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Using the standard canonical formalism, the equations of mechanics and kinetics in the Friedmann-

Lemaı̂tre-Robertson-Walker (FLRW) space-times in Cartesian coordinates have been obtained. The

transformation law of the generalized momentum under the shift of the origin of the coordinate system

has been found, and the form invariance of the Hamiltonian function relative to the shift transformation

has been proved. The derived equations allow one to shift the origin of the coordinate system to the point

of location of the observer. The space in the vicinity of this point can be considered as a Euclidean one

which makes straightforward the interpretation of calculations. For the distribution function in the phase

space, the general solution of the collisionless Boltzmann equation has been found. The results of this

work can be used for treatment of evolution of the distribution function of particles arriving from the

cosmologically distant objects. We discuss, in particular, two important cases of astrophysical interest: (i)

the homogenous distribution particles taking into account energy losses, and (ii) the spherically symmetric

case with arbitrary angular distribution. While the first problem is linked to the diffuse distributions of

particles produced at cosmological epochs, the second one is relevant to the discrete astrophysical objects.

DOI: 10.1103/PhysRevD.84.044016 PACS numbers: 04.20.�q, 05.20.Dd, 05.60.Cd, 45.20.Jj

I. INTRODUCTION

The covariant general relativistic Boltzmann equation
for the one-particle distribution function has been found in
Ref. [1]. Equation (16) from Ref. [1] reads

@�

@xi
pi � @�

@pi �
i
jkp

jpk ¼ 0: (1)

However, the physical meaning of the function � and
correct interpretation of the equation had been revealed
much later (see Refs. [2,3] and references cited there, as
well as Ref. [4], where a critical review of previous studies
conducted for the basic plasma modes in the expanding
Universe is given). Throughout the present paper, except
for Appendix A, we consider the motion of particles and
the kinetics in the Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) space-times in Cartesian coordinates. The unique-
ness of the FLRW metrics [5], its homogeneity, and iso-
tropy are more clearly exposed in these coordinates,
therefore we do not use generally covariant notations.

Our approach is based on the standard scheme of the
classical mechanics: the generalized coordinates and

Lagrangian function ! the generalized momentum !
the Hamiltonian function ! the phase space. Thus, there
is no problem to derive the collisionless Boltzmann equa-
tion and to interpret the distribution function. Moreover,
the Hamilton-Jacobi equation allows us, as in the case of
the conventional space, to find in the explicit form all six
integrals of motion and thereby to obtain the general
solution of the Boltzmann equation. The solution is par-
ticularly simple in the spherically symmetric case.
It is well known that the metrics FLRW is form invariant

relative to the shift of the origin of the coordinate system,
and it is known how the Cartesian coordinates are trans-
formed under the shift [6]. The mechanics also appears to
be form invariant. This circumstance is always implicitly
assumed; however, to our knowledge, the direct prove of
the invariance has not been demonstrated. In this paper we
prove the form invariance of the Hamiltonian function and
find the law of the momentum transformation under the
shift of the origin of coordinates. If one moves the refer-
ence point to the point where the observer is located, we
can easily interpret the results of calculations since in the
vicinity of the observation point the space can be consid-
ered as a Euclidean one.
In the curved space, if the distribution of particles is

homogenous, it is isotropic as well (see Appendix B). In
this case, the derivation of the collisionless Boltzmann
equation is trivial, and the collision integrals can be de-
scribed in the same way as in the flat space. It is impossible
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to find analytical solutions to the Boltzmann equation with
collision integrals, therefore we restricted ourselves by
several simple, but important for applications, cases
when the solution can be obtained by quadratures.

For convenience, some of the principal calculations are
presented in four Appendices. In Appendix A we give a
simple derivation of the Boltzmann equation for space with
an arbitrary metric written in arbitrary coordinates. The
Hamilton function has been obtained, and it has been
shown that the equation of motion and the Boltzmann
equation can be written in the standard form. Finally, in
Appendix D we note the surprising effect that a photon,
emitted by the source with superluminal recession velocity
in the direction to the observer, during a certain time
interval moves away from the observer.

II. MECHANICS OF FREE PARTICLES IN FLRW
SPACE-TIMES

In Cartesian coordinates the Friedmann-Lemaı̂tre-
Robertson-Walker metric can be represented in the form

ds2 ¼ dt2 � a2ðtÞ
�
dr2 þ �

ðrdrÞ2
1� �r2

�
; (2)

where � is the discrete quantity which describes possible
isotropic models and has the following values: � ¼ 1 for
the closed model (positive curvature), � ¼ �1 for the open
model (negative curvature), and � ¼ 0 for the flat space.
The function aðtÞ, which is determined by the Friedmann
equation, is assumed to be given. We use the three-
dimensional vector notations, r ¼ ðx; y; zÞ; ðrdrÞ ¼ xdxþ
ydyþ zdz, etc., where r is considered to be a vector in the
sense that under rotations relative to the origin of coordi-
nates the components of r are transformed the same way as
the vector components in Euclidean space.

The action functional of a particle in the gravitational
field is given by (assuming c ¼ 1)

S ¼ �m
Z

ds ¼
Z

Ldt; (3)

where the Lagrangian function is

L ¼ �m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ

�
v2 þ �

� ðrvÞ2
1� �r2

�s
: (4)

Considering r and v ¼ dr=dt as generalized coordinates
and velocities, we can make use of the formalism of the
classical mechanics (see, e.g., [7,8]). Then the generalized
momentum is expressed as

p ¼ @L

@v
¼

ma2
�
vþ � rðrvÞ

1��r2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ

�
v2 þ � ðrvÞ2

1��r2

�r ; (5)

and the energy is

E ¼ v
@L

@v
� L ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2ðtÞ
�
v2 þ � ðrvÞ2

1��r2

�r : (6)

Note that E � m, as it is in Minkowski space. It is easy to
ascertain by direct check that (a � aðtÞ)

E2 � 1

a2
ðp2 � �ðprÞ2Þ ¼ m2; (7)

therefore the Hamiltonian function has the following form:

H ðp; r; tÞ ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � �ðprÞ2 þm2a2

q
: (8)

The dependence of generalized coordinates and momenta
on time is found from canonical equations of motion

_r ¼ @H
@p

¼ 1

a

p� �rðprÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � �ðprÞ2 þm2a2

p ; (9)

_p ¼ �@H
@r

¼ 1

a

�pðprÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � �ðprÞ2 þm2a2

p ; (10)

which admit an exact analytical solution in the general case
(see below). For massless particles the Hamiltonian func-
tion becomes

H ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � �ðprÞ2

q
: (11)

This formula can also be applied to ultrarelativistic
particles.
Since the Hamiltonian function explicitly depends on

time, the energy of the particle is not conserved. To deter-
mine the time dependence of the energy, let us consider the
differential equation which at any � has the form

dE

dt
¼ @H

@t
¼ � _a

a

�
E�m2

E

�
: (12)

The solution of this equation gives the relation between
values of the energy of a freely moving particle at different
moments of time:

EðtÞ ¼
��

aðt0Þ
aðtÞ

�
2ðE2ðt0Þ �m2Þ þm2

�
1=2

: (13)

For photons (or ultrarelativistic particles) this leads to the
well-known relation between the energy and the scale
factor (redshift):

aðtÞEðtÞ ¼ const: (14)

Often this relation is interpreted as a consequence of
the Doppler effect. However, this seems to us not correct
since Eq. (13) for m � 0 cannot be obtained using Lorentz
transformation. In the nonrelativistic case, denoting E ¼
mþ Ekin and assuming that Ekin � m, we get

a2ðtÞEkinðtÞ ¼ const; (15)

S. R. KELNER, A.YU. PROSEKIN, AND F.A. AHARONIAN PHYSICAL REVIEW D 84, 044016 (2011)

044016-2



which means that for nonrelativistic particles the decrease
of kinetic energy with time is faster.

III. FORM INVARIANCE OF MECHANICS

The space with metric given by Eq. (2) is homogeneous
and isotropic. The isotropy of the space is obvious since the
quantities dr2, r2, and ðrdrÞ in Eq. (2) do not change under
rotation relative to the origin of coordinates. The homoge-
neity implies that the origin of coordinates can be chosen at
any point of the space, and the metric would have the same
form of Eq. (2). The proof of homogeneity can be found in
Ref. [6]. If the origin of coordinates is shifted from the
point r ¼ 0 to the point r ¼ �, then the new coordinates r0
are expressed through the old coordinates in the following
way [6]:

r 0 ¼ ~rðr;�Þ � r� �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
þ �ð�rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ��2
p

þ 1

�
:

(16)

If r ¼ �, we have r0 ¼ 0. The inverse transformation

r ¼ ~rðr0;��Þ (17)

is obtained from Eq. (16) by replacing � ! ��. The
‘‘volume’’ elements in the new and old coordinates are
connected by relations

d3r0 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ��2
p

þ �ð�rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
�
d3r; (18)

d3r ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ��2
p

� �ð�r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r02

p
�
d3r0 (19)

[note that Eqs. (18) and (19) are equivalent].
Let us find the transformation laws for the velocity and

momentum under shifts. The velocity is transformed as a
contravariant vector. Assuming r ¼ rðtÞ, r0 ¼ r0ðtÞ in
Eq. (16) and differentiating it with respect to t, we find

v 0 ¼ ~vðv; r;�Þ

� vþ ��

� ðrvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p � ð�vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
þ 1

�
: (20)

The momentum, as it follows from Eq. (5), is a covariant
vector, therefore the transformation law of p is

p0
i ¼ ðM�1Þki pk; (21)

where matrix M�1 is inverse to Mk
i ¼ @v0

k=@vi. Equation

(21) can be written in the explicit form:

p0 ¼ ~pðp; r;�Þ

� p� �ð�pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ��2Þð1� �r2Þp þ �ð�rÞ

�
�
r� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
þ 1

�
: (22)

As in the case of the transformation Eq. (16), the inverse
transformations of Eqs. (20) and (22) can be obtained by
replacement of � with �� and interchange of primed and
unprimed quantities:

v ¼ ~vðv0; r0;��Þ; p ¼ ~pðp0; r0;��Þ: (23)

From Eqs. (22) and (23) the following relations between
the volume elements in the momentum space can be found:

d3p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �r2Þð1� ��2Þp þ �ð�rÞ

d3p; (24)

d3p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �r02Þð1� ��2Þp � �ð�r0Þ

d3p0: (25)

The change of variables from ðp; rÞ to ðp0; r0Þ is a
canonical transformation that can be proved by direct
computation of Poisson brackets. However, it can be dem-
onstrated much easier by noting that the transformation can
be carried out by the generating function

S ðp; r0Þ ¼ ðpr0Þ þ ðp�Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �r02
p

� �ð�r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
þ 1

�
:

(26)

The equations

r ¼ @S
@p

; p0 ¼ @S
@r0

(27)

following from this are equivalent to Eqs. (16) and (22).
Since S does not depend on time, the old and new

Hamiltonian functions are equal: H 0 ¼ H . By the direct
check, one can ascertain the validity of the equation

p 02 � �ðp0r0Þ2 ¼ p2 � �ðprÞ2: (28)

Therefore, in the new reference system

H 0ðp0; r0; tÞ ¼ H ðp0; r0; tÞ

¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 � �ðp0r0Þ2 þm2a2

q
; (29)

i.e. the Hamiltonian function is form invariant. Thus, we
arrive at the natural conclusion that not only the geometry
but also the mechanics in FLRW space-times does not
change under the shift of the origin of coordinates. It
should be kept in mind that in the curved space not only
generalized coordinates but also generalized momenta and
velocities depend on choice of origin of coordinates.
The transformations given by Eqs. (16), (20), and (22)

are convenient for analysis of the results obtained in the
curved space. Let us assume that we know the solution of a
problem in the reference frame with the origin located at
the source, and an observer is located at the point r. For
analysis of the result it is convenient to move to another
coordinate system shifting the origin to the location of
observer, i.e. to assume � ¼ r. The space in the small
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neighborhood of r0 ¼ 0 of the new reference frame can be
considered as a Euclidean one that appreciably simplifies
the analysis.

The replacement of � ¼ r in Eqs. (20) and (22) gives
the generalized velocity and momentum in the observation
point:1

u ¼ ~vðv; r; rÞ ¼ vþ rðrvÞ
r2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �r2
p � 1

�
; (30)

q ¼ ~pðp; r; rÞ ¼ pþ rðrpÞ
r2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
� 1Þ: (31)

The vectors u and q are parallel, while their squares are

u 2 ¼ v2 þ �ðvrÞ2
1� �r2

; q2 ¼ p2 � �ðprÞ2: (32)

It should be noted that quantities u2 and q2 are invariants
relative to shift. Multiplying Eq. (31) by vector r, we find

ðqrÞ ¼ ðprÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
: (33)

Rewriting ðprÞ ¼ pr cos�, ðqrÞ ¼ qr cos�0, and taking

into account that q ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2cos2�

p
in such notation,

we obtain the following relation between the angles in the
new and old coordinate systems:

cos�0 ¼ cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

1� �r2cos2�

s
; (34)

and

cos� ¼ cos�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2sin2�0

p ; (35)

sin� ¼ sin�0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �r2

1� �r2sin2�0

s
: (36)

Let us denote by V and P the usual (not generalized)
velocity and momentum of the particle registered by the
observer. Then

V ¼ au; P ¼ q=a: (37)

Note that ðPVÞ ¼ ðquÞ ¼ ðpvÞ. From Eqs. (30) and (31)
one can find the generalized velocity and momentum at the
point r expressed in terms of V and P:

v ¼ 1

a

�
V þ rðrVÞ

r2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
� 1Þ

�
; (38)

p ¼ a

�
P þ rðrPÞ

r2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �r2
p � 1

��
: (39)

The relations between quantities V, P, and E are the same
as in special relativity:

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

p
; V ¼ P

E
: (40)

As an example, let us consider the solution given by
Eqs. (9) and (10) in the case of negative curvature
(� ¼ �1). The origin of coordinates is taken at the position
of the particle at the initial moment of time ti, i.e. rðtiÞ ¼ 0.
Then the motion is radial and we seek the solution in the
following form:

r ðtÞ ¼ n�ðtÞ; pðtÞ ¼ n$ðtÞ; (41)

with initial condition �jt¼ti ¼ 0, $jt¼ti ¼ $0, where n is

an arbitrary unit vector, and $0 is an arbitrary constant.
The differential equations for � and $ are given by

d�

dt
¼ 1

a

$ð1þ �2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2ð1þ �2Þ þm2a2

p ; (42)

d$

dt
¼ � 1

a

$2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2ð1þ �2Þ þm2a2

p : (43)

Dividing one equation to another, we find

d$

d�
¼ � $�

1þ �2
; (44)

from where it follows that $2ð1þ �2Þ ¼ $2
0 ¼ const.

It is convenient to introduce a new function � defined as

�ðt; tiÞ ¼
Z t

ti

dt0

aðt0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmaðt0Þ=$0Þ2

p : (45)

Then the functions from Eq. (41) can be expressed
through �:

�ðtÞ ¼ sinh�; $ðtÞ ¼ $0= cosh�: (46)

The generalized velocity is

v ¼ dr

d�

d�

dt
¼ n cosh�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðma=$0Þ2

p : (47)

Substituting the solution into Eqs. (30) and (31) and as-
suming � ¼ �1, we find the velocity and momentum at an
arbitrary moment of time:

P ¼ n$0

a
; V ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðma=$0Þ2
p : (48)

If at the initial moment of time the particle is at the point
r ¼ �, the solutions have the form

r ðtÞ ¼ ~rðn sinh�;��Þ; (49)

p ðtÞ ¼ ~pðn$0= cosh�;n sinh�;��Þ: (50)

These expressions are obtained from Eq. (41) by shifting
the origin of coordinates to��. They describe the general

1In the derivation of Eq. (30) it is convenient to use the

equality ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
þ 1Þ�1 ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
� 1Þ=��2.
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solution of Hamilton equations which depends on six
arbitrary constants: three components of vector �, two
angles defining the direction of n, and $0.

For the space with positive curvature (� ¼ þ1), the
calculations are similar. Equation (48) remains correct in
this case, but instead of Eq. (46) we have

� ¼ sin�; $ ¼ $0= cos�; (51)

where � is defined as before by Eq. (45).

IV. DISTRIBUTION FUNCTION

Let fðp; r; tÞ be a distribution function of particles in the
phase space. By definition, the quantity

dN ¼ fðp; r; tÞd3pd3r (52)

implies the number of particles found at the moment t in
the volume element d3pd3r of the phase space. The
Jacobian of the canonical transformation equals unity,
therefore the phase volume does not change under shift, i.e.,

d3pd3r ¼ d3p0d3r0; (53)

where the canonical variables ðp0; r0Þ are connected to ðp; rÞ
through Eqs. (16) and (22). One can directly verify Eq. (53)
by multiplying Eqs. (18) and (24), or (19) and (25). Since
dN and d3pd3r are invariants, the distribution function is
also invariant relative to the shift of the origin of coordi-
nates:

fðp; r; tÞ ¼ f0ðp0; r0; tÞ: (54)

The Boltzmann equation for f has the following stan-
dard form (see Appendix A):

L̂f �
�
@

@t
þ @H

@p

@

@r
� @H

@r

@

@p

�
f ¼ 0: (55)

This equation describes the evolution of the distribution
function of free-moving particles.2 To take into account
interactions, the collision integral should be added to the
right part.

For a single particle moving according to Eq. (41), the
distribution function is

fðp; r; tÞ ¼ �ðp� n$0= cosh�Þ�ðr� n sinh�Þ: (56)

If at the initial moment of time a particle is found at the
point r ¼ b and has momentum P0 ¼ n$0=aðtiÞ, then the
distribution function is

fðp;r;tÞ¼�ð~pðp;r;�Þ�n$0=cosh�Þ�ð~rðr;�Þ�nsinh�Þ;
(57)

where ~r and ~p are defined in Eqs. (16) and (22). Here the
invariance of f relative to the shift has been used.

Equations (17) and (23), as well as the fact that Jacobian
is unity, allow us to write f in the form

fðp; r; tÞ ¼ �ðp� ~pðn$0= cosh�;n sinh�;��ÞÞ
� �ðr� ~rðn sinh�;��ÞÞ: (58)

The general solution of Eq. (55) can be found in the case
of free-moving particles. To find the characteristics of the
equation, let us return to the problem considered in the
previous section and solve it by the use of the Hamilton-
Jacobi equation, which for the Hamiltonian function of
Eq. (8) has the form (for sake of definiteness we restrict
our considerations to the case of � ¼ �1)

@S

@t
þ

�
1

a2ðtÞ ððrSÞ
2 þ ðrrSÞ2Þ þm2

�
1=2 ¼ 0: (59)

As usual, for integrable systems the complete integral of
the equation can be found by separation of variables [7].
Solving Eq. (59), we find

Sðs; r; tÞ ¼ sarsinhð�rÞ �
Z t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=a2ðt0Þ þm2

q
dt0: (60)

Here s is an arbitrary constant, � is an arbitrary unit vector.
Without loss of generality it can be assumed that s � 0. It
is convenient to consider the expression in the right part of
Eq. (60) as a function of t and the vectors s ¼ s� and r. The
lower limit of integration over dt0 is taken for convenience.
It is easy to show directly that Eq. (60) satisfies Eq. (59).
The momentum is

p ¼ @S

@r
¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�rÞ2p : (61)

From this it follows that � ¼ s=s ¼ p=p, thus

s ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�rÞ2

q
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðprÞ2=p2

q
: (62)

To determine the particle motion, let us differentiate Swith
respect to arbitrary constants and equate the result to other
constants:

@S

@s
¼ �arsinhð�rÞ þ r� �ð�rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�rÞ2p � �� ¼ �; (63)

where

� ¼
Z t dt0

aðt0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmaðt0Þ=sÞ2p : (64)

The six quantities s and � are integrals of motion of the
problem and at the same time they are characteristics of
Eq. (55). Therefore the general solution of the Boltzmann
equation can be presented in the form

fðp; r; tÞ ¼ �ðs; �Þ; (65)
2In the absence of collisions this equation is equivalent to the

Vlasov equation or Liouville equation for one particle.
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where � is an arbitrary function.3 Here it is implied that s
and � are expressed via generalized coordinates and mo-
menta via Eqs. (62) and (63).

Assuming m ¼ 0, the solution given by Eq. (65) can be
applied to study the evolution of distribution function of
photons and neutrinos in FLRW space-time in the case of
inhomogeneous and anisotropic distribution.

For the collision integrals it is convenient to use, instead
of generalized momentum, the energy E and unit vector
n ¼ P=P ¼ q=q in the direction of momentum. Let us
introduce the distribution function F according to the
relation

dN ¼ FðE;n; r; tÞdEd�

4�
dV: (66)

dN is the number of particle at the moment t located in the
volume dV with the energy restricted in the interval dE and
the direction of the momentum P enclosed in the solid
angle d�. It is follows from the metric of Eq. (2) that the
volume element is

dV ¼ a3ðtÞd3rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p : (67)

Let us denote dVa ¼ dV=a3 which is a dimensionless
volume element (in units of a3). It is easy to find from
Eq. (31) that

d3q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p
d3p; (68)

therefore the volume element of the phase space is

d3pd3r ¼ d3qdVa ¼ d3PdV: (69)

Using this equation and definitions given by Eqs. (52) and
(66), we find the relation between functions f and F:

fðp; r; tÞ ¼ FðE;n; r; tÞ=ð4�PEÞ: (70)

Since E and jPj do not change under shifts, F is an
invariant as is f:

FðE;n; r; tÞ ¼ F0ðE;n0; r0; tÞ; (71)

where n0 is unity vector in the direction of q0 ¼
~pðp0; r0; r0Þ. Further in this section we use both distribution
functions.

To derive the collision integral in the FLRW space-time,
it is convenient to shift the origin of the reference frame to
the collision point. Then the collision integral can be
written as in the flat space. After that one should move to
the initial reference frame.

A. Homogeneous distribution

Let us consider the case of the homogeneous space
distribution of particles. In this case the distribution func-
tion should be form invariant relative to shift, i.e. it has an
identical form in different reference frames. Moreover,
along with Eq. (54) the stronger condition should be ful-
filled:

fðp; r; tÞ ¼ fðp0; r0; tÞ: (72)

If p0 and r0 are expressed in accordance with Eqs. (16) and
(22) in terms of p, r, and �, then the right part should not
depend on �. Therefore the condition given by Eq. (72)
imposes severe restrictions on the form of function f.
Assuming � ¼ r, we find as the necessary condition

fðp; r; tÞ ¼ fðq; 0; tÞ; (73)

where q is defined in Eq. (31). In the flat space q does not
change under shift, therefore any function of the form of
Eq. (73) describes a homogeneous distribution. This is not
the case for � ¼ �1. In the curved space the homogeneous
distribution is also isotropic, i.e. f depends only on jqj (see
Appendix B). Then, in the case of homogeneous distribu-
tion, one can write

fðp; r; tÞ ¼ gðq; tÞ: (74)

We assume further that at � ¼ 0 the distribution function is
also isotropic.
The substitution of Eq. (74) into Eq. (55) cancels the last

two terms that results in the simple equation
�
@g

@t

�
q
¼ 0: (75)

For clarity, here we introduce the notation which is
usually used in thermodynamics to emphasize that the
time derivative is taken at fixed q. Equation (75) implies
that the homogeneous and isotropic distribution function of
noninteracting particles in phase space is time indepen-
dent. It should be noted that in this case Eq. (75) does not
change its form also at the presence of arbitrary magnetic
field, provided that the synchrotron losses are negligible.
Let us derive the equation for the distribution function F

defined in Eq. (66). If distribution is homogeneous, the
function does not depend on n and r and one can assume4

F � FðE; tÞ ¼ 4�PEgðq; tÞ: (76)

In the new variables ðE; tÞ the derivative ð@g=@tÞq is written
in the form

�
@g

@t

�
q
¼

�
@g

@t

�
E
�HP2

E

�
@g

@E

�
t
; (77)

3The general solution based on Killing vector constants of the
motion is obtained as well in Ref. [9]. However, the solution is
expressed as a function of arguments which are not canonically
conjugated quantities. Therefore one needs an additional analy-
sis to find the relationship between the solution and the distri-
bution function.

4It should be noted that in the case of homogeneous distribu-
tion the collision integrals are written as in the flat space since
FðE; tÞ ¼ F0ðE; tÞ.
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where H ¼ _a=a is the Hubble constant. Expressing g
through F, we find

�
@g

@t

�
q
¼ 1

4�PE
K̂FðE; tÞ; (78)

where K̂ is an operator defined as

K̂FðE; tÞ �
�
@F

@t

�
E
�H

�
@

@E

�
P2

E
F

�
t
� 3F

�
: (79)

The general solution of Eq. (75) is

gðq; tÞ ¼ �ðqÞ; (80)

where� is an arbitrary function of one argument. Then the
function F is

FðE; tÞ ¼ 4�PE�ðaðtÞPÞ: (81)

This expression defines the evolution of the distribution
function for noninteracting particles; if the function
FðE; t0Þ is known at the moment t ¼ t0, Eq. (81) allows
us to find F at subsequent (previous) moments of time. One
can write FðE; t0Þ in an explicit form:

FðE; tÞ ¼ aðt0Þ
aðtÞ

E

EðE; t; t0ÞFðEðE; t; t
0Þ; t0Þ; (82)

where

E ðE; t; t0Þ ¼ aðtÞ
aðt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

�
1� a2ðt0Þ

a2ðtÞ
�s
: (83)

The quantity EðE; t; t0Þ has a simple physical meaning; it is
the energy which a particle should have at the moment t0 in
order to have the energy E at the moment t. Therefore the
following relation takes place:

E ðEðE; t; t00Þ; t00; t0Þ ¼ EðE; t; t0Þ: (84)

For massless particles this equation is simplified:

FðE; tÞ ¼
�
aðt0Þ
aðtÞ

�
2
FðEaðtÞ=aðt0Þ; t0Þ: (85)

In particular, for blackbody photons, assuming t0 ¼ t0
(present epoch), we obtain

FðE; tÞ ¼ 1

�2ℏ3c3
E2

exp½E=kTðtÞ� � 1
; (86)

where TðtÞ ¼ T0aðt0Þ=aðtÞ is the temperature at time t,
T0 � 2:726 K is the temperature at the present epoch.
The corresponding Planckian distribution is EFðE; tÞ.

The particle number density is

NðtÞ ¼
Z 1

m
FðE; tÞdE: (87)

Writing F in the form of Eq. (82) and introducing new
variable of integration E0 ¼ EðE; t; t0Þ, we find

NðtÞ ¼
�
aðt0Þ
aðtÞ

�
3 Z 1

m
FðE0; t0ÞdE0; (88)

and thus

NðtÞa3ðtÞ ¼ Nðt0Þa3ðt0Þ ¼ const: (89)

In the presence of sources the equation for g can be
written in the form �

@g

@t

�
q
¼ sðq; tÞ: (90)

For the case under consideration (homogeneous and iso-
tropic space), the source function sðq; tÞ depends only on q
and t as does the distribution function. Assuming that the
source is activated at the moment ti and that gðq; tiÞ ¼ 0,
we obtain

gðq; tÞ ¼
Z t

ti

sðq; t0Þdt0; t � ti: (91)

The equation for F in the presence of the sources has the
form

K̂FðE; tÞ ¼ SðE; tÞ; SðE; tÞ ¼ 4�PEsðq; tÞ: (92)

The solution of this equation is

FðE; tÞ ¼ E
Z t

ti

aðt0Þ
aðtÞ

SðEðE; t; t0Þ; t0Þ
EðE; t; t0Þ dt0: (93)

Equation (93) can be considered as Eq. (91) written in
different notations. Using Eq. (84) it is easy to verify that if
the source is active over a finite time ti < t < tf, then, after

the source is switched off (t > tf), Eqs. (93) and (82) are

equivalent.
Let us consider the equation�

@g

@t

�
q
¼ �	ðq; tÞgðq; tÞ; (94)

which describes absorption or decay of particles. Its solu-
tion is

gðq; tÞ ¼ gðq; tiÞe�
; (95)

where the optical depth is


 ¼
Z t

ti

	ðq; t0Þdt0: (96)

Denoting

	ðq; t0Þ ¼ �ðE0; t0Þ � �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=a2ðt0Þ þm2

q
; t0
�
; (97)

and switching from variables ðq; tÞ to ðE; tÞ, we obtain


 ¼
Z t

ti

�ðEðE; t; t0Þ; t0Þdt0: (98)

In the presence of absorption, the function F satisfies the
equation
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K̂FðE; tÞ ¼ ��ðE; tÞFðE; tÞ; (99)

which has the solution

FðE; tÞ ¼ aðtiÞ
aðtÞ

E

EðE; t; tiÞFðEðE; t; tiÞ; tiÞe
�
: (100)

In a more general case, g obey the equation�
@g

@t

�
q
¼ sðq; tÞ � 	ðq; tÞgðq; tÞ; (101)

and at t < ti the functions g and s are equal to zero. Then
we have

gðq; tÞ ¼
Z t

ti

dt0sðq; t0Þ exp
�
�
Z t

t0
	ðq; t00Þdt00

�
: (102)

The corresponding equation for the function F,

K̂FðE; tÞ ¼ SðE; tÞ ��ðE; tÞFðE; tÞ; (103)

has the following solution:

FðE; tÞ ¼ E
Z t

ti

dt0
aðt0Þ
aðtÞ

SðEðE; t; t0Þ; t0Þ
EðE; t; t0Þ

� exp

�
�

Z t

t0
�ðEðE; t; t00Þ; t00Þdt00

�
: (104)

This expression can be derived from Eq. (102) using
definitions in Eqs. (70) and (92), and switching from
variables ðq; tÞ to ðE; tÞ. One can move from the integration
over the time dt in Eq. (104) to the integration over the
redshift dz (Appendix C).

It should be noted that in the case of homogeneous
distribution the kinetic equations for the metrics with
� ¼ 0, þ1, and �1 are written identically. However, it
does not mean that the curvature does not effect on ki-
netics. In fact it does, because the behavior of aðtÞ, which
enters into the equations, depends on �.

B. Energy losses

In the case of presence of a source of particles and
continuous energy losses with a rate b ¼ jdE=dtj, the
equation for distribution function has the following form:

K̂FðE; tÞ � @

@E
ðbðE; tÞFÞ ¼ SðE; tÞ: (105)

This equation can be applied to the treatment of propaga-
tion of high-energy cosmic rays through the intergalactic
radiation and magnetic fields. While for protons the energy
losses are defined by interactions with cosmic microwave
background radiation (via photomeson and pair-production
processes), for electrons the losses are due to synchrotron
radiation and inverse Compton scattering. To solve
Eq. (105) let us first find the Green function
GðE; E0; t; t0Þ which satisfies (by definition) the equation

K̂G� @

@E
ðbðE; tÞGÞ ¼ �ðE� E0Þ�ðt� t0Þ (106)

and the condition Gjt<t0 ¼ 0. From Eq. (106) it follows

that

GðE;E0; t0 þ 0; t0Þ ¼ �ðE� E0Þ: (107)

The Green function is the distribution function for the case
when at the moment t0 one particle with energy E0 is
injected.
The solution is sought in the form

GðE; E0; t; t0Þ ¼ uðt; t0Þ�ðE� EðE0; t; t0ÞÞ�ðt� t0Þ;
(108)

where E is defined in Eq. (83). From Eq. (107) it follows
that the functions u and E satisfy the initial conditions:

uðt0; t0Þ ¼ 1; EðE0; t0; t0Þ ¼ E0: (109)

After substitution of Eq. (108) into Eq. (106), it is helpful
to represent the product bðE; tÞG as bðEðE0; t; t0Þ; tÞG.
Consequently, we find the following system of ordinary
differential equations:

_uþ 3Hu ¼ 0; (110)

_E þ�ðE; tÞ ¼ 0; (111)

where

�ðE; tÞ ¼ HðE �m2=EÞ þ bðE; tÞ: (112)

Equation (110) gives

uðt; t0Þ ¼
�
aðt0Þ
aðtÞ

�
3
: (113)

In the general case, Eq. (111) can be solved numerically.
The distribution function is expressed via the Green

function in the following way:

FðE; tÞ ¼
Z t

0
dt0uðt; t0Þ

Z 1

m
dE0�ðE� EðE0; t; t0ÞÞSðE0; t0Þ:

(114)

The integration over dE0 gives

FðE; tÞ ¼
Z t

0
dt0uðt; t0ÞSðE0; t0Þð@E=@E0Þ�1; (115)

where the solution of the equation

E ðE0; t; t0Þ ¼ E (116)

should be substituted into the integrand instead of E0.
It is convenient to perform calculations in the following

way. Let us denote by UðE; t0; tÞ the solution of the
equation

@U

@t0
þ�ðU; t0Þ ¼ 0; (117)

which satisfies

UðE; t; tÞ ¼ E: (118)
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In these notations we have EðE0; t; t0Þ ¼ UðE0; t; t0Þ and
the solution of Eq. (116) can be written in the form E0 ¼
UðE; t0; tÞ. For calculation of the last factor, we note that

D ðE; t0; tÞ � @E0

@E
¼ @

@E
UðE; t0; tÞ: (119)

This function obeys the linear differential equation,

@

@t0
Dþ�1D ¼ 0; (120)

where the function

�1 � �1ðUðE; t0; tÞ; t0Þ ¼ @

@E0 �ðE0; t0ÞjE0¼UðE;t0;tÞ

(121)

can be obtained by differentiation of Eq. (117) and after
some obvious redesignations. The initial condition has the
form DðE; t; tÞ ¼ 1, therefore

D ðE; t0; tÞ ¼ exp

�Z t

t0

�1ðUðE; t00; tÞ; t00Þdt00
�
: (122)

If � does not depend explicitly on time, the equation
reduces to

D ðE; t0; tÞ ¼ �ðEÞ
�ðE0Þ ; (123)

but in the general case it is necessary to use Eq. (122).
Thus, in the case of energy losses, the distribution
function is

FðE; tÞ ¼
Z t

0
uðt; t0ÞSðUðE; t0; tÞ; t0ÞDðE; t0; tÞdt0: (124)

For derivation of D it is easier if one uses Eq. (120) with
the initial condition DðE; t; tÞ ¼ 1 instead of the integral
representation of Eq. (122). Let us define the function

FðE; t0; tÞ ¼
Z t

t0

uðt; t00ÞSðUðE; t00; tÞ; t0ÞDðE; t00; tÞdt00:
(125)

It is obvious that FðE; tÞ ¼ FðE; 0; tÞ. The function
FðE; t0; tÞ can be found solving the differential equation,

@

@t0
FðE; t0; tÞ þ uðt; t0ÞSðUðE; t0; tÞ; t0ÞDðE; t0; tÞ ¼ 0;

(126)

with the initial condition FðE; t0 ¼ t; tÞ ¼ 0. Thus, the
derivation of FðE; tÞ requires a solution of the system of
three ordinary differential equations of first order, namely,
Eqs. (117), (120), and (126), starting from the point t0 ¼ t,
where the values of the functions are known, to the point
t0 ¼ 0.

C. Spherically symmetric distribution

In the case of spherical symmetry, the distribution func-
tion can be considered as a function of the following
arguments:

f ¼ fðq; r;�; tÞ; (127)

where � ¼ ðprÞ=ðjpjjrjÞ ¼ cos�. For this function
Eq. (55) becomes

@f

@t
þ 1

aðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þm2a2ðtÞ=q2Þð1� kr2�2Þp

�
�
�ð1� kr2Þ @f

@r
þ 1��2

r

@f

@�

�
¼ 0: (128)

The equation does not contain the derivative @f=@q, i.e. q
enters in this equation as a parameter. Therefore it is
helpful to introduce the new variable instead of time

� ¼
Z t

ti

dt0

aðt0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2a2ðt0Þ=q2p (129)

and consider f as a function of the arguments ðq; r;�; �Þ.
Then it brings us to the equation

@f

@�
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kr2�2
p

�
�ð1� kr2Þ @f

@r
þ 1��2

r

@f

@�

�
¼ 0;

(130)

which admits a solution in the general case. The general
solution of the equation determined by the method of
characteristics has the form

fðq; r; �; �Þ ¼ �ðq; X; YÞ; (131)

where

X ¼ r2ð1��2Þ
1� �r2

; (132)

Y ¼ 1ffiffiffiffiffiffiffiffi��
p lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2�2

q
þ r�

ffiffiffiffiffiffiffiffi��
p Þ � �

¼ 1ffiffiffiffiffiffiffiffi��
p arsinhðr� ffiffiffiffiffiffiffiffi��

p Þ � �; (133)

� is an arbitrary function of three arguments.5 In the case
of � ¼ 1, we have

ffiffiffiffiffiffiffiffi��
p ¼ i, and it is convenient to present

Eq. (133) in the form

Y ¼ arcsinðr�Þ � �: (134)

For � ¼ 0 we have

Y ¼ r�� �: (135)

The obtained results are quite convenient to use at least
in two cases.

5This solution is surely a special case of Eq. (65), but it is
easier to obtain it by solving directly Eq. (130).
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1. The boundary problem

Let us assume that the distribution function is known at a
certain point r ¼ r	 (on the surface of a ‘‘star’’):

fðq; r	; �; �Þ ¼ f	ðq;�; �Þ: (136)

Then Eq. (131) allows us to derive the distribution function
in all space. For instance, in the case � ¼ �1 we get

fðq; r;�; �Þ ¼ f	ðq; ~�; ~�Þ; (137)

where

~� ¼ r�

r	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2	 � r2 � r2	

r2�2

s
; (138)

~� ¼ �þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2	 ~�2

p þ r	 ~�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2�2

p þ r�
: (139)

Equation (137) defines the distribution function in the
reference frame with the origin of coordinates at the center
of the ‘‘star’’. If the observer is located at the distance r,
then, as indicated before, it is convenient to move to the
reference frame related to the observer. At the location
point of observer, the distribution function is

f0ðq; r0 ¼ 0; cos�0; �Þ ¼ fðq; r; �;�Þ; (140)

where � (� ¼ cos�) should be represented in the form of
Eq. (35). Here, we take into account that q and � do not
change under shift.

In the case of � ¼ 1, the following relations should be
used in Eq. (137):

~� ¼ r�

r	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2	 � r2 � r2	

r2�2

s
; (141)

~� ¼ �þ arcsinðr	 ~�Þ � arcsinðr�Þ: (142)

2. Initial value problem

Let us assume that the distribution function is known at
some moment of time t ¼ ti which corresponds to � ¼ 0:

fðq; r;�; � ¼ 0Þ ¼ f0ðq; r;�Þ: (143)

Then at an arbitrary moment of time

fðq; r;�; �Þ ¼ f0ðq; r0; �0Þ: (144)

Here

r0 ¼
�
r2ð1��2Þ þ ð1� �r2Þ�2

1� �r2�2

�
1=2

; �0 ¼ �

r0
;

(145)

where

� ¼ r� coshð� ffiffiffiffiffiffiffiffi��
p Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2�2

��

s
sinhð� ffiffiffiffiffiffiffiffi��

p Þ: (146)

For analysis of the angular and energy distribution it is
convenient, as before, to introduce the new reference frame
choosing the origin of coordinates at the point where the
observer is located.

V. SUMMARY

In this paper the mechanics and kinetics in the FLRW
space-times have been studied on the basis of the standard
canonical formalism. The Cartesian coordinates r and the
corresponding generalized momenta p are considered as
the points ðp; rÞ in the phase space where the distribution
function fðp; r; tÞ given by Eq. (52) is introduced. The
form invariance of equations of mechanics and kinetics
relative to shift of the origin of the reference frame as well
as the invariance of the distribution function f have been
proved. The transformation of the momentum under shift is
described by the quite lengthy equation, Eq. (22). But for
applications it is sufficient to use Eq. (31) which defines the
transformation of momentum under the shift of the origin
to the point r where the observer is located. The collision-
less Boltzmann equation admits general solutions for the
function f [see Eq. (65)].
Along with the distribution function f, the

‘‘conventional’’ distribution function FðE;n; r; tÞ given
by Eq. (66) is introduced in the phase space. This function
is more convenient for inclusion of collision integrals, and
defines the relationship between the functions f and F. If
the collision integral I for the Minkowski space is known,
it can be found also in the FLRW space-time using the
following procedure. The origin of coordinates should be
shifted to the collision point where I can be written as in
the flat space-time. After that the collision integral should
be transformed to the initial reference frame using the
formulas obtained in this paper.
The equations are considerably simplified in the case of

homogeneous and isotropic distribution. For this case the
analytical solution of the kinetic equation with the source
and absorption processes is given in Sec. IVA. In the case
of energy losses the equation can be no longer solved
analytically and determination of F comes to solving the
system of three ordinary differential equations.
The results of Sec. IVC can be quite useful for analysis

of angular and energy distribution of particles from sources
located at cosmological distances. The distribution func-
tion represented by Eq. (131) describes the solution in the
reference frame related to the source. This function can be
easily transformed to the reference frame associated with
observer that gives the spectrum and angular distribution in
the observation point.

APPENDIX A: RELATIVISTIC BOLTZMANN
EQUATION IN THE GENERAL FORM

Below a simple derivation of the collisionless
Boltzmann equation for the space with an arbitrary metric
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g
�ðxÞ is presented. It is shown that the equation can be

written in the form of Eq. (55) with a relevant Hamiltonian
function. The Hamiltonian approach to the derivation of
the Boltzmann equation has been also considered in the

recent paper [10]. Let xðsÞiðtÞ (i ¼ 1; 2; 3) be the coordi-
nates of the particle with number s at the moment t, and let

pðsÞ
i ðtÞ be the covariant components of its momentum. It is

convenient to consider the single-particle distribution func-
tion [2,3] as a function of the following independent var-
iables: covariant momentum p ¼ ðp1; p2; p3Þ, coordinates
r ¼ ðx1; x2; x3Þ, and time. Let us also introduce the zero
components:

x0¼ t;

p0�p0ðp;r; tÞ
¼ 1

g00
ð�g0ipiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0ipiÞ2�g00ðgikpipk�m2Þ

q
Þ: (A1)

Here p0 is the solution of the quadratic equation
g
�p
p� ¼ m2, and the solution should be chosen from

two possible ones, so that p0 ¼ g0
p
 > 0.
The microscopic single-particle distribution function is

defined from the following relations:

fðp; r; tÞ ¼ X
s

fðsÞðp; r; tÞ; (A2)

fðsÞðp; r; tÞ ¼ �ðr� rðsÞðtÞÞ�ðp� pðsÞðtÞÞ; (A3)

where three-dimensional � functions are equal to the prod-
uct of three one-dimensional ones. For derivation of the

equation let us differentiate fðsÞ with respect to time,

@fðsÞ

dt
¼ � @

@xi
ð _xðsÞifðsÞÞ � @

@pi

ð _pðsÞ
i fðsÞÞ; (A4)

where for the convenience of further transformations the

quantities _xðsÞi and _pðsÞ
i are inserted under the sign of

partial derivatives. From the definition of momentum it is

follows that _xðsÞi ¼ pðsÞi=pðsÞ0, where pðsÞ
 ¼ g
�pðsÞ
� are

contravariant components of the 4-momentum. Taking into

account that � functions entering into fðsÞ allow one to

replace rðsÞðtÞ and pðsÞðtÞ by r and p, in Eq. (A4) pi=p0 can

be written instead of _xðsÞi [here the following relation is
used: �ðx� x0ÞfðxÞ ¼ �ðx� x0Þfðx0Þ].

The same operation can be done in the last term of
Eq. (A4):

_pðsÞ
i ¼ 1

pðsÞ0�
;�ip
ðsÞ
pðsÞ�¼ 1

2pðsÞ0
@g
�
@xi

pðsÞ
pðsÞ�; (A5)

where �... are the Christoffel symbols; the values of the

functions should be taken at the point ðpðsÞðtÞ; rðsÞðtÞÞ. The
presence of � functions allows the following replacement:

_p ðsÞ
i ! 1

2p0

@g
�
@xi

p
p�; (A6)

where all functions are evaluated at the point ðp; rÞ. Thus it
brings us to the equation

@fðsÞ

dt
þ @

@xi

�
pi

p0
fðsÞ

�
þ @

@pi

�
1

2p0

@g
�
@xi

p
p�fðsÞ
�
¼ 0:

(A7)

By differentiating the equation g
�p
p� ¼ m2 with

respect to pi, we find

g
�p


@p�

@pi

¼ p0 @p0

@pi

þ pi ¼ 0: (A8)

By differentiating the equation g
�p

p� ¼ m2 with

respect to xi, we get

1

2

@g
�

@xi
p
p� ¼ �p


@p


@xi
¼ p
 @p


@xi
¼ p0 @p0

@xi
; (A9)

where it is taken into account that @pk=@x
i ¼ 0. Using

Eqs. (A8) and (A9), Eq. (A7) can be written in the form

@fðsÞ

@t
� @

@xi

�
@p0

@pi

fðsÞ
�
þ @

@pi

�
@p0

@xi
fðsÞ

�
¼ 0: (A10)

It can be seen that the terms, which do not contain deriva-

tives of fðsÞ, are canceled.
Summing over s, we obtain the equation for the function

given by Eq. (A2):�
@

@t
� @p0

@pi

@

@xi
þ @p0

@xi
@

@pi

�
f ¼ 0: (A11)

This equation can be also written in the form�
p
 @

@x

þ 1

2

@g
�
@xi

p
p� @

@pi

�
f ¼ 0: (A12)

The macroscopic (averaged over the ensemble) distribu-
tion function satisfies the same equations.
Note that the second and third terms enter into Eqs. (56)

and (A11) with opposite signs. The reason is the following.
Throughout the paper we use the generalized momentum
@L=@vi, while pi in this Appendix is the covariant com-
ponents of momentum. One can show that for the
Lagrangian of the general form

L ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00 þ 2g0iv

i þ gikv
ivk

q
; (A13)

the generalized momentum differs from pi by sign:
@L=@vi ¼ �pi [see [11], Eq. (9.7)]. Therefore the mo-
menta used in the main part of the paper and in this
Appendix have opposite signs. The energy E ¼
vi@L=@vi � L coincides with p0, and consequently, if
one replaces pi ! �pi in Eq. (A1), we will get the
Hamilton function expressed through generalized mo-
menta and coordinates:

H ¼ 1

g00

�
g0ipi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0ipiÞ2 � g00ðgikpipk �m2Þ

q �
:

(A14)
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Then the Hamilton equations and the Boltzmann equation
have standard forms Eq. (55).

APPENDIX B: ISOTROPY OF HOMOGENEOUS
DISTRIBUTION

It is easy to show that in the case of � ¼ �1 the
direction of the vector q changes under shift. It suffices
to consider the infinitesimal shift ��. Let us denote by �q
the change of q under the shift to ��. Since q2 is invariant
relative to shift, �q2 ¼ 2ðq�qÞ ¼ 0, i.e. the vectors q and
�q are orthogonal. Therefore �q can be represented as

�q ¼ ð��� qÞ; (B1)

where �� depends linearly on �� and can be considered
as an arbitrary vector. The requirement of invariance of f
relative to the shift gives

�f ¼ �q
@f

@q
¼ ð��� qÞ @f

@q
¼ ��

�
q� @f

@q

�
¼ 0; (B2)

that is equivalent, due to the arbitrariness of ��, to the
equality

q � @f

@q
¼ 0: (B3)

This implies that the vector q and @f=@q are parallel, and

@f

@q
¼ qAðq; tÞ: (B4)

Writing this equality in spherical coordinates, one can
ascertain that f does not depend on angular variables, i.e.
it is a function of only jqj. Thus, we conclude that the
isotropy of the distribution follows from its homogeneity.

APPENDIX C: CONNECTION BETWEEN TIME
AND REDSHIFT

For the flat �CDM model, the Friedmann equation has
the following form (see, for example, Ref. [12]):

�
_a

a

�
2 ¼ H2

0

�
�m

�
aðt0Þ
aðtÞ

�
3 þ��

�
; (C1)

where aðt0Þ is the value of the scale factor a at the present
epoch. This equation can be solved analytically. Let us

introduce the function �ðtÞ ¼ ðaðtÞ=aðt0ÞÞ3=2. For � we
have the following equation:

_� ¼ 3

2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���

2 þ�m

q
; (C2)

from where, taking into account that �ð0Þ ¼ 0, we find

1ffiffiffiffiffiffiffiffi
��

p ln

�
�

ffiffiffiffiffiffiffiffi
��

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�� þ�m

p
ffiffiffiffiffiffiffiffi
�m

p
�
¼ 3

2
H0t: (C3)

Solving Eq. (C3) for �, we obtain

aðtÞ
aðt0Þ

¼
�
�m

��

�
1=3

�
sinh

�
3

2

ffiffiffiffiffiffiffiffi
��

p
H0t

��
2=3

: (C4)

This expression is also derived in [12] in a different way
[see Eq. (29) and (131)]. According to WMAP [13], the
parameters in Eq. (C4) have the following values: H0 ¼
71 km s�1 Mpc�1, �m ¼ �b þ�c ¼ 0:27, �� ¼ 0:73.
In the model of flat Universe the scale factor a is deter-
mined with an accuracy of an arbitrary factor, therefore it is
convenient to adopt aðt0Þ ¼ 1, that is equivalent to the
redefining of the comoving coordinates r.
The redshift z and aðtÞ are connected as

1þ z ¼ aðt0Þ=aðtÞ: (C5)

If aðtÞ is monotonically increasing, the connection between
z and t is unique, and one can move from the integration
over dt to the integration over dz. In the case of flat
Universe we have

dt ¼ � dz

H0ð1þ zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ��

p : (C6)

Naturally, the results obtained by integrating over time
with Eq. (C4) coincide with ones obtained by integrating
over dz.

APPENDIX D: SUPERLUMINAL
RECESSION VELOCITY

In the expanding Universe distant objects have super-
luminal recession velocities. This issue is elucidated quite
comprehensively in [14]. Here we want to emphasize that
superluminal recession velocities always occur in the ex-
panding space with � ¼ 0 and � ¼ �1, and to call atten-
tion to some features of photon propagation from sources
with superluminal recession velocities. Let us assume that
the observer registers a photon at t ¼ to. Then, at the
moment t < to the proper distance from the photon to the
observer equals

FIG. 1. The dependence of proper distance on time.
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RpðtÞ ¼ aðtÞ
Z to

t

cdt0

aðt0Þ : (D1)

If a ¼ const, we would have RpðtÞ ¼ cðto � tÞ, i.e. RpðtÞ
decreases linearly. If aðtÞ increases with time, and
að0Þ ¼ 0, then the propagation of the photon is qualita-
tively different. In this case, as it follows from Eq. (D1),
Rpð0Þ ¼ 0, RpðtoÞ ¼ 0, and in the range 0< t < to the

function RpðtÞ> 0.

Figure 1 shows the time dependence RpðtÞ. The calcu-

lations are performed for the values of parameters used in
Appendix C, however, it is clear that the qualitative behav-
ior of the curve is defined only by the condition að0Þ ¼ 0.

Let us call by proper velocity, vp, the time derivative of

the proper distance:

vpðtÞ � dRp=dt ¼ vrðtÞ � c; (D2)

where vrðtÞ ¼ ð _aðtÞ=aðtÞÞRpðtÞ ¼ HðtÞRpðtÞ is the reces-

sion velocity, HðtÞ is the Hubble constant. At the point of
maximum t ¼ t	 one has vpðt	Þ ¼ 0, therefore vrðt	Þ ¼ c.

In the range 0< t < t	 the quantity vp > 0. It means that

the recession velocity is greater than c. The moment t	
corresponds to the redshift z	 ¼ 1:64, i.e. all sources with
z > 1:64 move away from us with velocities greater than
the speed of light. Photons emitted by these sources in the
direction to the observer initially move away, reaching the
maximum proper distance Rmax, and only after that RpðtÞ
starts to decrease. One can show that the source has a
minimal angular size if it is located at the distance Rmax �
1:78 Gpc that corresponds to redshift z	 ¼ 1:64.
In the case of the closed space (� ¼ þ1), sources with

superluminal recession velocities are also possible pro-
vided that the condition _a > c=� is fulfilled.
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