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We examine a class of cylindrically symmetric solutions in Hořava-Lifshitz gravity. For the relativistic

value of the coupling constant, � ¼ 1, we find the hedgehog-type static black string solution with the

nonvanishing radial shift in the Arnowitt-Deser-Misner-type decomposition of the spacetime metric. With

zero radial shift, this solution corresponds to the usual Banados-Teitelboim-Zanelli (BTZ) black string in

general relativity. However, unlike the general relativity case, the BTZ-type black strings do naturally

exist in Hořava-Lifshitz gravity, without the need for any specific source term. We also find a rotating

BTZ-type black string solution which requires the nonvanishing radial shift for its very existence. We

calculate the mass and the angular momentum of this solution, using the canonical Hamiltonian approach.

Next, we discuss the Lemos-type black string, which is inherent in general relativity with a negative

cosmological constant, and present the static metric for any value of � > 1=3. Finally, we show that while,

for � ¼ 1, the entropy of the Lemos-type black string is given by one quarter of the horizon area, the

entropy of the static BTZ-type black string is one half of its horizon area.

DOI: 10.1103/PhysRevD.84.044010 PACS numbers: 04.50.Gh, 04.70.Bw

I. INTRODUCTION

Recently, Hořava put forward the idea of gravity en-
dowed with Lifshitz-type anisotropic scaling [1,2]. This is
an intriguing attempt to formulate a consistent quantum
field theory of gravity in 3þ 1 dimensions by invoking the
anisotropy between space and time, first introduced in
condensed matter systems [3]. The degree of the anisot-
ropy given by a number z, the ‘‘dynamical critical expo-
nent,’’ plays the role of an important observable in the
theory, determining its behavior at short scales. The
Hořava-Lifshitz (HL) theory of gravity exhibits an aniso-
tropic scaling with z ¼ 3 fixed point at short distances,
thereby becomes a power-counting renormalizable in the
ultraviolet (UV) regime. Thus, in this approach the classi-
cal theory of gravity acquires UV completion, being driven
to a quantum field theory of nonrelativistic gravitons in
3þ 1 dimensions. Meanwhile, at long distances the scal-
ing becomes isotropic, flowing to z ¼ 1, and the theory
restores its relativistic invariance in the infrared (IR) re-
gime where it resembles, through some relevant deforma-
tions, many familiar features of general relativity.

Because of its fundamentally nonrelativistic nature,
HL gravity admits a natural description in terms of the
Arnowitt-Deser-Misner (ADM)-type variables, appearing
in the 3þ 1 foliation of the spacetime metric in general
relativity. These variables form triplet which consists
of the spatial metric as a dynamical field, the lapse function
and the shift vector. However, unlike in general relativity,
the privileged role of time in HL gravity leads to a
‘‘preferred foliation’’ of spacetime by slices of constant
time. Consequently, the full spacetime symmetries of
the theory reduce to time reparametrization symmetry
(space-independent) and spatial diffeomorphisms (time-
dependent), which preserve the spacetime foliation.

Clearly, the lapse function and the shift vector can be viewed
as two gauge fields of the foliation-preserving diffeomor-
phisms. This fact is also encoded in the physical spectrum
of the theory around flat spacetime where an extra scalar
polarization of the graviton appears. With the foliation-
preserving diffeomorphisms one can naturally assume that
the lapse is a function of time alone, while the shift is a
spacetime field, thereby fitting the ‘‘projectable’’ theory of
foliation [2]. Altogether, these properties form a minimal
basis for the realization of anisotropic scaling in gravity.
The minimal realization also involves the concept of the
‘‘detailed balance’’ condition. This implies that the potential
term in the action is effectively a square of a prepotential,
appearing in a one dimension fewer Euclidean theory. In
further developments, to improve the physical content of the
theory, both the projectability condition and the detailed
balance condition were relaxed in a number of cases (see
a review [4], for details). Moreover, it was shown that an
extension of the foliation-preserving diffeomorphisms by an
Abelian gauge symmetry, eliminates the scalar polarization
of the graviton that appeared in the minimal realization of
the idea of anisotropic scaling [5].
Among possible applications of HL gravity, its phe-

nomenological consequences in our universe are of great
importance. It is interesting that the theory results in a new
mechanism for scale-invariant cosmological perturbations,
even without inflation [6,7]. The early history of the uni-
verse is also significantly changed with HL gravity which
admits regular cyclic and bouncing solutions [6,8,9].
However, it should be emphasized that HL gravity suffers
from a number of inconsistency problems as well. For
instance, the scalar mode becomes unstable in the UV
regime [8] when keeping the detailed balance condition,
but abandoning the projectability condition. There also
exist scalar instabilities in the IR regime [10], which may
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result in strong coupling problems [11–13]. Furthermore,
scale-invariant perturbations [14] are generated provided
that the detailed balance condition is broken in the UV
regime [15]. Another issue is the existence of black hole
solutions. In [16], it was shown that the theory admits a
static and spherically symmetric AdS-type black hole so-
lution. The asymptotic behavior of this solution is essen-
tially different from that of the Schwarzschild-AdS black
hole in general relativity. Meanwhile, the counterpart of
the usual asymptotically flat Schwarzschild solution was
found in [17] by a relevant deformation of the HL action.
This solution turned out to be very useful to figure out the
observational consequences of HL gravity in both weak
and strong gravity regimes [18,19]. Further, these type of
solutions, as well as their certain extension in the frame-
work of the most general spherically symmetric ansatz,
were studied in [20–26]. As for the rotating counterparts of
these solutions, they still remain unknown. In a recent work
[27], some progress in this direction was achieved in the
limit of slow rotation (see also Ref. [28]).

In this paper, we examine a class of cylindrically sym-
metric solutions in HL gravity, which can be thought of as
counterparts of black strings in general relativity. In Sec. II,
we begin by describing the physical content of HL gravity
using the ADM-type decomposition of the spacetime
metric and present the equations of motion underlying
the theory. In Sec. III, we discuss the general stationary
and cylindrically symmetric ansatz for spacetime metric.
Focusing on the spacetimes, for which the Cotton tensor in
the HL action vanishes, we delineate two intriguing ex-
amples of the cylindrically symmetric spacetimes which
are the counterparts of those for the Banados-Teitelboim-
Zanelli (BTZ) and Lemos types black strings in general
relativity [29,30]. The BTZ black strings in general rela-
tivity are obtained by adding an extra spacelike flat dimen-
sion to the metric of the three-dimensional BTZ black hole
[31]. Next, for � ¼ 1, we discuss the static BTZ-type black
string solutions with zero and nonzero radial shift. In the
latter case, we call it the hedgehog type solution. In this
section, we also present the stationary and cylindrically
symmetric solution that describes the BTZ-type rotating
black string in HL gravity. This solution is of a hedgehog
type as well, since the radial ‘‘hair’’ is inevitable to support
the rotational dynamics. We calculate the mass and the
angular momentum of this solution, employing the canoni-
cal Hamiltonian approach. We further discuss the Lemos-
type black string and present the corresponding static
solution for any value of the coupling constant � > 1=3.
In Sec. IV, we examine the thermodynamical properties of
the static black string configurations in HL gravity using
the Euclidean path integral approach.

II. BASICS OF HORı́AVA-LIFSHITZ GRAVITY

The privileged role of time in HL gravity with
Lifshitz-type anisotropic scaling makes it fundamentally

nonrelativistic and results in a preferred foliation of
spacetime by slices of constant time. As a consequences
of this, the full spacetime symmetries of the system reduce
to the foliation-preserving diffeomorphisms which are gen-
erated by

t ! ~tðtÞ; xi ! ~xiðt; xiÞ: (1)

With this in mind, it natural to employ the ADM-type
3þ 1 decomposition of the spacetime metric. We have

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (2)

where the three-dimensional spatial metric gij is a dynami-

cal field, the lapse function N and the shift vector Ni play
the role of gauge fields of diffeomorphisms (1) and there-
fore one can suppose that they respect the same functional
dependence. That is, the lapse is only the function of time,
N ¼ NðtÞ, while the shift is a spacetime function, Ni ¼
Niðt; xiÞ. We recall that such a decomposition of the space-
time metric corresponds to the projectable version of the
HL gravity.
With the metric decomposition in (2), the usual Einstein-

Hilbert action decomposes as

IEH ¼ 1

16�G

Z
dtd3x

ffiffiffi
g

p
NðKijK

ij � K2 þ R� 2�Þ;
(3)

where G is the gravitational constant, Kij is the extrinsic

curvature, R ¼ gijRij is the Ricci scalar, � is the cosmo-

logical constant and

Kij ¼ 1

2N
ð _gij �DiNj �DjNiÞ;

K ¼ gijKij; Ni ¼ gijN
j:

(4)

Here the dot denotes the derivative with respect to time
and D is the derivative operator with respect to the spatial
metric gij.

The action governing the dynamics of HL gravity with
the detailed balance condition is given by (see Ref. [2])

I ¼
Z

dtd3x
ffiffiffi
g

p
Nfg0ðKijK

ij � �K2Þ þ g1ðR� 3�WÞ
þ g2R

2 þ g3ZijZ
ijg; (5)

where, for further convenience, we have used the notations
Zij ¼ Cij þ g4Rij,

g0 ¼ 2

�2
; g1 ¼ �2�2�W

8ð1� 3�Þ ; g2 ¼ �2�2ð1� 4�Þ
32ð1� 3�Þ ;

g3 ¼ � �2

2!4
; g4 ¼ ��!2

2
: (6)

We note that �, �, � and ! are coupling constants of the
theory, �W is a three-dimensional cosmological constant.
The Cotton tensor Cij is symmetric, traceless and cova-
riantly constant and it is given by
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Cij ¼ �iklffiffiffi
g

p Dk

�
Rj

l �
1

4
�j

lR

�
; (7)

where �ikl is the usual Levi-Civita symbol. From action (5)
it follows that in HL gravity the speed of light, the
Newtonian constant and the cosmological constant appear
as emergent quantities. Indeed, taking the IR limit of this
action, where the quadratic in curvature terms are omitted,
and rescaling the time coordinate as t ! ct, we compare
the result with the Einstein-Hilbert action in (3). This
yields the emergent relations

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

1� 3�

s
; G ¼ �2c2

32�
; � ¼ 3

2
�W: (8)

In what follows, we shall focus only on the case of a
negative cosmological constant. Then, from the emergent
relation for the speed of light, it follows that the dynamical
coupling constant of HL gravity �must obey the inequality
� > 1=3. We shall also take c ¼ 1, without loss of
generality.

The equations of motion that follow from action (5)
were obtained in [6,16]. Variation of the action with respect
to the lapse N yields the Hamiltonian constraint

� g0ðKijK
ij � �K2Þ þ g1ðR� 3�WÞ

þ g2R
2 þ g3ZijZ

ij ¼ 0; (9)

and its variation with respect to the shift Ni gives us the
momentum constraint

DjðKij � �gijKÞ ¼ 0: (10)

Meanwhile, variation of the action with respect to the
dynamical variable gij yields the equation of motion given
by

Eij � g0ðEð1Þ
ij � �Eð2Þ

ij Þ þ g1E
ð3Þ
ij þ g2E

ð4Þ
ij

þ g3ðg4Eð5Þ
ij þ Eð6Þ

ij Þ ¼ 0; (11)

where

Eð1Þ
ij ¼ 2NðiDjkjKk

jÞ � 2Kk
ðiDjÞNk � NkDkKij � 2NKikK

k
j �

1

2
gijNKklK

kl þ NKKij þ _Kij;

Eð2Þ
ij ¼

�
1

2
NK2 � Nk@kK þ _K

�
gij þ 2Nði@jÞK; Eð3Þ

ij ¼
�
Rij � 1

2
gijðR� 3�WÞ �DiDj þ gijD

2

�
N;

Eð4Þ
ij ¼ 2

�
Rij � 1

4
gijR�DiDj þ gijD

2

�
NR; Eð5Þ

ij ¼ �2DkDði½ZjÞ
kN� þD2ðNZijÞ þ gijDkDlðNZklÞ;

Eð6Þ
ij ¼

�
� 1

2
gijZklZ

kl þ 2ZikZ
k
j � 2ZkðiCjÞ

k þ gijZklC
kl

�
N �Dk½Tkl

ðiRjÞl� þ Rn
lDn½Tkl

ðigjÞk� �Dn½Tkl
ngkðiRjÞl�

�D2Dk½Tkl
ðigjÞl� þDn½glðiDjÞ�DkT

kl
n þDlDðiDjkjTkl

jÞ þ gijD
nDkDlT

kl
n:

(12)

We note that in these expressions D2 ¼ DiD
i, Tij

k ¼
Nð ffiffiffi

g
p Þ�1�ijlZlk and round parentheses over indices denote

a symmetrization procedure. Despite the fact that these
equations look rather complicated, the authors of works
[6,16] were the first to find the simple exact solutions to
them, using a standard spherically symmetric ansatz for
the spacetime metric. In further developments, these type
of solutions were also studied in the framework of the most
general spherically symmetric metric ansatz (see, for in-
stance, Refs. [23,24]).

III. BLACK STRING SOLUTIONS

In this section, we discuss a class of exact cylindrically
symmetric solutions to HL gravity. We begin with the
general stationary and cylindrically symmetric metric an-
satz in the form

ds2 ¼ ð� ~N2fþ NrN
r þ N�N

�Þdt2 þ 2ðNrdr

þ N�d�Þdtþ f�1dr2 þ r2d�2 þ gdz2; (13)

where all the metric functions are assumed to depend on
the radial coordinate r alone and we have redefined the

lapse function as N ¼ ~N
ffiffiffi
f

p
for further convenience. The

shift vector Ni ¼ gijN
j ¼ fNr;N�; 0g and the three-

dimensional spatial metric possesses cylindrical symmetry,
involving the functions f ¼ fðrÞ and g ¼ gðrÞ. We note
that, just like in the spherically symmetric case [24], the
presence of the radial shift in the metric (13) is inherent in
HL gravity as the foliation-preserving invariance of the
theory is not enough for eliminating it from the metric.
That is, in contrast to general relativity, in HL gravity
cylindrically symmetric metrics with Nr ¼ 0 and Nr � 0
are not physically equivalent.
In order to simplify the consideration, we focus on the

solutions for which the Cotton tensor (7) vanishes. It is
straightforward to show that with metric ansatz (13), the
only nonvanishing component of this tensor is given by

C�z ¼
ffiffiffi
f

p
8rg5=2

frg2f00ðrg0 � 2gÞ þ gf0ð2g2 � 2r2g02

þ 3r2gg00Þ þ 2f½r2g03 � r2ðg2Þ0g00
� g2ðg0 � rg00 � r2g000Þ�g: (14)
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Here and in what follows, the prime denotes differentiation
with respect to r. For g ¼ const, this expression takes the
most simple form

C�z ¼
ffiffiffiffiffiffi
fg

p
4r

ðf0 � rf00Þ (15)

and the equation C�z ¼ 0 is immediately solved by

f ¼ �r2 �m; (16)

where � and m are constants of integration. Thus, for con-
stant g and with f given in (16) the Cotton tensor Cij ¼ 0.

For these solutions, as seen from metric (13), one can set
g ¼ 1 by rescaling of the z-coordinate. Furthermore, we
see that the resulting metric, with Nr ¼ 0, matches the
form of the stationary BTZ black string spacetime in
general relativity [29] (see also Ref. [32] for the BTZ string
in Cherns-Simon gravity). We recall that the BTZ black
string configurations are obtained by adding an extra flat
dimension to the metric of the three-dimensional BTZ
black hole [31] and they require for their very existence a
specific source term in the corresponding field equations.
Using this analogy, we will call the class of solutions with
g ¼ 1 and Nr � 0, the ‘‘BTZ-type black string’’ solutions.
Below, we will see that the BTZ-type black string solutions
do naturally exist in HL gravity (without the need for any
specific source term).

Meanwhile, it is not difficult to see that for g ¼ 	2r2,
where 	 is a constant parameter, expression (14) vanishes
identically, irrespective of the form of the function fðrÞ.
That is, we again have Cij ¼ 0. In this case, the metric

ansatz in (13), with Nr ¼ 0, matches the form which
describes the stationary black string solution of general
relativity, found by Lemos [30]. This type of string solution
is inherent in general relativity with a negative cosmologi-
cal constant. Below, we will also discuss the Lemos-type
static string solution in HL gravity for any value of the
coupling constant � > 1=3.

A. BTZ-type solutions

We now need to substitute metric (13), with g ¼ 1, into
the field equations of HL gravity. In doing this, we find that
the Hamiltonian constraint (9) takes the form

2�2r6N2
r f

�1ð��1Þþ2r2f½ð��1ÞðN2
r þr2N02

r Þ

þ2�rNrN
0
r�þ�4�2r4 ~N2

8ð1�3�Þ ½ð2��1Þ�2�2��W�3�2
W�

�ð2N��rN0
�Þ2þ4�r4Nr½�Nrþð��1ÞrN0

r�¼0;

(17)

and the momentum constraint (10) reduces to the following
two equations

�r2f�2ð�� 1Þf�r2 ~NNr þ f½rNr
~N0 � 2 ~NðNr þ rN0

rÞ�g
þ r ~N0½�Nr þ ð�� 1ÞrN0

r�
þ ð�� 1Þ ~N½Nr � rðN0

r þ rN00
r Þ� ¼ 0; (18)

~N 0ð2N� � rN0
�Þ � ~NðN0

� � rN00
�Þ ¼ 0: (19)

Meanwhile, calculations show that the nontrivial compo-
nents of Eq. (11) are given by

�4�2r3 ~N2

1� 3�
f½ð2�� 1Þ�2 � 2��W � 3�2

W�r ~N þ 2f½ð2�� 1Þ���W� ~N0g þ 16�r5f�1N2
r ð�� 1Þð3�r ~N þ 2f ~N0Þ

þ 16r2ff2rNr
~N0½�Nr þ ð�� 1ÞrN0

r� þ ð�� 1Þð3N2
r þ r2N02

r Þ ~N þ 2r ~NNr½N0
r � ð�� 1ÞrN00

r �g
� 8 ~Nfð2N� � rN0

�Þ2 þ 4�r4Nr½ð�� 2ÞNr þ ð�� 1ÞrN0
r�g ¼ 0; ðErr ¼ 0Þ; (20)

��4�2r4 ~N2

1�3�
f½ð2��1Þ�2�2��W�3�2

W� ~Nþ2½ð2��1Þ���W�ð3�r ~N0þf ~N00Þgþ16�2r6f�1 ~NN2
r ð��1Þ

�32r ~N0½N�ð2N��rN0
�Þ���r4N2

r ��8 ~Nf3ð2N��rN0
�Þ2þ4�r4Nr½ð3��2ÞNrþð1þ3�ÞrN0

r��4rN�ðN0
��rN00

�Þg
þ16r2ff2rNr

~N0½ð��1ÞNrþ�rN0
r�þ ~N½ð��1ÞN2

r �ð�þ1Þr2N02
r ��2rNr

~N½2ð��1ÞN0
rþ�rN00

r �g¼0;

ðE��¼0Þ; (21)

�4�2r3 ~N2f

1� 3�
f½ð1þ 2�Þ�2 þ 6��W þ 3�2

W�r ~N þ 2ð��þ�WÞ½ð3�r2 þ fÞ ~N0 þ rf ~N00�g
þ 32�r3fNr

~N0½ð�r2 þ fÞNr þ rfN0
r� � 8 ~Nf4fN�ðN� � rN0

�Þ þ 2½ð1� �Þm2 þ 2�r2fð1þ 2�Þ�r2N2
r

þ r2f½N02
� þ 2ð�þ 1Þr2fN02

r � þ 4r3fNr½ð�r2 þ 5��r2 � 2�mÞN0
r þ �rfN00

r �g ¼ 0; ðEzz ¼ 0Þ; (22)
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N�f�r2f�2ð�� 1Þð�r2 ~NNr þ f½rNr
~N0 � 2 ~NðNr þ rN0

rÞ�Þ
þ r ~N0½�Nr þ ð�� 1ÞrN0

r� þ ð�� 1Þ
� ~N½Nr � rðN0

r þ rN00
r Þ�g ¼ 0; ðEr� ¼ 0Þ; (23)

ð8�2r4 � 4�mr2 �m2Þ ~N0 þ rf½ð7�r2 �mÞ ~N00

þ rf ~N000� ¼ 0; ðEz� ¼ 0Þ: (24)

We recall that the function f, appearing in these equations
is given in (16). For the general value of � these equations
look somewhat complicated, but they are drastically sim-
plified for the relativistic value � ¼ 1. To make further
consideration more illustrative, it is fitting to begin with the
special cases and then go up to the general case.

(i) The static solution (Nr ¼ 0 andN� ¼ 0). In this case,

from the Hamiltonian constraint (17), we find that

� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
2�� 1

�W: (25)

whereas, the momentum constraints in Eqs. (18) and (19)
are trivially satisfied. Taking this value of � into account in
Eq. (20), we immediately fix the function ~N as ~N ¼ ~N0,
where ~N0 is a constant of integration. With these quantities
in mind, it is easy to check the remaining equations of
motion. As a consequence, we find that Eq. (22) takes the
simple form given by

ð1þ 2�Þð3�� 1Þ � ð4�� 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
ð1� 2�Þ2 ¼ 0: (26)

All other equations are satisfied automatically. Solving
Eq. (26) for � > 1=3, which is the case in our considera-
tion, we arrive at the relativistic value � ¼ 1. This value
corresponds to the lower sign in Eqs. (25) and (26). In other
words, starting with the general value of � > 1=3, we are
driven, by the equations of motion, to the value � ¼ 1.

Thus, the static and cylindrically symmetric solution
for � ¼ 1 is given by

ds2 ¼ �fdt2 þ f�1dr2 þ r2d�2 þ dz2; (27)

where the metric function f ¼ ��Wr
2 �m. Furthermore,

we have set ~N0 ¼ 1 by adjusting the time coordinate, and
used Eqs. (16) and (25). It is easy to see that this metric can
be interpreted as describing the spacetime of a static BTZ
string in HL gravity. It possesses an event horizon located
at the radius

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

��W

s
; (28)

where the quantity m plays the role of a mass parameter
and m> 0.

As we have mentioned above, the BTZ black string
configurations do not exist in general relativity without
introducing a specific source term into the Einstein
field equations. It is remarkable that a particular higher

derivative structure of HL gravity provides a natural place
for the BTZ-type black strings in this theory. We note that
this solution was also discussed in [33].
(ii) The static hedgehog solution. This is the general

static and cylindrically symmetric spacetime with the non-
vanishing radial shift, Nr � 0. We present now this solu-
tion for � ¼ 1. From the momentum constraint Eq. (18)
we see that the quantity ~N again remains constant, i.e. ~N ¼
~N0. SinceN� ¼ 0 as well, Eqs. (19), (23), and (24) become

trivial. Meanwhile, the Hamiltonian constraint (17) gives

Nr ¼ �f�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þ �4�2

64
~N2
0r

2ð�� 3�WÞð�þ�WÞ
s

;

(29)

where 
 is a constant of integration. It is not difficult to
verify that solution (29) is also subject to Eqs. (20) and (21).
On the other hand, substituting this solution in Eq. (22),
focusing on the case when the associated spacetime metric
for 
 ¼ 0 goes over into that given in (27), we find that

� ¼ ��W: (30)

Finally, we arrive at the spacetime metric in the form

ds2¼�ð ~N2
0�N2

r Þfdt2þ2Nrdrdtþf�1dr2þr2d�2þdz2;

(31)

where the metric functions are given by

f ¼ ��Wr
2 �m; Nr ¼ �

ffiffiffiffiffiffiffiffiffi

=f

q
: (32)

For 
 � 0, the solution describes the BTZ-type static black
string with the radial hair, i.e. the black string with a
hedgehog behavior. Taking ~N0 ¼ 1, we find that the hori-
zon radius, at which grr ¼ 0, is given by

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 


��W

s
: (33)

We see that the radial hair contributes to the mass parame-
ter. Clearly, the quantity mþ 
 must be positive.
(iii) The stationary hedgehog solutions. Using equations

of motion given in (17)–(24), it is straightforward to show
that with the vanishing radial shift, Nr ¼ 0, HL gravity
does not support the stationary and cylindrically symmetric
solution, i.e., the rotating BTZ-type black string. However,
such a solution does exist in the general stationary and
cylindrically symmetric case (with Nr � 0), whereby it
inevitably behaves as a hedgehog type solution. Turning
now to this solution for � ¼ 1, we first note that the
quantity N� does not enter in Eq. (18) at all. Therefore,

as in the static case, this equation gives us ~N ¼ ~N0. With
this in mind, from Eq. (19) we find that

N� ¼ �r2 þ �; (34)
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where � and � are constants of integration. Substituting
now this expression in Eq. (17) and solving it, we find that

Nr ¼ �f�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þ �4�2

64
~N2
0r

2ð�� 3�WÞð�þ�WÞ � �2

r2

s
:

(35)

Straightforward calculations show that with ~N ¼ ~N0, the
expressions in (34) and (35) solve all the remaining
field equations, provided that the relation in (30) holds.
Altogether, these expressions enable us to write down the
spacetime metric in the form

ds2 ¼ �ð ~N2
0 � N2

r � r�2f�1N2
�Þfdt2 þ 2ðNrdr

þ 2N�d�Þdtþ f�1dr2 þ r2d�2 þ dz2; (36)

where

Nr ¼ �f�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� �2

r2

s
; (37)

and the functions f and N� are given in Eqs. (32) and (34),

respectively. Here the constant parameter � can be thought
of as a rotation parameter and, as seen from Eq. (37), it
necessarily requires the nonvanishing radial hair, 
 � 0.

The horizon structure of this solution is determined by
the equation grr ¼ 0 and we have

��Wr
2 �m� 
þ �2=r2 ¼ 0: (38)

The two roots of this equation, rþ and r� are given by

r2� ¼ mþ 


�2�W

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2ð��WÞ

ðmþ 
Þ2
s �

; (39)

and provided that

mþ 
 > 0; j�j � mþ 


2
ffiffiffiffiffiffiffiffiffiffiffiffi��W

p ; (40)

they give the radii of outer and inner horizons, respectively.
In the extreme limit of rotation, where the equality in the
second expression in (40) holds, the outer and inner hori-
zons coincide and we find that

r2þ ¼ r2� ¼ mþ 


�2�W

: (41)

The Hawking temperature can be calculated using the
standard formulae

T ¼ �

2�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
ðr��Þðr��Þ

s
; (42)

where � is the surface gravity and the Killing vector
 ¼ @t þ�H@� describes the isometry of the horizon

that rotates with the angular velocity �H ¼ ��=r2þ.
Performing explicit calculations, we find that

T ¼ � r2þ � r2�
2�rþ

�W: (43)

We see that in the limit of extreme rotation the Hawking
temperature vanishes, just as for the extreme BTZ black
hole in three-dimensional general relativity [31].
Next, we calculate the physical mass and angular mo-

mentum of solution (36), using the canonical Hamiltonian
formalism [31] in HL gravity [20,21,27]. It is straightfor-
ward to show that in this approach the action in (5) takes
the form

I ¼
Z

dtd3xð�ij _gij � NH � NiH iÞ þ B; (44)

where

�ij ¼ g0
ffiffiffi
g

p ðKij � �KgijÞ;
H ¼ ffiffiffi

g
p fg0ðKijK

ij � �K2Þ � g1ðR� 3�WÞ
� g2R

2 � g3ZijZ
ijg;

H i ¼ �2Dj�i
j; (45)

and B denotes a boundary term. Evaluating this action for
the metric in (36) and taking the result per unit length of the
string, we find that

I¼�2�ðt2� t1Þ
Z
drð ~N ffiffiffi

f
p

H þNrH rþN�H �ÞþB;

(46)

where

H ¼ 1ffiffiffi
f

p
�
g1ð3�Wrþf0Þ�2g2þg3g

2
4

2r
f02� g3

8r3
fðf0�rf00Þ2

þg0r
3

2

�
N�0
~N

�
2� g0

~N2

�
Nr2

f

�0�
; (47)

H r ¼ 2g0f
�1 N

r ~N0
~N2

; (48)

H � ¼ g0

�
r3N�0

~N

�0
: (49)

We note that, with the z-coordinate being noncompact,
physically meaningful quantities are those taken per unit
length of the string. Varying this action with respect to the
associated fields and omitting the terms which vanish when
the equation of motion hold, we arrive at the expression
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�I ¼ �2�ðt2 � t1Þ
�
~N

�
g1 � 2g2 þ g3g

2
4

r
f0

þ g3
4r3

fðf0 � rf00Þ
�
�f� g3

4r3
½ ~Nfðf0 � rf00Þ�0�f

þ g3
4r2

~Nfðf0 � rf00Þ�f0 � g0 ~N�

�
Nr2

f ~N2

�

þ g0N
��

�
r3N�0

~N

��
þ �B: (50)

Clearly, this quantity must vanish under extremizing of the
action with appropriate boundary conditions. This implies
adjusting the boundary termB in such a way that to cancel
all the preceding terms in (50). With this in mind and
demanding that the fields at infinity are determined by
the solution in (36), we find that the boundary term is
given by

B ¼ ðt2 � t1Þ
�
� ~N1

�
2�m½g1 þ 2ð2g2 þ g3g

2
4Þ�W�

þ 2�g0
~N21




�
þ N�

1
�
� 4�g0

~N1
�

��
þB0; (51)

where B0 is an arbitrary constant and we have renamed
the constants of integration ~N0 and � in solution (36) as
asymptotic displacements ~Nð1Þ and N�ð1Þ, respectively.
From this expression, we see that the mass M and the
angular momentum J appear as conjugates to these
asymptotic displacements, as it must be in the
Hamiltonian approach under consideration. Therefore,
we have

M ¼ 2�m½g1 þ 2ð2g2 þ g3g
2
4Þ�W� þ 2�g0

~N21

þ C;

J ¼ � 4�g0
~N1

�; (52)

where the appearance of an arbitrary constant C in the
expression for the mass is induced by the constant
B0 present in (51). We can now set ~Nð1Þ ¼ 1 and
N�ð1Þ ¼ 0, without loss of generality.

Substituting into these expressions the quantities given
in (6), with the emergent relations (8) in mind, and choos-
ing the constant C so as to obtain zero mass for the
disappearing event horizon (see Eqs. (33) and (39)), we
find that the mass and the angular momentum, per unit
length of the rotating black string (36), are given by

M ¼ mþ 


4G
; J ¼ � �

4G
: (53)

As it was mentioned above, from these expressions it
follows that the quantities mþ 
 and � can be thought
of as the mass and the rotation parameters, respectively.

B. Lemos-type solutions

We turn now to the solutions for which the function gðrÞ
in metric (13) is given as g ¼ 	2r2. Unfortunately, for the
nonvanishing shift vector we were unable to solve the field
equations even in the relativistic limit � ¼ 1. Therefore,
we restrict ourselves to the static case with zero shifts, but
with any value of � > 1=3. With these in mind, we sub-
stitute the metric ansatz (13) into the equations of motion.
As a consequence, we find that the momentum constraint
(10) is trivially fulfilled, while the Hamiltonian constraint
(9) gives the equation

ð2�� 1Þ f
2

r2
� 2�

ff0

r
þ �� 1

2
f02

� 2�WðrfÞ0 � 3�2
Wr

2 ¼ 0: (54)

It is also straightforward to show that for the components
of the tensor Eij in Eq. (11), the relation Ezz ¼ 	2E��

holds. Therefore, we have only two independent compo-
nents of Eqs. (11). These are given by

ðln ~NÞ0
�
ð�� 1Þf0 � 2�

f

r
� 2�Wr

�

þ ð�� 1Þ
�
f00 � 2

f

r2

�
¼ 0; ðErr ¼ 0Þ; (55)

~N�1 ~N00
�
ð�� 1Þf0 � 2�

f

r
� 2�Wr

�
� ðln ~NÞ0

2r2f
f3r2f0½ð1� �Þf0 þ 2�Wr� þ 2f½5�rf0 � 2fþ 2ð1� �Þr2f00 þ 2�Wr

2�g

� 1

r3f
fð3� 2�Þf2 þ�Wr

4ðf00 þ 3�WÞ½þr2f0½�f0 þ 2ð1� �Þrf00 þ 2�Wr� þ rf½2ð�� 2Þf0

þ �rf00 þ ð1� �Þr2f000�g ¼ 0; ðE�� ¼ 0Þ: (56)

We note that in obtaining Eq. (55) we have used Eq. (54).
Next, introducing a new radial function F ðrÞ through the
relation

f ¼ ��Wr
2 �F ðrÞ; (57)

we put Eqs. (54) and (55) in the form

�� 1

2
F 02 � 2�

FF 0

r
þ ð2�� 1ÞF

2

r2
¼ 0; (58)

ðln ~NÞ0
�
ð�� 1ÞF 0 � 2�

F
r

�
þ ð�� 1Þ

�
F 00 � 2

F
r2

�
¼ 0:

(59)
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These equations as well as Eq. (56) admit the trivial
solution F ¼ 0, leaving unconstrained the function ~N.
Furthermore, we have two other solutions given by

f ¼ ��Wr
2 �Mrp; ~N ¼ ~N0r

1�2p; (60)

where M and ~N0 are constants of integration and

p ¼ 2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
�� 1

: (61)

The associated spacetime metric is given by

ds2 ¼ � ~N2fdt2 þ f�1dr2 þ r2d�2 þ 	2r2dz2: (62)

We are interested in the solution that has a clear physical
meaning in the relativistic limit � ¼ 1. This corresponds to
the lower sign in (61) with � 2 ð1=3;1Þ or p 2 ð�1; 2Þ.
Evaluating the scalar curvature for this solution, we find
the expression

R ¼ 2�Wð11� 12pþ 4p2Þ þ 3Mrp�2ð2� 2pþ p2Þ;
(63)

which clearly shows that at r ¼ 0 there exists a curvature
singularity. It is also easy to see that for this solution the
radius of the event horizon is given by

rþ ¼
�

M

��W

�
1=ð2�pÞ

; (64)

where the parameter M is supposed to be positive and
it is related to the mass per unit length of the string (see
Eq. (82)). Meanwhile, for the Hawking temperature eval-
uated by means of formulae (42) we find

T ¼ � ~N0ð2� pÞ
4�

r2ð1�pÞ
þ �W: (65)

On the other hand, for � ¼ 1 (or p ¼ 1=2) we have solu-
tion (62) with

f ¼ ��Wr
2 �M

ffiffiffi
r

p
; ~N ¼ ~N0; (66)

where ~N0 can be set equal to one. We note that these results
are in agreement with those obtained in [20] for topological
black holes.

IV. THERMODYNAMICS

One of the most striking properties of black holes in
general relativity is that they obey the laws of thermody-
namics and have an entropy which is always given by one
quarter of the horizon area. However, the simple area law
breaks down for black holes in higher derivative gravity
theories [34]. Recently, this question was also raised in the
context of HL gravity [20,21]. In particular, it was shown
that the entropy of spherically symmetric black holes
(as well as the topological ones) in HL gravity involves a
logarithmic term, in addition to the leading ‘‘one quarter of
area’’ term. The logarithmic term disappears only for black
holes for which the scalar curvature of two-dimensional
Einstein space vanishes. This fact motivates us to study the
area law for the black string configurations as well. In this

section, we calculate the thermodynamical quantities and
study the area law for both the static BTZ- and Lemos-type
black string solutions, given in (27) and (62), respectively.
The thermodynamical properties of the black string

configurations in HL gravity can be discussed in a similar
way to those of black holes in general relativity, using
the Euclidean path integral approach [35]. Within this
approach, the free energy F of a thermodynamical en-
semble divided by the temperature T is identified with
the Euclidean action evaluated on the Euclidean continu-
ation of the black hole solutions. Thus, keeping in mind
that in our case all the related quantities are taken per unit
length of the black string, we have

I E ¼ F

T
¼ M

T
� S; (67)

where S denotes the entropy of the system and the
Euclidean action is related to that given in (44) as IE ¼
�iI . We recall that we are interested in the static case with
Nr ¼ 0. Therefore, passing to the imaginary time � ¼ it
and using Eq. (46), we obtain that

I E ¼ 2��
Z 1

rþ
dr ~N

ffiffiffi
f

p
H þBE; (68)

where � ¼ �2 � �1 is the period of the Euclidean ‘‘time’’
that in turn determines the Hawking temperature

T ¼ ��1 ¼ ~Nf0

4�

��������rþ
; (69)

implying the absence of singularities at the black string
horizon. An equivalent definition is given in (42) as well.
Since for the static black string solutions under considera-
tion we have H ¼ 0, the boundary term BE plays a
crucial role in the variation of the action. This term must
be adjusted so as to provide a true extremum of the action
on these solutions. When performing the variation, as in the
case of the mass and angular momentum calculations
described in the previous section, one must allow changes
in the corresponding field variables which contribute to the
boundary term, while keeping fixed their conjugates. In our
case, the conjugate is the temperature which we keep fixed
under the variation.
We first begin with the static BTZ-type metric (27) for

which the Euclidean action (68), as follows from (46), can
be written in the form

IE ¼ 2��
Z 1

rþ
dr ~N

�
g1ð3�Wrþ f0Þ � 2g2 þ g3g

2
4

2r
f02

� g3
8r3

fðf0 � rf00Þ2
�
þBE: (70)

The extremum of this action on metric (27) enables us to
fix the variation of the boundary term as
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�BE ¼�2��

�
~N

�
g1� 2g2þg3g

2
4

r f0 þ g3
4r3

fðf0 �rf00Þ
�
�f

� g3
4r3

½ ~Nfðf0 �rf00Þ�0�fþ g3
4r2

~Nfðf0 �rf00Þ�f0
�1
rþ
:

(71)

With the BTZ-type solution in (27), evaluating the bound-
ary term at infinity, we find that

B Eð1Þ ¼ 2��m½g1 þ 2ð2g2 þ g3g
2
4Þ�W� þB1: (72)

Meanwhile, for the boundary term at the horizon, similar
calculations yield

B EðrþÞ ¼ 8�2rþ½g1 þ 2ð2g2 þ g3g
2
4Þ�W� þB2: (73)

HereB1 andB2 are constants of integration, and in obtain-
ing (73) we have used Eq. (69) along with the fact that

ð�fÞrþ ¼ �ðfÞ0jrþ�rþ: (74)

Since the on-shell value of the Euclidean action is
determined by the boundary term alone, IE ¼ BEð1Þ �
BEðrþÞ, then comparing this result with Eqs. (67) and (69),
it is not difficult to see that the mass and the entropy (per
unit length) of the static BTZ-type black string are given by

M ¼ 2�m½g1 þ 2ð2g2 þ g3g
2
4Þ�W�;

S ¼ 8�2rþ½g1 þ 2ð2g2 þ g3g
2
4Þ�W�;

(75)

where we have omitted an arbitrary constant of integration,
requiring that IE ¼ 0 for rþ ! 0. We note that the ex-
pression for the mass is precisely the same as that given in
(52) for 
 ¼ 0 and C ¼ 0. Remarkably, these expressions
clearly delineate the contribution from higher-derivative
terms in the action through the combination of constants
g2, g3 and g4. Moreover, for � ¼ 1 using the value of these
constants given in (6), it is easy to show that g1 ¼ 2ð2g2 þ
g3g

2
4Þ. That is, the higher-derivative contributions to the

mass and entropy result in the doubling of the ordinary
Einstein-Hilbert contribution. As a consequence, we find
that

S ¼ A
2G

; (76)

whereA ¼ 2�rþ is the area of the horizon per unit length
and we have also used the emergent relations in (8). Thus,
the entropy of the static BTZ-type black string in HL
gravity is one half of its horizon area. It is easy to check
that the entropy, with the mass and with the temperature
given in (75) and (69), respectively, satisfies the first law of
thermodynamics

dM ¼ TdS: (77)

We note that this entropy-area relation was first obtained
in [36] for a particular class of Calabi-Yau black holes.
See also [37], for further developments.

Next, we turn to the Lemos-type black string solution
(62) with the metric functions given in (60). For this
solution the Euclidean action is given by

IE ¼ 2��	
Z 1

rþ
dr ~N

�
g1½2ðrfÞ0 þ 3�Wr

2� � 4g2
r2

ðrfÞ02

� g3g
2
4

2r2
½4fðrfÞ0 þ 3r2f02�

�
þBE: (78)

Again, the variation of the boundary term can be found
from the extremum of this action on solution (62). We have

�BE ¼ �2��	

�
~N

�
2g1r� ð8g2 þ 3g3g

2
4Þf0

� 2ð4g2 þ g3g
2
4Þ

r
f

�
�f

�1
rþ
: (79)

Performing similar calculations, as in the case of BTZ-type
black strings, and comparing the on-shell value of the
Euclidean action IE ¼ BEð1Þ �BEðrþÞ with that given
in (67), we find that the mass and the entropy of the Lemos-
type black strings are given by

M ¼ �	 ~N0M
2½2ð4g2 þ g3g

2
4Þ þ pð8g2 þ 3g3g

2
4Þ�; (80)

S ¼ 4�2r2þ	½2g1 þ ð2� pÞð8g2 þ 3g3g
2
4Þ�W�: (81)

We note that the mass is determined only by the contribu-
tion from higher-derivative terms. On the other hand, it is
curious that in both expressions the second term in the
square bracket disappears in the relativistic limit � ¼ 1.
Indeed, using Eq. (6), it is easy to show that the combina-
tion 4g2 þ g3g

2
4 vanishes identically. That is, for � ¼ 1,

the entropy must obey the usual area law just as for black
holes in general relativity. Indeed, using relations (6) and
(8) in Eqs. (80) and (81), we find that

M ¼ �	 ~N0M
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
16G�W

; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
2

A
4G

; (82)

whereA ¼ 2�	r2þ is the horizon area per unit length. We
see that, for � ¼ 1, the entropy of the Lemos-type black
string in HL gravity is given by one quarter of the horizon
area. It is straightforward to verify that with the tempera-
ture given in (65), the quantities in (82) fulfil the first law of
thermodynamics (see Eq. (77)).

V. CONCLUSION

In this paper, we have shown that HL gravity admits a
class of cylindrically symmetric solutions which can be
interpreted as counterparts of black strings in general
relativity. Using the general stationary and cylindrically
symmetric ansatz for the spacetime metric and focusing on
the cases when the Cotton tensor in the HL action vanishes,
we have distinguished two examples of the cylindrically
symmetric spacetimes. In the first example, the metric
ansatz matches, for the vanishing radial shift in the
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ADM-type decomposition, the form of the stationary BTZ
black string metric in general relativity. On this ground,
one can think of the resulting solutions as describing the
BTZ-type black strings in HL gravity. In the second ex-
ample, the metric ansatz corresponds to the Lemos-type
black string configuration which does exist in general
relativity with a negative cosmological constant.

For the relativistic value of the coupling constant,
� ¼ 1, we have given the static BTZ-type black string
solutions with both zero and nonzero radial shift. The
solution with the radial shift, the hedgehog type solution,
is inherent in HL gravity alone, as the foliation-preserving
invariance of the theory is not enough to eliminate the shift
from the metric. Moreover, unlike general relativity, HL
gravity provides a natural place for the BTZ-type black
string configurations, due to its particular higher derivative
structure. As is known, in general relativity such configu-
rations require a specific source term for the Einstein
field equations. We have also found the stationary and
cylindrically symmetric solution with the radial shift,

which corresponds to a rotating BTZ-type black string. It
is important to note that this solution requires the presence
of the radial hair for its very existence. In other words, the
radial hair is necessary for rotation.
With the Lemos-type black string, restricting ourselves

to the static case with zero shifts, we have presented the
exact solution for any value of � > 1=3. Further, exploring
the thermodynamical properties of the black strings in the
framework of the Euclidean path integral approach, we
have shown that for � ¼ 1 the entropy (per unit length)
of the Lemos-type static black string is one quarter of the
horizon area. Meanwhile, the corresponding entropy of the
static BTZ-type black string is equal to one half of its
horizon area.
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