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Attempts to formulate a quantum theory of gravitation are collectively known as quantum gravity.

Various approaches to quantum gravity such as string theory and loop quantum gravity, as well as black

hole physics and doubly special relativity theories predict a minimum measurable length, or a maximum

observable momentum, and related modifications of the Heisenberg Uncertainty Principle to a so-called

generalized uncertainty principle (GUP). We have proposed a GUP consistent with string theory, black

hole physics, and doubly special relativity theories and have showed that this modifies all quantum

mechanical Hamiltonians. When applied to an elementary particle, it suggests that the space that confines

it must be quantized, and in fact that all measurable lengths are quantized in units of a fundamental length

(which can be the Planck length). On the one hand, this may signal the breakdown of the spacetime

continuum picture near that scale, and on the other hand, it can predict an upper bound on the quantum

gravity parameter in the GUP, from current observations. Furthermore, such fundamental discreteness of

space may have observable consequences at length scales much larger than the Planck scale. Because this

influences all the quantum Hamiltonians in an universal way, it predicts quantum gravity corrections to

various quantum phenomena. Therefore, in the present work we compute these corrections to the Lamb

shift, simple harmonic oscillator, Landau levels, and the tunneling current in a scanning tunneling

microscope.
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I. INTRODUCTION

An intriguing prediction of various theories of quantum
gravity (such as string theory) and black hole physics is the
existence of a minimum measurable length. This has given
rise to the so-called generalized uncertainty principle
(GUP) or equivalently, modified commutation relations
between position coordinates and momenta. The recently
proposed doubly special relativity (DSR) theories on the
other hand, also suggest a similar modification of commu-
tators. The commutators that are consistent with string
theory, black holes physics, DSR, and which ensure
½xi; xj� ¼ 0 ¼ ½pi; pj� (via the Jacobi identity) have the

following form [1] (see Appendix)1

½xi; pj� ¼ iℏ
�
�ij � �

�
p�ij þ

pipj

p

�

þ �2ðp2�ij þ 3pipjÞ
�
; (1)

where �¼�0=MPlc¼�0‘Pl=ℏ, MPl ¼ Planck mass,
‘Pl � 10�35 m ¼ Planck length, and MPlc

2 ¼
Planck energy � 1019 GeV.
In one dimension, Eq. (1) gives to Oð�2Þ

�x�p � ℏ
2
½1� 2�hpi þ 4�2hp2i�

� ℏ
2

�
1þ

�
�ffiffiffiffiffiffiffiffiffihp2ip þ 4�2

�
�p2

þ 4�2hpi2 � 2�
ffiffiffiffiffiffiffiffiffi
hp2i

q �
: (2)

Commutators and inequalities similar to (1) and (2) were
proposed and derived, respectively, in [2–9]. These in turn
imply a minimum measurable length and a maximum
measurable momentum—the latter following from the as-
sumption that �p characterizes the maximum momentum
of a particle as well [10], and also from the fact that DSR
predicts such an maximum (to the best of our knowledge,
(1) and (2) and (2) are the only forms which imply both)

�x � ð�xÞmin � �0‘Pl; (3)

�p � ð�pÞmax � MPlc

�0

: (4)

Next, defining (see Appendix)

xi ¼ x0i; pi ¼ p0ið1� �p0 þ 2�2p2
0Þ; (5)
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1The results of this article do not depend on this particular

form of GUP chosen and continue to hold for a large class of
variants, so long as anOð�Þ term is present in the right-hand side
of Eq. (1).
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with x0i, p0j satisfying the canonical commutation rela-

tions ½x0i; p0j� ¼ iℏ�ij, it can be shown that Eq. (1) is

satisfied. Here, p0i can be interpreted as the momentum
at low energies (having the standard representation in
position space, i.e. p0i ¼ �iℏ@=@x0i) and pi as that at
higher energies.

It is normally assumed that the dimensionless parameter
�0 is of the order of unity, in which case the � dependent
terms are important only when energies (momenta) are
comparable to the Planck energy (momentum), and lengths
are comparable to the Planck length. However, if we do not
impose this condition a priori, then this may signal the
existence of a new physical length scale of the order of
�ℏ ¼ �o‘Pl. Evidently, such an intermediate length scale
cannot exceed the electroweak length scale �1017‘Pl (as
otherwise it would have been observed) and this implies
that �0 � 1017.

Using Eq. (5), a Hamiltonian of the form

H ¼ p2

2m
þ Vð~rÞ (6)

can be written as

H ¼ H0 þH1 þOð�3Þ; (7)

where

H0 ¼ p2
0

2m
þ Vð ~rÞ; (8)

and

H1 ¼ � �

m
p3
0 þ

5�2

2m
p4
0: (9)

Thus, we see that any system with a well-defined quantum
(or even classical) Hamiltonian H0 is perturbed by H1,
defined above, near the Planck scale. Such corrections
extend to relativistic systems as well [11], and given the
robust nature of GUP, will continue to play a role irrespec-
tive of what other quantum gravity corrections one may
consider. In other words, they are in some sense universal.

The relativistic Dirac equation is modified in a similar
way and confirms the main results of our paper [11]. In this
paper, we first study the effects of the above GUP-
corrected Hamiltonian to a particle in a box, to Oð�Þ in
Sec. I A, and to Oð�2Þ in Sec. I B, and show that they lead
to virtually identical conclusions. In Sec. II, we study the
effects of GUP-corrected Hamiltonian to the Landau lev-
els. In Sec. III, we calculate the corrections due to GUP in
the context of a simple harmonic oscillator. In Sec. IV, we
study the effects of GUP on the Lamb shift. Furthermore,
we compute the GUP corrections on the tunneling current
in a scanning tunneling microscope for a step potential in
Sec. V and for a potential barrier in Sec. VI. Finally, we
summarize our results in the concluding section.

A. Solution to order �

In this subsection, we briefly review our work in [1]. The
wave function of the particle satisfies the following GUP-
corrected Schrödinger equation inside the box of length L
(with boundaries at x ¼ 0 and x ¼ L), where Vð~rÞ ¼ 0
(outside, V ¼ 1 and c ¼ 0)

Hc ¼ Ec ; (10)

which is now written, to order �, as

d2c þ k2c þ 2i�ℏd3c ¼ 0; (11)

where dn stands for dn=dxn and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
. A trial

solution of the form c ¼ emx yields

m2 þ k2 þ 2i�ℏm3 ¼ 0 (12)

with the following solution set to leading order in �: m ¼
fik0;�ik00; i=2�ℏg, where k0 ¼ kð1þ k�ℏÞ and k00 ¼
kð1� k�ℏÞ. Thus, the general wave function to leading
order in ‘Pl and � is of the form

c ¼ Aeik
0x þ Be�ik00x þ Ceix=2�ℏ: (13)

Although the first two terms can be considered as pertur-
bative corrections over the standard solutions, the appear-
ance of the new oscillatory third term is noteworthy here,
with characteristic wavelength 4��ℏ and momentum
1=4� ¼ MPlc=4�0 [which is Planckian for �0 ¼ Oð1Þ].
This can be termed a nonperturbative solution as the ex-
ponent contains 1=� and results in the new quantization
mentioned above. Note that, however, as explained in
[1,11], C scales as a power of �, and the new solution
disappears in the � ! 0 limit.
Imposing the appropriate boundary conditions, i.e.

c ¼ 0 at x ¼ 0, L, with A assumed real without loss of
generality, we get, to leading order, the following two
series of solutions (C ¼ jCje�i�C):

L

2�ℏ
¼ L

2�0‘Pl
¼n�þ2q�þ2�C�p�þ2�C; (14)

L

2�ℏ
¼ L

2�0‘Pl
¼ �n�þ 2q� � p�;

p � 2q� n 2 N:

(15)

These show that there cannot be even be a single particle in
the box, unless its length is quantized as above. For other
lengths, there is no way to probe or measure the box, even
if it exists. Hence, effectively all measurable lengths are
quantized in units of �0‘Pl. We interpret this as space
essentially having a discrete nature. Note that the above
conclusion holds for any unknown but fixed �C, which,
however, determines the minimum measurable length, if
any. It is hoped that additional physically motivated or
consistency conditions will eventually allow one to either
determine or at least put reasonable bounds on it.
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The minimum length is � �0‘Pl in each case. Once
again, if�0 � 1, this fundamental unit is the Planck length.
However, current experiments do not rule out discreteness
smaller than about a thousandth of a Fermi, thus predicting
the previously mentioned bound on �0. Note that similar
quantization of length was shown in the context of loop
quantum gravity in [12].

B. Solution to order �2

We extend the previous solution to include the �2 term
in one dimension. Working toOð�2Þ, the magnitude of the
momentum at high energies as given by Eq. (5) reads

p ¼ p0ð1� �p0 þ 2�2p2
0Þ: (16)

The wave function satisfies the following GUP-corrected
Schrödinger equation:

d2c þ k2c þ 2iℏ�d3c � 5ℏ2�2d4c ¼ 0; (17)

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
and dn � dn=dxn. Substituting

c ðxÞ ¼ emx, we obtain

m2 þ k2 þ 2i�ℏm3 � 5ð�ℏÞ2m4 ¼ 0; (18)

with the following solution set to leading order in �2: m ¼
fik0;�ik00; 2þi

5�ℏ ;
�2þi
5�ℏ g, where k0 ¼ kð1þ k�ℏÞ and k00 ¼

kð1� k�ℏÞ. Thus, the most general solution to leading
order in ‘2Pl and �2 is of the form

c ðxÞ ¼ Aeik
0x þ Be�ik00x þ Ceð2þiÞx=5�ℏ þDeð�2þiÞx=5�ℏ:

(19)

Note again the appearance of new oscillatory terms, with
characteristic wavelength 10��ℏ, which as before, by
virtue of C and D scaling as a power of �, disappear in
the� ! 0 limit. In addition, we absorb any phase of A in c
so as A to be real. The boundary condition

c ð0Þ ¼ 0 (20)

implies

Aþ Bþ CþD ¼ 0 (21)

and hence the general solution given in Eq. (19) becomes

c ðxÞ ¼ 2iA sinðkxÞei�k2ℏx � ðCþDÞe�ik00x

þ eix=5�ℏ½Ce2x=5�ℏ þDeð�2xÞ=5�ℏ�: (22)

If we now combine Eq. (22) and the remaining boundary
condition

c ðLÞ ¼ 0; (23)

we get

2iA sinðkLÞ ¼ ðCþDÞe�i½�k2ℏLþk00L� � ½Ce2L=5�ℏ
þDeð�2LÞ=5�ℏ�eiL=5�ℏe�i�k2ℏL: (24)

We can consider the exponentials e�i�k2ℏL � 1, otherwise,
since they are multiplied withC orD, terms of higher order

in � will appear. Therefore, we have (C ¼ jCje�i�C ; D ¼
jDje�i�D)

2iA sinðkLÞ ¼ ½jCje�i�C þ jDje�i�D�e�ikL

� ½jCje�i�Ce2L=5�ℏ

þ jDje�i�Deð�2LÞ=5�ℏ�eiL=5�ℏ: (25)

Now, equating the real parts of Eq. (25) (remembering that
A 2 R), we have

0 ¼ jCj cosð�C þ kLÞ þ jDj cosð�D þ kLÞ

� e2L=5�ℏjCj cos
�
�C � L

5�ℏ

�

� eð�2LÞ=5�ℏjDj cos
�
�D � L

5�ℏ

�
: (26)

Note that the third term in the right-hand side dominates
over the other terms in the limit � ! 0. Thus we arrive at
the following equation to leading order:

cosðL=5�ℏ� �CÞ ¼ 0: (27)

This implies the quantization of the space by the following
equation:

L

5�ℏ
¼ ð2pþ 1Þ�

2
þ �C; p 2 N: (28)

Once again, even though the �2 term has been included,
the space quantization given in Eq. (28) suggests that the
dimension of the box, and hence all measurable lengths are
quantized in units of�0‘Pl, and if�0 � 1, this fundamental
unit is of the order of Planck length. And as before, the yet
undetermined constant �C determines the minimum mea-
surable length.

II. THE LANDAU LEVELS

Consider a particle of mass m and charge e in a constant

magnetic field ~B ¼ Bẑ, described by the vector potential
~A ¼ Bxŷ and the Hamiltonian

H0 ¼ 1

2m
ð ~p0 � e ~AÞ2 (29)

¼ p2
0x

2m
þ p2

0y

2m
� eB

m
xp0y þ e2B2

2m
x2: (30)

Since p0y commutes with H, replacing it with its eigen-

value ℏk, we get

H0 ¼ p2
0x

2m
þ 1

2
m!2

c

�
x� ℏk

m!c

�
2
; (31)

where !c ¼ eB=m is the cyclotron frequency. This
is nothing but the Hamiltonian of a harmonic oscillator
in the x direction, with its equilibrium position given by
x0 � ℏk=m!c. Consequently, the eigenfunctions and
eigenvalues are given, respectively, by
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c k;nðx; yÞ ¼ eiky�nðx� x0Þ; (32)

En ¼ ℏ!cðnþ 1
2Þ; n 2 N; (33)

where �n are the harmonic oscillator wave functions.
The GUP-corrected Hamiltonian assumes the form [9]

H ¼ 1

2m
ð ~p0 � e ~AÞ2 � �

m
ð ~p0 � e ~AÞ3 þ 5�2

2m
ð ~p0 � e ~AÞ4

¼ H0 �
ffiffiffiffiffiffiffi
8m

p
�H3=2

0 þ 10�2mH2
0 ; (34)

where in the last step we have used Eq. (29). Evidently, the
eigenfunctions remain unchanged. However, the eigenval-
ues are shifted by

�EnðGUPÞ ¼ h�nj �
ffiffiffiffiffiffiffi
8m

p
�H3=2

0 þ 6�2mH2
0j�ni

¼ � ffiffiffiffiffiffiffi
8m

p
�ðℏ!cÞ3=2ðnþ 1

2Þ3=2
þ 10m�2ðℏ!cÞ2ðnþ 1

2Þ2; (35)

which can be written as

�EnðGUPÞ
Eð0Þ
n

¼ � ffiffiffiffiffiffiffi
8m

p
�ðℏ!cÞ1=2

�
nþ 1

2

�
1=2

þ 10m�2ðℏ!cÞ
�
nþ 1

2

�
: (36)

For n ¼ 1, we obtain the following relation

�E1ðGUPÞ
Eð0Þ
1

¼�
ffiffiffiffiffiffiffiffiffi
12m

p ðℏ!cÞ1=2
MPlc

�0þ15mðℏ!cÞ
M2

Plc
2

�2
0: (37)

For an electron in a magnetic field of 10 T,
!c � 103 GHz

�E1ðGUPÞ
Eð0Þ
1

� �10�26�0 þ 10�52�2
0: (38)

Thus, quantum gravity/GUP does affect the Landau
levels. However, once again, assuming �0 � 1 renders
the correction too small to be measured. Without this
assumption, due to an accuracy of one part in 103 in direct
measurements of Landau levels using a scanning tunnel
microscope (STM) (which is somewhat optimistic) [13],
the upper bound on �0 becomes

�0 < 1023: (39)

Note that this is more stringent than the one derived in
previous works [9].

III. SIMPLE HARMONIC OSCILLATOR

We now consider a particle of mass m. The Hamiltonian
of the simple harmonic oscillator with the GUP-corrected
Hamiltonian assumes the form

H ¼ H0 þH1 ¼ p2
0

2m
þ 1

2
m!2x2 � �

m
p3
0 þ

5�2

2
p4
0:

(40)

Employing time-independent perturbation theory, the
eigenvalues are shifted up to the first order of � by

�EGUP ¼ hc njH1jc ni; (41)

where c n are the eigenfunctions of the simple harmonic
oscillator and are given by

c nðxÞ ¼
�

1

2nn!

�
1=2

�
m!

�ℏ

�
1=4

e�ðm!x2=2ℏÞHn

� ffiffiffiffiffiffiffiffi
m!

ℏ

r
x

�
;

(42)

where

HnðxÞ ¼ ð�1Þnex2 dn

dxn
e�x2 (43)

are the Hermite polynomials.
The p3

0 term will not make any contribution to first order

because it is an odd function and thus, it gives a zero by
integrating over a Gaussian integral. On the other hand, the
p4
0 term will make a nonzero contribution to first order. The

contribution of the p4
0 term to first order is given by

�Eð1Þ
0ðGUPÞ ¼

5�2

2m
hc 0jℏ4 d4

dx4
jc 0i; (44)

and thus we get

�Eð1Þ
0ðGUPÞ ¼

5�2ℏ4

2m

�
�

�

�
1=2

�2

	
Z

dxe��x2ð3� 6�x2 þ �2x4Þ; (45)

where � is equal to m!
ℏ .

By integrating, we get the shift of the energy to first
order of perturbation as follows:

�Eð1Þ
0 ¼ 15

8ℏ
2!2m�2; (46)

or, equivalently,

�Eð1Þ
0

Eð0Þ
0

¼ 15

4
ℏ!m�2: (47)

We now compute the contribution of the p3 term to
second order of perturbation

�Eð2Þ
n ¼ X

k�n

jhc kjV1jc nij2
Eð0Þ
n � Eð0Þ

k

; (48)

where

V1 ¼ i
�

m
ℏ3 d3

dx3
: (49)

In particular, we are interested in computing the shift in the
ground state energy to second order
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�Eð2Þ
0 ¼ X

k�n

jhc kjV1jc 0ij2
Eð0Þ
0 � Eð0Þ

k

; (50)

and for this reason we employ the following properties of
the harmonic oscillator eigenfunctions

hc mjxjc ni ¼

8>>>><
>>>>:

0; m � n� 1ffiffiffiffiffiffiffi
nþ1
2�

q
; m ¼ nþ 1

ffiffiffiffiffi
n
2�

q
; m ¼ n� 1

(51)

and

hc mjx3jc 0i ¼
X
k;l

hc mjxjc kihc kjxjc lihc ljxjc 0i; (52)

which is nonvanishing for the ðl; k; mÞ triplets: (1, 0, 1),
(1, 2, 1), and (1, 2, 3).

Thus, the ground state energy is shifted by

�Eð2Þ
0 ¼ �2ℏ6

m2

X
m�0

jhc mj d3

dx3
jc 0ij2

Eð0Þ
0 � Eð0Þ

m

: (53)

Since the eigenfunction jc 0> ¼ ðm!
�ℏÞ1=4e�

m!
2ℏ x

2
, we have

d3

dx3
jc 0i ¼ ð3�2x� �3x3Þjc 0i. By employing these into

Eq. (50), we get

�Eð2Þ
0 ¼ �2ℏ6

m2
�4

X
m�0

jhc mjð3x� �x3Þjc 0ij2
Eð0Þ
0 � Eð0Þ

m

: (54)

Using Eqs. (51) and (52), the energy shift finally takes the
form

�Eð2Þ
0 ¼ �11

2�
2mðEð0Þ

0 Þ2; (55)

or, equivalently,

�Eð2Þ
0

Eð0Þ
0

¼ � 11

2
�2mEð0Þ

0 ¼ � 11

4
�2mℏ!: (56)

It is noteworthy that there are some systems that can be
represented by the Harmonic oscillator such as heavy
meson systems like charmonium [14]. The charm mass is
mc � 1:3 GeV=c2 and the binding energy ! of the system
is roughly equal to the energy gap separating adjacent
levels and is given by ℏ! � 0:3 GeV. The correction
due to GUP can be calculated at the second order of �.
Using Eqs. (47) and (56), we found the shift in energy is
given by

�Eð2Þ
0

Eð0Þ
0

¼ �2
0

mℏ!
M2

Plc
2
� 2:7	 10�39�2

0: (57)

Once again, assuming �0 � 1 renders the correction too
small to be measured. On the other hand, if such an
assumption is not made, the current accuracy of precision
measurement in the case of J=c [15] is at the level of 10�5.
This sets the upper bound on �0 to be

�0 < 1017: (58)

It should be stressed that this bound is in fact consistent
with that set by the electroweak scale. Therefore, it could
signal a new and intermediate length scale between the
electroweak and the Planck scale.

IV. THE LAMB SHIFT

For the Hydrogen atom, Vð~rÞ ¼ �k=r (k ¼ e2=4��0 ¼
�ℏc, e ¼ electronic charge). To first order, the perturbing
Hamiltonian H1, shifts the wave functions to [16]

jc nlmi1 ¼ jc nlmi þ
X

fn0l0m0g�fnlmg

en0l0m0jnlm
Eð0Þ
n � Eð0Þ

n0
jc n0l0m0 i;

(59)

where n, l,m have their usual significance, and en0l0m0jnlm �
hc n0l0m0 jH1jc nlmi.
Using the expression p2

0 ¼ 2m½H0 þ k=r� [8], the per-

turbing Hamiltonian reads

H1 ¼ �ð� ffiffiffiffiffiffiffi
8m

p Þ
�
H0 þ k

r

��
H0 þ k

r

�
1=2

: (60)

So for GUP effect to � order, we have

en0l0m0jnlm ¼ hc n0l0m0 j
�
� �

m

�
p2
0p0jc nlmi: (61)

It follows from the orthogonality of spherical harmonics
that the above are nonvanishing if and only if l0 ¼ l and
m0 ¼ m

e200j100 ¼ 2i�ℏhc 200j
�
H0 þ k

r

��
@

@r

�
jc 100i: (62)

We utilize the following to calculate the shift in the
energy:
(i) the first term in the sum in Eq. (59) (n0 ¼ 2)

dominates, since En¼�E0=n
2 (E0¼e2=8��0a0¼

k=2a0¼13:6 eV, a0¼4��0ℏ2=me2¼5:3	10�11

metre, m ¼ electron mass ¼ 0:5 MeV=c2),
(ii) c nlmð ~rÞ ¼ RnlðrÞYlmð�;�Þ,
(iii) R10 ¼ 2a�3=2

0 e�r=a0 , and R20 ¼ ð2a0Þ�3=2 	
ð2� r=a0Þe�r=2a0 ,

(iv) Y00ð�;�Þ ¼ 1=ð ffiffiffiffiffiffiffi
4�

p Þ.
Thus, we derive

e200j100 ¼ �i
2�ℏk
a0

hc 200j 1r jc 100i (63)

¼ �i
8

ffiffiffi
2

p
�ℏk

27a20
: (64)

Therefore, the first order shift in the ground state wave
function is given by (in the position representation)
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�c 100ð ~rÞ � c ð1Þ
100ð ~rÞ � c ð0Þ

100ð~rÞ ¼
e200j100
E1 � E2

c 200ð~rÞ

¼ i
32

ffiffiffi
2

p
�ℏk

81a20E0

c 200ð~rÞ (65)

¼ i
64

ffiffiffi
2

p
�ℏ

81a0
c 200ð ~rÞ: (66)

Next, we consider the Lamb shift for the nth level of the
hydrogen atom [17]

�Eð1Þ
n ¼ 4�2

3m2

�
ln
1

�

�
jc nlmð0Þj2: (67)

Varying c nlmð0Þ, the additional contribution due to GUP
in proportion to its original value is given by

�Eð1Þ
nðGUPÞ

�Eð1Þ
n

¼ 2
�jc nlmð0Þj
c nlmð0Þ : (68)

Thus, for the ground state, we obtain

�Eð1Þ
1ðGUPÞ

�Eð1Þ
1

¼ 64ℏ�0

81a0MPlc
� 1:2	 10�22�0: (69)

The above result may be interpreted in twoways. First, if
one assumes �0 � 1, then it predicts a nonzero but virtu-
ally unmeasurable effect of GUP and thus of quantum
gravity. On the other hand, if such an assumption is not
made, the current accuracy of precision measurement of
Lamb shift of about one part in 1012 [8,18] sets the follow-
ing upper bound on �0:

�0 < 1010: (70)

It should be stressed that this bound is more stringent
than the ones derived in previous examples [9], and is in
fact consistent with that set by the electroweak scale.
Therefore, it could signal a new and intermediate length
scale between the electroweak and the Planck scale.

V. POTENTIAL STEP

Next, we study the one-dimensional potential step
given by

V0ðxÞ ¼ V 0
0�ðxÞ; (71)

where �ðxÞ is the usual step function. Assuming E< V0
0,

the Schrödinger equation to the left and right of the barrier
are written, respectively, as

d2c< þ k2c< þ 2i�ℏd3c< ¼ 0; (72)

d2c> � k21c> þ 2i�ℏd3c> ¼ 0; (73)

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
and k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0

0 � EÞ=ℏ2
q

.

Considering solutions of the form c<;> ¼ emx, we get

m2 þ k2 þ 2i�ℏm3 ¼ 0; (74)

m2 � k21 þ 2i�ℏm3 ¼ 0; (75)

with the following solution sets to leading order in �, each
consisting of three values of m:

x < 0: m ¼
�
ik0;�ik00;

i

2�ℏ

�
; (76)

x � 0: m ¼
�
k01;�k001 ;

i

2�ℏ

�
; (77)

where

k0 ¼ kð1þ k�ℏÞ; k00 ¼ kð1� k�ℏÞ; (78)

k01 ¼ k1ð1� i�ℏk1Þ; k001 ¼ k1ð1þ i�ℏk1Þ: (79)

Therefore, the wave functions take the form

c< ¼ Aeik
0x þ Be�ik00x þ Ceix=2�ℏ; x < 0; (80)

c> ¼ De�k00
1
x þ Eeix=2�ℏ; 0 � x; (81)

where we have omitted the left mover from c>.
Now the boundary conditions at x ¼ 0 consist of three

equations (instead of the usual two)

dnc<j0 ¼ dnc>j0; n ¼ 0; 1; 2: (82)

This leads to the following conditions:

Aþ Bþ C ¼ Dþ E; (83)

i

�
k0A� k00Bþ C

2�ℏ

�
¼ �k001Dþ iE

2�ℏ
; (84)

k02Aþ k002Bþ C

ð2�ℏÞ2 ¼
E

ð2�ℏÞ2 � k0021 D: (85)

Assuming C� E�Oð�2Þ, we have the following solu-
tions to leading order in �

B

A
¼ ik0 þ k001

ik00 � k001
; (86)

D

A
¼ 2ik

ik00 � k001
; (87)

E� C

ð2�ℏÞ2A ¼ k02ðik00 � k001 Þ þ k002ðik0 þ k001 Þ þ k0021 ð2ikÞ
ik00 � k001

:

(88)

It can be easily shown that the GUP-corrected time-
dependent Schrödinger equation admits the following
modified conserved current density, charge density, and
conservation law, respectively, [9]
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J ¼ ℏ
2mi

�
c ? dc

dx
� c

dc ?

dx

�

þ �ℏ2

m

�
d2jc j2
dx2

� 3
dc

dx

dc ?

dx

�
; (89)

� ¼ jc j2; @J

@x
þ @�

@t
¼ 0: (90)

The conserved current is given as

J ¼ J0 þ J1

¼ ℏk
m

ðjAj2 � jBj2Þ þ 2�ℏ2k2

m
ðjAj2 þ jBj2Þ þ jCj2

�m
:

(91)

The reflection and transmission coefficients are given by

R ¼
��������
B

A

��������
21� 2�ℏk
1þ 2�ℏk

¼
��������
ik0 þ k001
ik00 � k001

��������
21� 2�ℏk
1þ 2�ℏk

¼ ðk2 þ k21Þ2
ðk21 þ k2Þ2ð1� 4�ℏkÞ

1� 2�ℏk
1þ 2�ℏk

¼ 1; (92)

T ¼ � �ℏ2k2
1

m jDj2e�2k1x þ �ℏ2k2
1

m jDj2e�2k1x

ℏk
m jAj2ð1þ 2�ℏkÞ (93)

¼ 0; (94)

Rþ T ¼ 1: (95)

At this point we should note that GUP did not affect R and
T up to Oð�Þ.

VI. POTENTIAL BARRIER

In this section we apply the above formalism to an STM
and show that in an optimistic scenario, the effect of the
GUP-induced term may be measurable. In an STM, free
electrons of energy E (close to the Fermi energy) from a
metal tip at x ¼ 0, tunnel quantum mechanically to a
sample surface a small distance away at x ¼ a. This gap
(across which a bias voltage may be applied) is associated
with a potential barrier of height V00

0 > E [19]. Thus

V 00ðxÞ ¼ V 00
0 ½�ðxÞ � �ðx� aÞ�; (96)

where �ðxÞ is the usual step function. The wave functions
for the three regions, namely, x � 0, 0 � x � a, and
x � a, are c 1, c 2, and c 3, respectively, and satisfy the
GUP-corrected time-independent Schrödinger equation

d2c 1;3 þ k2c 1;3 þ 2i�ℏd3c 1;3 ¼ 0;

d2c 2 � k21c 2 þ 2i�ℏd3c 2 ¼ 0;

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
and k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV00

0 � EÞ=ℏ2
q

. The

solutions to the aforementioned equations to leading order
in � are

c 1 ¼ Aeik
0x þ Be�ik00x þ Peix=2�ℏ; (97)

c 2 ¼ Fek
0
1x þGe�k001x þQeix=2�ℏ; (98)

c 3 ¼ Ceik
0x þ Reix=2�ℏ; (99)

where k0 ¼ kð1þ �ℏkÞ, k00 ¼ kð1� �ℏkÞ, k01 ¼
k1ð1� i�ℏk1Þ, k001 ¼ k1ð1þ i�ℏk1Þ and A, B, C, F, G,
P, Q, R are constants of integration. In the above, we
have omitted the left mover from c 3. Note the appearance
of the new oscillatory terms with characteristic wave-
lengths ��ℏ, due to the third order modification of the
Schrödinger equation. The boundary conditions at x ¼ 0, a
are given by

dnc 1jx¼0 ¼ dnc 2jx¼0; n ¼ 0; 1; 2; (100)

dnc 2jx¼a ¼ dnc 3jx¼a; n ¼ 0; 1; 2: (101)

If we assume that P�Q� R�Oð�2Þ, we get the follow-
ing solutions:

C

A
¼ iðk0k001 þ k00k01 þ k0k01 þ k00k001 Þe�ik0aþk001a

eðk01þk00
1
Þaðk0 þ ik01Þðk00 þ ik001 Þ � ðk0 � ik001 Þðk00 � ik01Þ

;

(102)

B

A
¼ k001 þ ik0

k001 � ik00

�
eik

0a�k0
1
a C

A
� 1

�
; (103)

F

A
¼

ð1þ i k0
k00
1
Þeik0a�k01a C

A

1þ k01
k00
1

; (104)

G

A
¼

ð1� i k
0

k01
Þeik0aþk00

1
a C
A

1þ k00
1

k0
1

: (105)

From Eq. (89), it follows that the transmission coeffi-
cient of the STM, given by the ratio of the right moving
currents to the right and left of the barrier, namely, JR and
JL, respectively, is to Oð�Þ

T ¼ JR
JL

¼
��������
C

A

��������
2�2�ℏk

��������
B

A

��������
2

; (106)

which gives using the solutions in Eqs. (102) and (103) the
following final expression:

T ¼ T0½1þ 2�ℏkð1� T�1
0 Þ�; (107)

T0 ¼ 16EðV00
0 � EÞ

V 002
0

e�2k1a; (108)

where T0 is the standard STM transmission coefficient. The
measured tunneling current is proportional to T (usually
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magnified by a factor G), and using the following approxi-
mate (but realistic) values [19]

m ¼ me ¼ 0:5 MeV=c2; E � V00
0 ¼ 10 eV;

a ¼ 10�10 m; I0 ¼ 10�9 A; G ¼ 109;

we get

�I

I0
¼�T

T0

¼10�26; �I�G�I¼10�26 A; (109)

where we have chosen �0 ¼ 1 and T0 ¼ 10�3, also a fairly
typical value. Thus, for the GUP-induced excess current
�I to give the difference of the charge of just one electron,
e ’ 10�19 C, one would have to wait for a time

	 ¼ e

�I
¼ 107 s; (110)

or, equivalently, about 4 months, which can perhaps be
argued to be not that long. In fact, higher values of�0 and a
more accurate estimate will likely reduce this time, and
conversely, current studies may already be able to put an
upper bound on �0.

What is perhaps more interesting is the following rela-
tion between the apparent barrier height �A � V 00

0 � E
and the (logarithmic) rate of increase of current with the
gap, which follows from Eq. (107)

ffiffiffiffiffiffiffi
�A

p ¼ ℏffiffiffiffiffiffiffi
8m

p
��������
d lnI

da

���������
�ℏ2ðk2 þ k21Þ2

8mðkk1Þ e2k1a: (111)

Note the GUP-induced deviation from the usual linearffiffiffiffiffiffiffi
�A

p
vs jd lnI=daj curve. The exponential factor makes

this particularly sensitive to changes in the tip-sample
distance a, and hence amenable to observations. Any
such observed deviation may signal the existence of GUP
and, thus, in turn an underlying theory of quantum gravity.

VII. CONCLUSIONS

In this work we have investigated the consequences of
quantum gravitational corrections to various quantum phe-
nomena such as the Landau levels, simple harmonic oscil-
lator, the Lamb shift, and the tunneling current in a
scanning tunneling microscope and have found that the
upper bounds on �0 to be 10

23, 1017, and 1010 from the first
three, respectively. The first one gives a length scale bigger
than electroweak length that is not right experimentally. It
should be stressed that the last three bounds are more
stringent than the ones derived in the previous study [9],
and might be consistent with that set by the electroweak
scale. Therefore, it could signal a new and intermediate
length scale between the electroweak and the Planck scale.

On the other side, we have found that even if �0 � 1, we
still might measure quantum gravitational corrections in a
scanning tunneling microscopic case as was shown in
Eq. (110). This is in fact an improvement over the general
conclusion of [9], where it was shown that quantum
gravitational effects are virtually negligible if the GUP
parameter 
0 � 1, and appears to be a new and interesting
result. It would also be interesting to apply our formalism
to other areas including cosmology, black hole physics and
Hawking radiation, selection rules in quantum mechanics,
statistical mechanical systems, etc. We hope to report on
these in the future.
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APPENDIX

1. Proof for Eq. (1)

Since black hole physics and string theory suggest a
modified Heisenberg algebra (which is consistent with
GUP) quadratic in the momenta (see e.g. Ref. [1]) while
DSR theories suggest one that is linear in the momenta (see
e.g. Ref. [2]), we try to incorporate both of the above, and
start with the most general algebra with linear and qua-
dratic terms

½xi; pj� ¼ iℏ
�
�ij þ �ij�1pþ �2

pipj

p

þ 
1�ijp
2 þ 
2pipj

�
: (A1)

Assuming that the coordinates commute among them-
selves, as do the momenta, it follows from the Jacobi
identity that

�½½xi; xj�; pk� ¼ ½½xj; pk�; xi� þ ½½pk; xi�; xj� ¼ 0: (A2)

Employing Eq. (A1) and the commutator identities, and
expanding the right-hand side, we get (summation conven-
tion assumed)

0 ¼ ½½xj; pk�; xi� þ ½½pk; xi�; xj�
¼ iℏð��1�jk½xi; p� � �2½xi; pjpkp

�1�
� 
1�jk½xi; plpl� � 
2½xi; pjpk�Þ � ði $ jÞ

¼ iℏð��1�jk½xi; p� � �2ð½xi; pj�pkp
�1

þ pj½xi; pk�p�1 þ pjpk½xi; p�1�Þ
� 
1�jkð½xi; pl�pl þ pl½xi; pl�Þ
� 
2ð½xi; pj�pk þ pj½xi; pk�ÞÞ � ði $ jÞ: (A3)
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To simplify the right-hand side of Eq. (A3), we now
evaluate the following commutators

(i) ½xi; p� to OðpÞ
Note that

½xi; p2� ¼ ½xi; p 
 p� ¼ ½xi; p�pþ p½xi; p�
¼ ½xi; pkpk� ¼ ½xi; pk�pk þ pk½xi; pk�
¼ iℏð�ik þ �1p�ik þ �2pipkp

�1Þpk

þ iℏpkð�ik þ �1p�ik þ �2pipkp
�1Þ

(A4)

[to OðpÞ using Eq. (A1)]

¼ 2iℏpi½1þ ð�1 þ �2Þp�: (A5)

Comparing (A4) and (A5), we get

½xi; p� ¼ iℏðpip
�1 þ ð�1 þ �2ÞpiÞ: (A6)

(ii) ½xi; p�1� to OðpÞ
Using

0 ¼ ½xi; I� ¼ ½xi; p 
 p�1� ¼ ½xi; p�p�1 þ p½xi; p�1�;
(A7)

it follows that

½xi; p�1� ¼ �p�1
i ½xi; p�p�1

¼ �iℏp�1ðpip
�1 þ ð�1 þ �2ÞpiÞp�1

¼ �iℏpip
�3ð1þ ð�1 þ �2ÞpÞ: (A8)

Substituting (A6) and (A8) in (A3) and simplifying, we
get

0 ¼ ½½xj; pk�; xi� þ ½½pk; xi�; xj�
¼ ðð�1 � �2Þp�1 þ ð�2

1 þ 2
1 � 
2ÞÞ�jki; (A9)

where �jki ¼ pi�jk � pj�ik. Thus one must have �1 ¼
�2 � �� (with �> 0; the negative sign follows from
Ref. [3] of our paper), and 
2 ¼ 2
1 þ �2

1. Since from
dimensional grounds it follows that 
� �2, for simplicity,
we assume 
1 ¼ �2. Hence 
2 ¼ 3�2, and we get Eq. (1)
of this paper, namely,

½xi; pj� ¼ iℏ
�
�ij � �

�
p�ij þ

pipj

p

�

þ �2ðp2�ij þ 3pipjÞ
�
: (A10)

2. Proof for Eq. (5)

We would like to express the momentum pj in terms of

the low energy momentum p0j (such that ½xi; p0j� ¼ iℏ�ij).

Since Eq. (A10) is quadratic in pj, the latter can at most be

a cubic function of the p0i. We start with the most general
form consistent with the index structure

pj ¼ p0j þ ap0p0j þ bp2
0p0j; (A11)

where a� � and b� a2. From Eq. (A11) it follows that

½xi;pj� ¼ ½xi;p0j þap0p0j þbp2
0p0j�

¼ iℏ�ij þ að½xi;p0�p0j þp0½xi;p0j�Þ
þbð½xi;p0�p0p0j þp0½xi;p0�p0j þp2

0½xi;p0j�Þ:
(A12)

Next, we use the following four results to OðaÞ and
½xi; p0j� ¼ iℏ in Eq. (A12):

(i) ½xi; p0� ¼ iℏp0ip
�1
0 , which follows from Eq. (A6)

when �i ¼ 0, as well from the corresponding
Poisson bracket.

(ii) pj ¼ p0jð1þ ap0Þ þOða2Þ ’ p0jð1þ apÞ [from

Eq. (A11)]. Therefore, p0j ’ pj

1þap ’ ð1� apÞpj.

(iii) p0¼ðp0jp0jÞ1=2¼ðð1�apÞ2pjpjÞ1=2¼ð1�apÞp.
(iv) p0ip

�1
0 p0j¼ð1�apÞpið1�apÞ�1p�1ð1�apÞpj¼

ð1�apÞpipjp
�1.

Thus, Eq. (A2) yields

½xi; pj� ¼ iℏ�ij þ iaℏðp�ij þ pipjp
�1Þ

þ iℏð2b� a2Þpipj þ iℏðb� a2Þp2�ij: (A13)

Comparing with Eq. (A10), it follows that a ¼ �� and
b ¼ 2�2. In other words

pj ¼ p0j � �p0p0j þ 2�2p2
0p0j

¼ p0jð1� �p0 þ 2�2p2
0Þ; (A14)

which is Eq. (5) in this paper.
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