
The nucleon chemical potentials are obtained from the

free energy density f, Eq. (31),

�iðfnjgÞ ¼ @f

@ni

��������nj�i

; i ¼ n; p; (40)

and the chemical potentials of the noninteracting leptons
are obtained by solving numerically the free Fermi gas
model at finite temperature. Once the hadronic and lep-
tonic chemical potentials are known, one can proceed to
calculate the composition of the �-stable stellar matter,
and then the total pressure p through the usual thermody-
namical relation

p ¼ n2
@ðf=nÞ
@n

¼ X
i

�ini � f: (41)

An important feature of the low-density domain is the
treatment of neutrino trapping. Physically, neutrinos es-
cape rapidly from the low-density matter during the PNS
evolution, and the lepton number is not conserved any-
more. This effect can be roughly modeled by introducing a
neutrino sphere inside which neutrinos are trapped. Typical
model-dependent values for the location of the neutrino
sphere found in the literature are 2� 10�3 fm�3 [42],
6� 10�4 fm�3 [43], and 2� 10�5 fm�3 [44]. Given these
variations, we choose the following ‘‘natural cutoff’’ pro-
cedure: when imposing a constant Ye at any density, at a
certain threshold number density n
 � 10�5–10�6 fm�3,
the electron fraction xe becomes equal to Ye, and neutrinos
disappear naturally. For lower densities we consider the
matter untrapped. This simple procedure avoids making
assumptions about the neutrino sphere, although a more
satisfactory treatment of neutrino trapping is required; but
this is beyond the main goal of the present paper.

IV. PROTO-NEUTRON STAR STELLAR MODELS:
ENTROPYAND LEPTON FRACTION PROFILES

We shall now construct equilibrium stellar models, all
with a fixed baryonic mass MB ¼ 1:5M� (a conserved
quantity during the stellar evolution), and with different
entropy and composition profiles. These configurations
will be used to simulate the quasistationary evolution of
a PNS, and to compute how the stellar parameters and the
quasinormal mode frequencies change during the evolu-
tion. As discussed in the introduction, the quasistationary
evolution typically starts with configurations characterized
by a low entropy per baryon in the core (order of s� 1 at
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the center, see for instance [2]) and a large entropy per
baryon in the envelope (order of s� 5 or larger). Thus, we
shall consider as ‘‘initial’’ the configuration with an en-
tropy per baryon profile made of two constant pieces,
sc ¼ 1 in the core and se ¼ 5 in the envelope, with a
smooth junction between them. Furthermore, as discussed
in Sec. III B, to model neutrino trapping we shall assume
that the lepton fraction Ye is constant throughout the star
(up to a threshold density, below which Ye ¼ xe).

As long as the evolution proceeds, entropy gradients are
gradually smoothed out: the core entropy increases, the
envelope entropy decreases, neutrinos escape from the
surface and the star progressively cools down. To model
this evolution, we construct EOSs and stellar configura-
tions corresponding to increasing values of sc, decreasing
values of se and a decreasing lepton fraction; then, to
decreasing values of both sc, se, and a decreasing lepton
fraction. Each configuration depends on the three constants
sc, se, Ye, and it is labeled by Psc;se;Ye

.

To describe the latest stages of the PNS evolution we
also consider two constant entropy profiles: (i) one with

sc ¼ se ¼ 1 and no neutrino trapping, P1;1;x
¼0, with Ye

varying from 0.10 at the center to 0.44 at the stellar surface;
(ii) a zero-temperature profile with no neutrino trapping,
PT¼0, which describes a cold, old NS, with electron frac-
tion varying from 0.09 at the center to 0.44 at the surface.
We show in Fig. 1 the profiles of the entropy per baryon

(upper panel) and of the temperature (lower panel) as a
function of the enclosed baryonic mass, for the models
P1;5;0:35 (radius R ¼ 30:3 km) and P2;3;0:30 (radius R ¼
16:5 km). In order to avoid sharp transitions from the
core to the envelope region, we adopt a cubic interpolation
for the entropy between the two regions. Thus, the entropy
is a continuous function of the density. However, as a
consequence of the Maxwell construction used to join the
Shen EOS (low-density region) to the BHF EOS (high-
density region), as discussed in the previous section, there
is a weak discontinuity both in the entropy and in the
temperature profile, when plotted as a function of the
enclosed mass as in Fig. 1. We have checked that
the results presented in the next section are not influenced
by these discontinuities.
In Table I we show the quantities which characterize the

stellar models associated to different profiles, namely,
gravitational mass, stellar radius, temperature and neutrino
fraction at the center of the star. The dependence of the
stellar parameters on the temperature and lepton fraction
profiles will be discussed in the next section.

V. RESULTS

In this section we discuss the behavior of the stellar
radius and of frequencies and damping times of the
QNMs computed for stellar models with different entropy
profiles and lepton/neutrino fraction content, in order to
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FIG. 1 (color online). The profiles of entropy (upper panel)
and temperature (lower panel) are plotted versus the enclosed
baryonic mass for the models P1;5;0:35 (R ¼ 30:3 km) and

P2;3;0:30 (R ¼ 16:5 km).

TABLE I. Stellar models with fixed baryonic mass MB ¼
1:5M� corresponding to different entropy profiles and lepton
fractions. The gravitational mass M, radius R, central tempera-
ture Tc, and central neutrino fraction xc
 are tabulated for each
profile.

sc se Ye M=M� R (km) Tc (MeV) xc


1.0 5.0 0.38 1.43 31.5 19.8 0.052

1.0 5.0 0.35 1.43 30.3 20.2 0.041

1.0 5.0 0.28 1.42 29.4 21.2 0.020

1.5 4.5 0.33 1.43 24.6 30.3 0.035

1.5 4.5 0.32 1.42 24.4 30.5 0.031

2.0 4.0 0.32 1.43 21.5 40.5 0.033

2.0 4.0 0.30 1.43 21.3 41.0 0.027

2.0 3.0 0.30 1.42 16.5 41.2 0.026

2.0 3.0 0.28 1.41 16.4 41.8 0.021

2.0 2.0 0.28 1.41 14.5 41.6 0.020

2.0 2.0 0.23 1.40 14.1 42.9 0.010

1.0 1.0 0.23 1.37 12.5 20.2 0.007

1 1 x
 ¼ 0 1.36 12.2 20.9 0.000

T ¼ 0 1.35 11.9 0.00 0.000
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understand how these quantities are affected by the PNS
internal structure.

Let us consider the dependence on the entropy profile
first, and fix the value of the lepton fraction to Ye ¼ 0:32.
We compute and compare the mode frequencies and damp-
ing times of the following stellar configurations: P1;5;0:32,

P1;4;0:32, P1:5;4:5;0:32, P2;4;0:32, and P2;3;0:32. The core-

envelope ‘‘entropy jumps’’ are �s ¼ 4, 3, 3, 2, 1, respec-
tively. In Table II we show for each profile the central
temperature, the radius, and the frequencies and damping
times of the QNMs g1, f, p1. These data allow us to discuss
how the different quantities change with the entropy
profile.

As a general rule, the radius is larger if the star is hotter,
or equivalently, if it has a larger entropy per baryon. This is
indeed confirmed comparing, for example, the profiles
P1;5;0:32 and P1;4;0:32. The temperature (entropy) at the

center is the same, but the first model has larger entropy
and temperature in the envelope; its radius, R ¼ 29:6 km,
is larger than that of the second model, R ¼ 18:4 km. This
behavior is confirmed by comparing P2;4;0:32 and P2;3;0:32.

In a similar way, the radius depends on the entropy in the
core, although the dependence is weaker, because the
envelope has more freedom to expand than the core; for
instance, the configuration P2;4;0:32 has a radius R ¼
21:5 km, larger than R ¼ 18:4 km of P1;4;0:32.

As discussed in Section II D, the frequency of the first
g-mode depends mainly on the core-envelope entropy
jump: higher values of �s ¼ se � sc correspond to larger
g-mode frequencies. Furthermore, as argued in [45], the
g-mode frequency has also a (weaker) dependence on the
central temperature; indeed, the configurations P1:5;4:5;0:32

and P1;4;0:32 have the same entropy jump, but the former

has a larger central temperature Tc and larger g-mode
frequency.

Table II shows that, as the entropy jump decreases, the
damping time of the first g-mode increases dramatically:
for P1;5;0:32 it is �g1 ¼ 6:27 s, for P2;3;0:32 it is �g1 ¼
6� 105 s. We stress that the quantity we are computing
is the gravitational damping time, obtained by neglecting
all nongravitational dissipative effects. Since the time scale
of such effects (viscosity, heat transport, etc.) is of the
order of �diss � 10–20 s [26,27], whenever �GW > �diss,

the mode is mainly damped by nongravitational dissipative
effects.
Since the evaluation of the gravitational damping time is

more sensitive to the numerical procedure than that of the
mode frequency, we have also computed this quantity by
using the approximate formula given in Eq. (23), and
indicate its value as �estg ; we find a reasonable agreement

with the data of Table II:

�s ¼ 4: Epuls ¼ 1:047 km;

LGW ¼ 0:377; �estg ¼ 5:55 s;

�s ¼ 1: Epuls ¼ 0:111 km;

LGW ¼ 3:8� 10�6; �estg ¼ 6� 104 s:

Thus, the sharp increase of �g1 as�s decreases is due to the

sharp decrease of the gravitational luminosity LGW [see
Eq. (23)]. As shown in Eq. (25), LGW is (modulo a numeri-
cal factor) the squared integral of the function

IGW ¼ 
3r4�"‘m; (42)

where 
 is the mode frequency and �" is the perturbed
energy density for the considered mode.
In order to understand why LGW decreases so much

when the entropy jump decreases, we plot in Fig. 2 �"
(upper panel) and IGW (lower panel) as functions of r, for
the stars with profiles P1;5;0:32 and P2;3;0:32. It is obvious that

due to the larger radius of the former configuration and the
presence of the factor r4 in Eq. (25), the emitted power
LGW is much larger (indeed the main contribution comes
from the envelope), and the damping time is strongly
reduced. In addition, the g-mode frequency is also larger
in the former configuration, and this contributes further to a
larger gravitational wave emission, since IGW � 
3.
Let us now consider the f-modes. For a cold neutron

star, the f-mode frequency scales as the average density of
the star and the damping time scales as �f � R4=M3. From

the data of Table II we see that 
f increases as the radius

decreases (the gravitational mass is nearly the same for all
configurations), while the damping time decreases; how-
ever, both 
f and �f do not follow quantitatively the cold

star scaling laws. The first p-mode frequency has a behav-
ior similar to that of the f-mode, whereas the damping time

TABLE II. Frequencies (in Hz) and damping times (in s) of the QNMs g1, f, p1 for different stellar models with baryonic mass
1:5M�, lepton fraction Ye ¼ 0:32, and different entropy profiles. The central temperature Tc (in MeV) and the stellar radius R (in km)
are also shown.

sc se �s Tc R 
g1 �g1 
f �f 
p1
�p1

1.0 5.0 4 20.6 29.6 906 6.27 1194 4.42 1528 0.75

1.5 4.5 3 30.5 24.3 910 42.9 1346 0.76 1845 0.55

1.0 4.0 3 20.2 18.4 870 793 1741 0.27 2574 0.99

2.0 4.0 2 40.5 21.5 669 2� 103 1449 0.45 2097 0.72

2.0 3.0 1 40.7 16.8 492 6� 105 1714 0.25 2977 1.64
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seems to be quite insensitive to changes of the entropy
profile.

Finally, we consider a sequence of stellar models with a
fixed entropy profile, i.e., sc ¼ 1 in the core and se ¼ 5 in
the envelope, and the lepton fraction varying in the range
Ye ¼ 0:38; . . . ; 0:28. The frequency and the damping times
of the g1, f, and p1-modes are shown in Table III, together

with the radius and the gravitational mass of the star. From
these data we see that the star radius is a slightly decreasing
function of the lepton fraction, and that the behavior of the
f and p1 frequency as a function of the star radius is similar
to that described above. Overall, the data show that the
dependence of the QNMs eigenfrequencies on the lepton
fraction is much weaker than that on the entropy profile.

QNM eigenfrequencies and PNS
quasistationary evolution

As mentioned in the Introduction, numerical simulations
show that in the early phases of a PNS life the entropy
profile has a characteristic evolution which mainly depends
on neutrino diffusion processes, and which can be divided
in three essential steps:
(1) the entropy per baryon is initially (a few tenths of

seconds after bounce) larger in the envelope and
lower in the core;

(2) the entropy increases in the core and decreases in the
envelope, reaching a roughly uniform profile;

(3) the entropy decreases throughout the star, which
eventually becomes a cold neutron star.

The entire process takes about a minute, but we cannot
assign precise temporal labels to each step, because they
depend on the details of the initial conditions after the
bounce and on the dynamical modeling of the evolution,
which is beyond the scope of our work (an example of this
evolution is shown in Fig. 9 of Ref. [2]).
In this section we construct a sequence of stellar con-

figurations, listed in Table IV, which captures the main
qualitative features of a PNS evolution described by steps 1
to 3. Each profile is labeled by a number i, which gives the
ordering in time of the simulated evolution. Configurations
from i ¼ 1 to i ¼ 4 (envelope entropy larger than core
entropy) refer to the transition from step 1 to step 2, which
ends with configuration 5, for which the entropy distribu-
tion becomes uniform, but the star is still hot. Then it cools
down (configurations 5 to 6) and ends as a zero-
temperature NS reaching configuration 7 (step 3). During
this ‘‘evolution’’ the lepton number decreases. We have
also considered a different sequence, in which the lepton
fraction decreases ‘‘more rapidly,’’ but the results are very
similar to those obtained with the sequence shown in
Table IV.
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FIG. 2 (color online). Comparison of the perturbed energy
density �"ðrÞ, Eq. (26), (upper panel) and of the function
IGWðrÞ given in Eq. (42) (lower panel) for the g-mode of the
stellar configurations P1;5;0:32 and P2;3;0:32. Both functions have

been normalized in such a way that the mode pulsation energy is
Epuls ¼ 1 km.

TABLE III. Frequencies (in Hz) and damping times (in s) of the QNMs g1, f, p1 for stellar models with baryonic mass 1:5M�,
entropy per baryon in the core sc ¼ 1 and in the envelope se ¼ 5, and different values of the lepton fraction Ye. The radius of the star
(in km) and its gravitational mass (in solar masses M�) are also shown.

Ye R M 
g1 �g1 
f �f 
p1
�p1

0.38 31.5 1.43 863 6.78 1116 9.75 1415 1.00

0.36 30.6 1.43 883 6.62 1147 6.83 1463 0.89

0.32 29.6 1.42 906 6.25 1194 4.44 1527 0.75

0.30 29.4 1.42 910 5.99 1209 4.01 1543 0.73

0.28 29.4 1.42 908 5.71 1216 3.96 1546 0.72
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For each configuration we compute the frequencies and
damping times of the QNMs g1, f, p1. Their values are
given in Table IV, and are plotted in Fig. 3 versus the
number i which identifies the configuration as explained
above. We remark that, as shown in Fig. 3, the gravitational
damping time of the g1-mode sharply increases for i * 2,
while the mode frequency sharply decreases. However, as

discussed in Sec. II, as soon as �g becomes comparable to

�diss � 10–20 s, the mode becomes ineffective with respect
to gravitational wave emission, since the stellar oscillations
are damped by nongravitational dissipative processes.
The most interesting result which emerges from

Table IV and Fig. 3 is that at earlier times, i.e., for i 	 2,
the frequencies of the g1, f, p1-modes cluster in a small
region around 1 kHz, and then tend quite rapidly to the
values appropriate for a cold NS (remember that our entire
sequence should cover approximately a minute of the PNS
evolution). This behavior is similar to that found in [6],
where the quasistationary evolution sequence was obtained
using a finite-temperature EOS derived within the mean-
field approach, treating neutrino transport using the diffu-
sion approximation. The fact that in the very early stages
the mode frequency is of the order of 1 kHz (or lower) is
important for gravitational wave detection, because
the sensitivity of ground-based interferometers LIGO/
Virgo decreases quite significantly at larger frequencies.
Another interesting point to note is that during the very

early evolution the damping time of all modes is smaller
than �diss � 10–20 s. This means that gravitational wave
emission is effectively competing in removing energy from
the star with dissipation processes related to neutrino vis-
cosity, diffusivity, and thermal conductivity, since typical
neutrino time scales are of the order of 10–20 s (see also
section 2.1 of [6] for a detailed discussion of this point). At
later times, as shown in Fig. 3, the damping time of the
g-mode becomes larger than �diss, and consequently the
g-mode will be damped by nongravitational dissipative
effects. A more accurate description of the process would
require a microscopic modelling of �diss during the evolu-
tion, which is however beyond the scope of this work.
Furthermore, for i ¼ 1 the damping times of the f-mode

and g-mode are nearly coincident, showing that in the early
stages the g-mode is as effective as the f-mode as a source
of gravitational waves. Indeed, the function IGW given by
Eq. (42), whose square integral over the star is the gravi-
tational wave luminosity, is similar for the two modes due
to a similar profile of the energy density perturbation. At
later ‘‘times’’ �g becomes much larger than �f and, as the

PNS tends to the NS final configuration, the g-mode fre-
quency tends to zero.

TABLE IV. Frequencies (in Hz) and damping times (in s) of the QNMs g1, f, p1 for a sequence of stellar models which mimic the
quasistationary evolution of a PNS with constant baryonic mass 1:5M�. The star radius (in km) is shown in column 5.

i sc se Ye R 
g1 �g1 
f �f 
p1
�p1

1 1.0 5.0 0.35 30.3 890 6.54 1162 5.89 1484 0.84

2 1.5 4.5 0.32 24.4 910 42.9 1346 0.76 1845 0.55

3 2.0 4.0 0.30 21.3 667 2:3� 103 1452 0.44 2125 0.73

4 2.0 3.0 0.28 16.4 485 7:6� 104 1717 0.25 3133 1.80

5 2.0 2.0 0.23 14.1 0 - 1790 0.23 4134 2.59

6 1.0 1.0 x
 ¼ 0 12.2 0 - 1896 0.21 5879 2.98

7 T ¼ 0 11.9 0 - 1898 0.21 6006 3.52

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7

ν 
(k

H
z)

i

g-mode
f-mode

p-mode

 0.1

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7

τ 
(s

)

i

g-mode
f-mode

p-mode

FIG. 3 (color online). Frequencies (upper panel) and damping
times (lower panel) of the QNMs g1, f, p1 for stellar models
corresponding to a possible evolutive sequence of stationary
configurations.
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VI. CONCLUSIONS

In this paper we have investigated how the frequencies
and damping times of the quasinormal modes of a proto-
neutron star depend on the physical quantities which char-
acterize the stellar configurations during the quasistation-
ary evolution. The most important is the entropy profile
inside the star, whereas the dependence on the lepton
composition is weaker.

The most interesting result is that if the entropy gradient
between core and envelope is large, the frequencies of the
first g-mode, of the fundamental mode, and of the first
p-mode tend to cluster in a small region near 1 kHz,
whereas the damping time of the first g-mode and of the
f-mode become comparable. This means that during the
initial phases of the quasistationary evolution, when the
core entropy is low and the envelope entropy is large, these
two modes are competitive as far as gravitational wave
emission is concerned.

The damping times are of the order of a few seconds,
smaller than dissipative time scales associated to neutrino

processes, which are of the order of 10–20 s. Thus, if the
star has some mechanical energy to dissipate, it is likely
that it will do it through the g1- and f-modes.
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APPENDIX A: THE LINDBLOM-DETWEILER
EQUATIONS

The system of the Lindblom and Detweiler equations
[13,14] consists of four first-order differential equations in
the quantities H‘m

1 ðrÞ, K‘mðrÞ, W‘mðrÞ, X‘mðrÞ:

Hlm0
1 ¼ � 1

r

�
‘þ 1þ 2Me�

r
þ 4	r2e�ðp� "Þ

�
þ e�

r
½H‘m

0 þ K‘m � 16	ð"þ pÞV‘m�;

K‘m0 ¼ 1

r
H‘m

0 þ ‘ð‘þ 1Þ
2r

H‘m
1 �

�
‘þ 1

r
þ c 0

2

�
K‘m � 8	ð"þ pÞ e

�=2

r
W‘m;

W‘m0 ¼ � ‘þ 1

r
W‘m þ re�=2

�
e�c =2

ð"þ pÞc2s
X‘m � ‘ð‘þ 1Þ

r2
V‘m þ 1

2
H‘m

0 þ K‘m

�
;

X‘m0 ¼ � ‘

r
X‘m þ ð"þ pÞec =2

2

��
1

r
þ c 0

2

�
þ

�
r!2e�c þ ‘ð‘þ 1Þ

2r

�
H‘m

1 þ
�
3

2
c 0 � 1

r

�
K‘m

� ‘ð‘þ 1Þ
r2

c 0V‘m � 2

r

�
4	ð"þ pÞe�=2 þ!2e�=2�c � r2

2

�
e��=2

r2
c 0

�0�
W‘m

�
: (A1)

The remaining perturbation functions, H‘m
0 ðrÞ, V‘mðrÞ, H‘m

2 ðrÞ, are given by the algebraic relations

0 ¼
�
3Mþ ð‘� 1Þð‘þ 2Þ

2
rþ 4	r3p

�
H‘m

0 � 8	r3e�c =2X‘m

þ
�
‘ð‘þ 1Þ

2
ðMþ 4	r3pÞ �!2r3e�ð�þc Þ

�
H‘m

1

�
�ð‘� 1Þð‘þ 2Þ

2
r�!2r3e�c þ e�

r
ðMþ 4	r3pÞð3M� rþ 4	r3pÞ

�
K‘m;

X‘m ¼ !2ð"þ pÞe�c =2V‘m � p0

r
rðc��Þ=2W‘m þ ec =2

2
ð"þ pÞH‘m

0 ;

H‘m
0 ¼ H‘m

2 : (A2)

Equations (A1) and (A2) are solved numerically inside the star, assuming that the perturbation functions are nonsingular
near the center. An asymptotic expansion of the equations near r ¼ 0 shows that this requirement implies
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X‘mð0Þ ¼ ½"ð0Þþpð0Þ�ec ð0Þ=2
��

4	

3
½"ð0Þþ 3pð0Þ�

�!2 e
�c ð0Þ

‘

�
W‘mð0Þþ 1

2
K‘mð0Þ

�
;

H‘m
1 ð0Þ ¼ 1

‘ð‘þ 1Þ ½2‘K
‘mð0Þþ 16	½"ð0Þþpð0Þ�W‘mð0Þ�:

(A3)

On the stellar surface, r ¼ R, one assumes continuity of
the perturbation functions and the vanishing of the
Lagrangian pressure perturbation, i.e.,

X‘mðRÞ ¼ 0: (A4)

In the exterior, the metric perturbations are described by
the Zerilli function

Z‘m ¼ r‘þ2

nrþ 3M
ðK‘m � ecH‘m

1 Þ; (A5)

[where n ¼ ð‘� 1Þð‘þ 2Þ=2], which is solution of the
Zerilli equation

d2Z‘m

dr2

þ ½!2 � VZðrÞ�Z‘m ¼ 0 (A6)

with r
 � rþ 2M lnðr=2M� 1Þ and

VZ � e�� 2n
2ðnþ 1Þr3 þ 6n2Mr2 þ 18nM2rþ 18M3

r3ðnrþ 3MÞ2 :

(A7)

Finally, to describe free oscillations of the star we must
impose the outgoing wave boundary condition

Z‘mðrÞ ! e�i!r
 ðr ! 1Þ: (A8)

A solution of Eqs. (A1) and (A6) satisfying the boundary
conditions (A3), (A4), and (A8) only exists for a discrete
set of (complex) values of the frequency ! ¼ 2	
þ i=�:
the quasinormal modes of the star.
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