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The brane-world cosmological model in higher-dimensional spacetime with a bulk scalar field is

investigated. We derive the ð4þ nÞ-dimensional gravitational field equations for the scalar field on the

ð3þ nÞ-brane in a ð5þ nÞ-dimensional bulk with Einstein gravity plus a self-interacting scalar field. The

ð4þ nÞ-dimensional gravitational field equations can be formulated to standard form with the extra

component. Using this formalism we study the Kaluza-Klein brane cosmology. We derive the Friedmann

equation and a possible energy leak out of the brane into the bulk. We present some exact solutions

corresponding to vacuum brane and matter on the brane.

DOI: 10.1103/PhysRevD.84.044008 PACS numbers: 04.50.�h, 98.80.Cq, 98.80.Jk, 98.80.Qc

I. INTRODUCTION

The idea that our universe has dimensions more than

four has been around since the first attempts to unify

fundamental forces. The Kaluza-Klein theories were one

of the first attempts towards this direction. According to the

Kaluza-Klein picture, extra dimensions are compactified to

a very small length scale (naturally the Planck scale), and

as a result spacetime appears to be effectively four dimen-

sions, insofar as low energies are concerned. On the other

hand, inspired by the discovery of D-branes within string

theories, the brane-world scenario is now one of the most

important ideas in high energy physics. According to the

brane-world scenario, our physical Universe is envisioned

as a four-dimensional hypersurface in a five-dimensional

bulk spacetime. The standard model matter is confined to

the brane but gravity, by its universal character, can propa-

gate in the extra dimensions. Much efforts to reveal cos-

mology on the brane have been done in the context of

five-dimensional spacetime, especially after the stimulat-

ing proposals by Randall and Sundrum [1,2]. In this model,

a five-dimensional realization of the Horava-Witten solu-

tion [3], the hierarchy problem can be solved by introduc-

ing an appropriated exponential warp factor in the metric.

The various properties and characteristics of the Randall-

Sundrum model have been extensively analyzed: the cos-

mology framework [4–8], the low-energy effective theory

[9–20], the black hole physics [21–26], and the Lorentz

violation [27–37].

The brane-worldmodels with scalar field in the bulk have

been discussed by various authors; see [38] and references

therein. It is believed that in the unified theory approach, a

dilatonic gravitational scalar field term is required in the

Einstein-Hilbert action [38]. One of the first motivations to

introduce a bulk scalar field is to stabilize the distance

between the two branes [39] in the context of the first model

introduced by Randall and Sundrum. A second motivation

for studying scalar fields in the bulk is due to the possibility

that such a setup could provide some clue to solve the

famous cosmological constant problem. Models with infla-

tion driven by the bulk scalar field have been studied, and it

is shown that inflation is possible without inflaton on the

brane [40]. Later, the quantum fluctuations of brane infla-

tion and reheating issues are also addressed in the brane-

world scenario with a bulk scalar field [41]. The creation of

a brane world with a bulk scalar field using an instanton

solution in a five-dimensional Euclidean Einstein equations

is also considered [42].
In this paper, our main purpose is to construct brane

cosmological models in higher-dimensional spacetime

with a bulk scalar field. We generalize the case of four-

dimensional brane models to ð4þ nÞ-dimensional brane

models where n represents internal dimensions of the

brane. In order to obtain a four-dimensional description

of our Universe, we combine two representative and con-

trastive approaches, that is, the Randall-Sundrum and the

Kaluza-Klein scenario. In the former case, the compactifi-

cation is done by the localization of the configuration along

the extra dimension, while in the latter one the reduction is

achieved by the compactification of the internal space of

the brane. Such a way of construction is called Kaluza-

Klein brane world, and it has been investigated by various

authors [43–51].
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This paper is organized as follows. In Sec. II, we study
a higher brane-world model in a ð5þ nÞ-dimensional
spacetime with a bulk scalar field. We derive the
ð4þ nÞ-dimensional Einstein equations using the geomet-
rical approach. We transform the nonconventional kinetic
term in the Einstein equations into the standard form. In
Sec. III, the Kaluza-Klein brane worlds cosmology is
presented by using the extra component formalism. Then
we discuss the vacuum brane solutions with an initial
singularity and a possible energy leak out of the brane
into the bulk. For completeness, we study the static internal
dimension with matter on the brane in Sec. IV. We derive
the Friedmann equation and a possible energy leak out of
the brane into the bulk. In Sec. V, we study dimensional
reduction of the higher-dimensional theory and then per-
forming a conformal transformation in order to recover
ordinary four-dimensional general relativity. Section VI is
devoted to the conclusions.

II. EFFECTIVE GRAVITATIONAL EQUATIONS

A. Action and field equations

We consider the higher-dimensional dilatonic brane
world, i.e. the higher-dimensional brane world where the
bulk is allowed to contain a single nongravitational degree
of freedom, the scalar field �. A ð3þ nÞ brane with
the ð4þ nÞ-dimensional spacetime embedded in the
ð5þ nÞ-dimensional spacetime is located at y ¼ 0, where
the y direction is compactified on the orbifold. This higher-
dimensional dilatonic brane-world model is described by
the action

S ¼
Z

d5þnx
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
gabra�rb�� Vð�Þ

�

þ
Z

d4þnx
ffiffiffiffiffiffiffi�h

p ½��ð�Þ þLm�; (1)

where R is the Ricci scalar of the ð5þ nÞ-dimensional
metric gab. � is the brane tension that is allowed to the
function of �, and Lm is the Lagrangian for matter local-
ized on the brane. A metric h�� is the induced metric on the

brane.
Wewrite the coordinate system for the bulk spacetime in

the form

ds2 ¼ gabdx
adxb ¼ dy2 þ g��ðy; xÞdx�dx�; (2)

and we may assume that the position of the brane is y ¼ 0
in this coordinate system so that the induced metric on the
brane is h��ðxÞ ¼ g��ðy ¼ 0; xÞ and the extrinsic curva-

ture is defined as

K�� ¼ � 1

2

@

@y
g�� � � 1

2
g��;y: (3)

The Einstein equations can be obtained by varying the
action (1) with respect to the gravitational field gab,

G ab ¼ �2T ab þ �2��
a ��

bð��g�� þ t��Þ�ðyÞ; (4)

where Gab ¼ Rab � gabR=2 is the ð5þ nÞ-dimensional
Einstein tensor, and T ab is the energy-momentum tensor
for the scalar field,

T ab ¼ ra�rb�� gab

�
1

2
gcdrc�rd�þ Vð�Þ

�
; (5)

while the total energy-momentum tensor on the brane t��

is defined as

t�� � �2
�Lm

�g�� þ g��Lm: (6)

The equation of motion for the scalar field reads

rara�� V0ð�Þ � �0ð�Þ�ðyÞ ¼ 0; (7)

where a prime denotes a derivative with respect to �.
In the coordinate system (2) and by the application of the

Gauss-Codazzi equations, one has the ð5þ nÞ-dimensional
field equations as follows:

G y
y ¼ �1

2Rþ 1
2K

2 � 1
2K

��K�� ¼ �2T y
y; (8)

G y
� ¼ �r�K�

� þr�K ¼ �2T y
�; (9)

G�
� ¼ G�

� þ ðK�
� � ��

�KÞ;y � KK�
�

þ 1
2�

�
�ðK2 þ K��K��Þ

¼ �2T �
� þ �2ð����

� þ t��Þ�ðyÞ; (10)

where G�
� ¼ R�

� � ��
�R=2 is the ð4þ nÞ-dimensional

Einstein tensor and the covariant derivative r� is calcu-

lated with respect to the metric g��. Combining Eqs. (8)

with (10), and using the ð5þ nÞ-dimensional Weyl tensor,
we obtain the following ð4þ nÞ-dimensional Einstein
equations

G�
�¼�K��K��þKK�

�þ1

2
��

�ðK��K
���K2Þ

þ2þn

3þn
�2

�
T �

�� 1

4þn
��

�T �
�þ3þn

4þn
��

�T y
y

�
�E�

�: (11)

Here, we have defined that the term T �
� as the trace

defined with respect to the ð4þ nÞ-dimensional metric
g��, and the projected Weyl tensor is defined as E�� ¼
Cy�y�jy¼0. To eliminate the extrinsic curvature, we need

the junction conditions. It can be obtained by collecting
together the terms in field equations that contain a �
function. By assuming Z2 symmetry we find

½K�
� � ��

�K�jy¼0 ¼ �2

2
ð����

� þ t��Þ; (12)

½@y��jy¼0 ¼ 1
2�

0ð�Þ: (13)
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Using these junction conditions, we find the
ð4þnÞ-dimensional generalization of the Shiromizu-
Maeda-Sasaki equations [5],

G�
� ¼ ð2þ nÞ�4

4ð3þ nÞ �t�� þ ð2þ nÞ�2

ð3þ nÞ
�

�
r��r��� ð5þ nÞ

2ð4þ nÞ�
�
�r��r��

�
��b�

�
� þ �4	�

� � E�
�; (14)

where the induced cosmological constant on the brane is
given by

�bð�Þ ¼ ð2þ nÞ�2

ð4þ nÞ
�
V þ ð4þ nÞ�2

8ð3þ nÞ �
2 � 1

8
�02

�
; (15)

and the local quadratic energy-momentum tensor on the
brane is

	�
� ¼ � 1

4
t��t

�
� þ 1

4ð3þ nÞ tt
�
�

þ 1

8
��

�

�
t��t

�� � 1

3þ n
t2
�
: (16)

We note that Eq. (15) may not be constant in general, as is
clear from its expression. The first term comes from the
scalar field potential. The second term is a contribution
from the brane tension, which yields extrinsic curvature of
the brane and its quadratic. The third term is the first
derivative of the brane tension, which leads to a disconti-
nuity in the scalar field gradient normal to the brane.

The scalar field equation of motion is given by

r�r��� 1

�2
�0

bð�Þ ¼ Jn; (17)

where a possible energy leak out of the brane into the bulk,
Jn, is defined by

Jn ¼ ð2þ nÞ
4ð4þ nÞ

�
�0�00 � �2

3þ n
�t

�

þ 2

4þ n
r�r��� 2þ n

4þ n
½@2y��y¼0: (18)

B. Extra component formalism

The induced Einstein equations on the brane, Eq. (14),
contain the nonconventional kinetic term. However, we can
transform the nonconventional kinetic term into the stan-
dard form, then Eq. (14) can be rewritten as

G�
� ¼ �2

�
r��r��� 1

2
��

�r��r��

�
� �2Veff�

�
� þ X�

�; (19)

where the extra component X�
� is defined as

X�
� � Y�

� �Z�
�; (20)

with

Y�
� � ð2þ nÞ�4

4ð3þ nÞ �t�� þ �4	�
� ; (21)

and

Z �
��E�

�þ 1

ð3þnÞ
�
r��r��� 1

4þn
��

�r��r��

�
:

(22)

Following Eq. (17) we have defined the effective poten-
tial Veff ¼ �b=�

2, where the induced cosmological con-
stant on the brane �b is given by Eq. (15). Then the scalar
field equation of motion becomes

r�r��� V0
eff ¼ Jn: (23)

From Eq. (19), the Bianchi identity implies

r�X
�
� ¼ ��2Jnr��: (24)

Note that the energy-momentum tensor of the extra
component is not conserved due to the existence of the
bulk scalar field. In the absence of matter on the brane,
Y�

� ¼ 0, then we have X�
� ¼ �Z�

� ¼ 0. In this case,

we can interpret the extra component as the energy-
momentum tensor for the dark radiation.
In the following section, we attempt to study analytically

the cosmological consequences of a higher-dimensional
brane world. We used the extra component formalism to
discuss cosmology in the brane Universe in the context of
the Kaluza-Klein brane-world scheme, i.e., to consider
Kaluza-Klein compactifications on the brane.

III. DILATONIC KALUZA-KLEIN
BRANE-WORLD COSMOLOGY

For the cosmological applications, we are interested in
homogeneous and isotropic geometries on the brane, hence
the metric on the brane is taken as the Friedmann-
Robertson-Walker metric,

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj þ b2ðtÞ���dz

�dz�; (25)

where �ij represents the metric of three-dimensional ordi-

nary spaces with the spatial coordinates xi (i ¼ 1, 2, 3),
while ��� represents the metric of n-dimensional compact

spaces with the coordinates z� (� ¼ 4; . . . ; 3þ n). We
assume that the internal space is given by n-dimensional
torus. The scale factor b denotes the size of the internal
dimensions, while the scale factor a is the usual scale
factor for the external space.
In the background metric (25) and assuming that � only

depends on time, we obtain the following equations:

G0
0 ¼ ��2ð12 _�2 þ VeffÞ þ X0

0; (26)

Gi
j ¼ �2ð12 _�2 � VeffÞ�i

j þ Xi
j; (27)
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G�
� ¼ �2ð12 _�2 � VeffÞ��

� þ X�
�; (28)

€�þ 3Ha
_�þ nHb

_�þ V0
eff ¼ �Jn; (29)

_t 00 þ 3Haðt00 � t11Þ þ nHbðt00 � t44Þ ¼ 0; (30)

where Ha ¼ _a=a and Hb ¼ _b=b, and the components of
the ð4þ nÞ-dimensional Einstein tensor are

G0
0 ¼ �3

�
H2

a þ ka
a2

�

� n

�ðn� 1Þ
2

H2
b þ 3HaHb þ ðn� 1Þ

2

kb
b2

�
; (31)

Gi
j ¼ �

�
2 _Ha þ 3H2

a þ ka
a2

�
�i

j

� n

�
_Hb þ ðnþ 1Þ

2
H2

b þ 2HaHb þ ðn� 1Þ
2

kb
b2

�
�i

j;

(32)

G�
�¼�3

�
_Haþ2H2

aþka
a2

�
��

�

�ðn�1Þ
�
_Hbþn

2
H2

bþ3HaHbþðn�2Þ
2

kb
b2

�
��

�:

(33)

The values of ka and kb are related to the curvatures
of the external space and the internal space, respectively.
In this paper we assume kb ¼ 0 for simplicity.
Equations (26)–(30) are our basic equations to study cos-
mology in the Kaluza-Klein brane world.

The constraint equation for the extra component is
given by

_X 0
0 þ 3HaðX0

0 � X1
1Þ þ nHbðX0

0 � X4
4Þ ¼ ��2Jn _�:

(34)

By combining Eqs. (26)–(28) one can write

X0
0 þ 3X1

1 � 2X4
4 ¼ G0

0 þ 3G1
1 � 2G4

4 þ 2�2Veff :

(35)

A. Solutions with �b ¼ 0 and Jn ¼ 0

Let us first consider that the bulk and brane potentials
obey the generalized Randall-Sundrum condition �b ¼ 0,
so that Veff ¼ 0, and the energy conservation for scalar
field on the brane is satisfied, Jn ¼ 0. The solution of
Eq. (29) is given by

_� ¼ c�

a3bn
; (36)

where c� is an integration constant. Note that the scalar

field depends on both the external scale factor and the
internal scale factor, �ðtÞ ¼ �ðaðtÞ; bðtÞÞ.

In the following we consider a special case in which the
brane world evolves with two scale factors. We take a
simple relation between the scale factors on the brane of
the form bðtÞ ¼ a
ðtÞ, where 
 is a constant. For the
internal scale factor bðtÞ to be small compared to the
external scale factor aðtÞ, the constant 
 should be nega-
tive. In this choice we have Hb ¼ 
Ha � 
H, and then
Eq. (34) becomes

_X 0
0þð4þn
ÞHX0

0¼�n
ð1�
Þ½ _Hþð3þn
ÞH2�H:

(37)

The Friedmann equation is given by

3ð1þ �0ÞH2 ¼ �3
ka
a2

þ �2

2

c2�

a2ð3þn
Þ � X0
0; (38)

where

�0 ¼ n
ð6� 
þ n
Þ
6

: (39)

The extra component X0
0 is determined by the solution of

Eq. (37) that can be rewritten as

_X 0
0 þ ð4þ �0ÞX0

0H ¼ �1

ka
a2

H; (40)

where

�0 ¼ n
ð2þ 
þ n
Þ
3þ n


; �1 ¼ 6n
ð1� 
Þ
3þ n


;

�2 ¼ 3nð1� 
Þðn� 1Þð4þ 
þ 3n
Þ
4ð3þ n
Þ :

(41)

Note that the effect of internal dimension is given by
definitions (39) and (41). Equation (40) can be integrated
to give

X0
0 ¼

�1

2þ �0

ka
a2

� "0
a4þ�0

; (42)

where "0 is an integration constant. Inserting Eq. (42) into
Eq. (38), we find the modified Friedmann equation

3ð1þ �0ÞH2 ¼ �3

�
1þ �1

3ð2þ �0Þ
�
ka
a2

þ �2

2

c2�

a2ð3þn
Þ þ
"0

a4þ�0
: (43)

In what follows we study the solutions with an initial
singularity (a ¼ 0). Using the conformal time variable �
defined by the differential relation dt ¼ ad�, we can
rewrite Eq. (43) as

3ð1þ �0Þ
�
da

d�

�
2 ¼ �3

�
1þ �1

3ð2þ �0Þ
�
kaa

2

þ �2

2

c2�

a2ð1þn
Þ þ
"0
a�0

; (44)

and Eq. (36) as
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d�

d�
¼ c�

að2þn
Þ : (45)

In the following we consider three cases: 
 ¼ 0, �1.
In the case 
 ¼ �1, the internal scale factor bðtÞ is

proportional to bðtÞ ¼ 1=aðtÞ. We have a ! 0, and the
infinitely large internal space, b ! 1.

In the case 
 ¼ 1, the internal scale factor bðtÞ is related
to aðtÞ as bðtÞ ¼ aðtÞ. The external scale factor evolves as

a2þnð�Þ ¼ "0�ð�þ �cÞ
3ð1þ ka�

2Þ ; (46)

where the new variable time is given by

�ð�Þ ¼

8>>>><
>>>>:

ffiffiffiffiffiffiffiffiffiffiffi
3ð2þnÞ
2ð3þnÞ

q
j�j; for ka ¼ 0

tan
ffiffiffiffiffiffiffiffiffiffiffi
3ð2þnÞ
2ð3þnÞ

q
j�j; for ka ¼ þ1

tanh
ffiffiffiffiffiffiffiffiffiffiffi
3ð2þnÞ
2ð3þnÞ

q
j�j; for ka ¼ �1

; (47)

and

�c ¼
ffiffiffi
6

p
�jc�j
"0

: (48)

The scalar field evolves as

���0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ n

ð2þ nÞ�2

s
ln

�������� �

"0ð�þ �cÞ
��������; (49)

for "0 � 0, or

���0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ n

ð2þ nÞ�2

s
lnj�j; (50)

for "0 ¼ 0, where � corresponds to the sign of c�. Note

that the initial singularity appears at � ¼ 0. If we convert to
proper time the evolution of the scale factor with c� � 0 is

given by

aðtÞ ¼
�
2

3

�
1=2ð2þnÞ�3þ n

2þ n

�
5þn=2ð2þnÞð3þnÞð�c�Þ1=3þnt1=3þn:

(51)

Then, the Universe starts expanding away from the initial
singularity.

A more interesting case is in the static internal dimen-
sion, 
 ¼ 0; we obtain

a2ð�Þ ¼ "0�ð�þ �cÞ
3ð1þ ka�

2Þ ; (52)

where

�ð�Þ ¼
8<
:
j�j; for ka ¼ 0
tanj�j; for ka ¼ þ1
tanhj�j; for ka ¼ �1

; (53)

and

���0 ¼ �
ffiffiffiffiffiffiffiffi
3

2�2

s
ln

�������� �

"0ð�þ �cÞ
��������; (54)

for "0 � 0, or

���0 ¼ �
ffiffiffiffiffiffiffiffi
3

2�2

s
lnj�j; (55)

for "0 ¼ 0. In a spatially flat Universe the evolution of the
scale factor is the same as the standard cosmological
solution with stiff matter,

aðtÞ ¼
�
3

2
c2��

2

�
1=6

t1=3: (56)

We also find that the Universe starts expanding away from
the initial singularity.

B. Solutions with exponential potential

Wemay now consider the case when the bulk scalar field
potential and the brane tension are given as exponents, with
some constant parameters V0, �0, and 
,

Vð�Þ ¼ V0 exp

�
� 2

3þ n

��

�
; (57)

�ð�Þ ¼ �0 exp

�
� 1

3þ n

��

�
: (58)

These are string-inspired values for the potentials [52–54].
Then the effective potential is given by

Veff ¼ Veff;0 exp

�
� 2

3þ n

��

�
¼ �b

�2
; (59)

where

Veff;0 ¼ 2þ n

4þ n
V0 þ ð2þ nÞ�2�2

0

8ð3þ nÞ
�
1� 
2

3ð4þ nÞ
�
: (60)

We also assume the proportionality relation between the
scalar field and the logarithm of the scale factors,

� ¼ 


�
lnðabÞ ¼ 


�
lnða1þ
Þ: (61)

From the above model, if 
 ¼ 0 we have � ¼ 0 and then
V ¼ V0, � ¼ �0, and Veff ¼ Veff;0. The induced cosmo-

logical constant on the brane,�b, is exactly constant. If we
set �b ¼ 0, the generalized Randall-Sundrum condition is
given by

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð3þ nÞ
ð4þ nÞ� ð�V0Þ

s
: (62)

For the positive brane tension, V0 must be negative.
Thus V0 can be interpreted as a bulk cosmological cons-
tant and the Randall-Sundrum brane is a slice in
ð5þ nÞ-dimensional anti–de Sitter spacetime. For
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vanishing the extra component X�� or the Weyl tensor

E��, we have the Minkowski spacetime on the brane.

Applying the above model, Eq. (34) becomes

_X 0
0 þ ð4þ �0
ÞX0

0H ¼ �1


ka
a2

H þ �3�
2VeffH; (63)

where

�0
 ¼ �0 þ ð1þ 
Þ2
3þ n



2; �1
 ¼ �1 � 6ð1þ 
Þ2
3þ n



2;

�2
 ¼ �2 � ðn� 1Þð3þ 5nÞð1þ 
Þ2
4ð3þ n
Þ 
2;

�3 ¼ 6nð1� 
Þ2
ð2þ nÞð3þ n
Þ
þ 2ð1þ 
Þð3þ 3nþ n2 þ 4n
þ 9
Þ

ð2þ nÞð3þ nÞð3þ n
Þ 
2: (64)

The solution of Eq. (63) is given by

X0
0 ¼

�1


2þ �0


ka
a2

þ ð3þ nÞ�3

ð3þ nÞð4þ �0
Þ � 2
2
�2Veff

� "0


að4þ�0
Þ ; (65)

where "0
 is an integration constant. The Friedmann equa-
tion is given by

3ð1þ�0
ÞH2¼�3

�
1þ �1


3ð2þ�0
Þ
�
ka
a2

þ
�
1� ð3þnÞ�3

ð3þnÞð4þ�0
Þ�2
2

�
�2Veff;0

a2

2=ð3þnÞ

þ "0


að4þ�0
Þ ; (66)

where

�0
 ¼ �0 � 1
6ð1þ 
Þ2
2: (67)

We also find that a possible energy leak out of the brane
into the bulk is in the form

Jn ¼ � 3ð1þ �0
Þ
3þ n


H _�� ð1þ 
Þ

ð3þ n
Þ�

�
�
nð1þ nÞ þ 
ð12þ 3n� n2Þ

ð2þ nÞð3þ nÞð1þ 
Þ
�2Veff;0

a2

2=ð3þnÞ � 3

ka
a2

�
:

(68)

Note that Eqs. (66) and (68) include a five-dimensional
case, corresponding to n ¼ 0 [54]. By contrast, in higher
dimensions, Jn depends on the effective potential or the
induced cosmological constant on the brane. For example,
in the static internal dimension, 
 ¼ 0, and assuming
ka ¼ 0 for simplicity, we find

Jn ¼ �
�
1� 
2

6

�
Ha

_�� nð1þ nÞ

3ð2þ nÞð3þ nÞ��b; (69)

where we have used �2Veff ¼ �b. If we impose the gen-
eralized Randall-Sundrum condition, �b ¼ 0, the energy
is flowing onto the brane when 
2 < 6 and flowing out to
the brane when 
2 > 6. For �b > 0, the energy is flowing

onto the brane when 0< 
<
ffiffiffi
6

p
and flowing out to the

brane when 
 <� ffiffiffi
6

p
. While for �b < 0, the energy is

flowing onto the branewhen� ffiffiffi
6

p
< 
< 0 and flowing out

to the brane when 
 >
ffiffiffi
6

p
.

IV. STATIC INTERNAL DIMENSION SOLUTIONS
WITH MATTER ON THE BRANE

In the previous section we focused upon dilaton-vacuum
solutions on the brane. For completeness we now study the
presence of matter on the brane. In this case we do not have
X�

� ¼ 0. Indeed, we have Z�
� ¼ 0 that implies

Z 0
0 þ 3Z1

1 þ nZ4
4 ¼ 0: (70)

Using Eq. (20) and by combining Eqs. (35) and (70) we
find

�nZ4
4 ¼ Z0

0 þ 3Z1
1

¼ � n

2þ n
ðG0

0 þ 3G1
1 � 2G4

4Þ

� 2n

2þ n
�2Veff þ n

2þ n
ðY0

0 þ 3Y1
1 � 2Y4

4Þ;
(71)

where Y�
� is given by Eq. (21) with the components of

	�
� are

	0
0 ¼ � 1

8ð3þ nÞ f2ðt
0
0Þ2 þ n½ðt00Þ2 � 3ðt11 � t44Þ2�g; (72)

	i
j ¼

1

8ð3þ nÞ f2ðt
0
0Þ2 � 4t00t

1
1 þ n½ðt00Þ2 � 2t00t

4
4 þ ðt11 � t44Þðt11 � 3t44Þ�g�i

j; (73)

	�
� ¼ 1

8ð3þ nÞ f2ðt
0
0Þ2 � 6t00t

1
1 þ 2t44ðt00 þ 3t11 � 3t44Þ þ n½ðt00Þ2 � 2t00t

4
4 þ 3ðt11 � t44Þ2�g��

�: (74)
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Here �t00 is the total energy density, t11 ¼ t22 ¼ t33 the total external pressure, and t44 ¼ t55 ¼ . . . ¼ t3þn
3þn the total

internal pressure. Inserting Eq. (20) into Eq. (34) and then eliminating Z1
1 and Z4

4 by using Eq. (71), we find

_Z0
0 þ ð4Ha þ nHbÞZ0

0 ¼ �2Jn _�� n

2þ n
ðG0

0 þ 3G1
1 � 2G4

4 þ 2�2VeffÞðHa �HbÞ þ _Y0
0

þ 2

2þ n
½ð3þ 2nÞY0

0 � 3Y1
1 � nY4

4�Ha þ n

2þ n
½ð1þ nÞY0

0 � 3Y1
1 � nY4

4�Hb: (75)

Note that in the absence of matter on the brane, Z�
� ¼

�X�
�, Eq. (75) reduced to Eq. (34).

In the following we study the static internal dimension
case for simplicity. In this case we have

Hb ¼ 0; and G0
0 þ 3G1

1 � 2G4
4 ¼ 0: (76)

Then, Eq. (75) becomes

_Z0
0þ4Z0

0Ha¼�2Jn _�� 2n

2þn
�2VeffHaþ _Y0

0

þ 2

2þn
½ð3þ2nÞY0

0�3Y1
1�nY4

4�Ha:

(77)

The conservation of the energy-momentum tensor for the
matter field on the brane and the equation of motion of the
scalar field, respectively, are given by

_t 00 ¼ �3Haðt00 � t11Þ; (78)

€�þ 3Ha
_�þ V 0

eff ¼ �Jn: (79)

Eliminating Y�
� in Eq. (77), we obtain

_Z 0
0 þ 4Z0

0Ha ¼ �2Jn _�� 2n

2þ n
�2VeffHa þ ð2þ nÞ�4

4ð3þ nÞ �0 _�t00 þ
n�4

4ð3þ nÞ�½t
0
0 þ 3t11 � 2t44�Ha þ �4 _	0

0 þ
2

2þ n

�½ð3þ 2nÞ	0
0 � 3	1

1 � n	4
4�Ha:

(80)

We now consider the exponential potential as discussed in the previous section with static internal dimension. By
defining the equations of state t11 ¼ �wit

0
0, t

4
4 ¼ �w�t

0
0, and inserting Eq. (79) into Eq. (80) for Jn, one can integrate

the following equation:

_Z 0
0þ

�
4þ
2

3

�
Z0

0Ha¼�6nð3þnÞþ2ð3þ3nþn2Þb2
3ð2þnÞð3þnÞ �2VeffHaþ2
2ka

a2
Ha

þ3nð3þnÞð1�3wiþ2w�Þþ½3þ3nþn2�ð3þnÞð3wiþnw�Þ�
2

12ð3þnÞ2 �4�t00Ha

þ3nð1�3wiþ3w�Þðw�þ3ð1þwiÞðwi�w�ÞÞþ½3wiþnw�þ3nðwi�w�Þ2�
2

12ð3þnÞ �4ðt00Þ2Ha;

(81)

and yields

Z 0
0 ¼ � 6nð3þ nÞ þ 2ð3þ 3nþ n2Þ
2

ð2þ nÞ½12ð3þ nÞ þ ðn� 3Þ
2��
2Veff

� 3nð3þ nÞð1� 3wi þ 2w�Þ þ ½3þ 3nþ n2 � ð3þ nÞð3wi þ nw�Þ�
2

4ð3þ nÞ½3ð3þ nÞð1� 3wiÞ þ n
2� �4�t00

þ 3nð1� 3wi þ 3w�Þ½w� þ 3ð1þ wiÞðwi � w�Þ� þ ½3wi þ nw� þ 3nðwi � w�Þ2�
2

4ð3þ nÞ½6ð1þ 3wiÞ � 
2� �4ðt00Þ2: (82)

Inserting Eq. (82) into the (00) component of the Einstein equations, we find
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H2
a þ

�ka
a2

¼ �4�
2Veff þ 8	Geff�þ �5�

2 þ
�C

a4þ
2=3
; (83)

Jn ¼ �
�
1� 
2

6

�
Ha

_�þ 


�

ka
a2

� nð1þ nÞ
�
3ð2þ nÞð3þ nÞVeff � ð1� 3wi � nw�Þ
�3

12ð3þ nÞ ��

þ ½4ð1þ 3wiÞ þ 2nð2þ 2wi þ 3w� þ 3ðwi � w�Þ2Þ þ n2ð1þ 2wi þ 3ðwi � w�Þ2Þ�
�3

24ð2þ nÞð3þ nÞ �2; (84)

where � ¼ �t00, and

�k a ¼
�
1þ 
2

6

��1
ka; (85)

�4 ¼ 2ð3þ nÞð4þ nÞ
ð2þ nÞ½12ð3þ nÞ þ ðn� 3Þ
2� ; (86)

8	Geff ¼ ð1� 3wi � nw�Þ
2ð3þ nÞð1� 3wiÞ þ 2n
2

�4�; (87)

�5 ¼ 2ð1þ 3wiÞ þ nð1þ 2w�Þ þ 3ðwi � w�Þ2
4ð3þ nÞ½6ð1þ 3wiÞ � 
2� �4; (88)

�C ¼ 1

3

�
1� 
2

6

��1
C: (89)

The first two terms on the right-hand side of (83) are what
we would expect for standard four-dimensional cosmol-
ogy. The third term is quadratic in the brane energy-
momentum tensor, and the fourth term is a generalized
dark radiation energy component. Note that in contrast
with the five-dimensional case, the effective gravitational
constant depends on time through the brane tension and the
equation of state. One can obtain the variation rate of the
effective gravitational constant as

_Geff

Geff

¼ � 
2

3þ n
Ha: (90)

We see that the variation rate of the effective gravitational
constant is smaller than the five-dimensional case (n ¼ 0)
with the exponential potential [54], and it is relatively
small if the number of the internal dimension n is large.
Observational bounds on _Geff=Geff then constrain the pa-
rameters of the theory. If we assume j _Geff=ðGeffHa;0Þj &
10�2, where Ha;0 is the value of the Hubble parameter
today, we have 
2 & ð3þ nÞ=100.

V. COSMOLOGICAL EVOLUTION OF THE
SOURCES IN THE EINSTEIN FRAME

In the previous sections, we discussed the cosmo-
logical evolutions in the induced metric frame, which is
given by Eq. (14). In this section, we study the four-
dimensional cosmological evolution in the Einstein frame
and discuss the properties of the resulting four-dimensional

cosmological evolution in this frame. A complemen-
tary way of studying higher-dimensional theories is to
dimensionally reduce the action by integrating out the
internal dimensions and then performimg a conformal
transformation.
From Eq. (14) we define the Newton gravitational con-

stant in ð4þ nÞ-dimensions as

8	G4þn ¼ ð2þ nÞ�4

4ð3þ nÞ �: (91)

If the brane tension is not depending on the bulk scalar field
(minimally coupled), the ð4þ nÞ-dimensional Newton
gravitational constant is truly constant. In this section we
assume � ¼ const. Note that recovering the four-
dimensional effective Newton gravitational constant re-
quires an additional time-dependent factor,

8	G4 ¼ 8	G4þn

Vn

; (92)

where Vn denotes the volume of the n-dimensional internal
spaces, while the four-dimensional cosmological constant
is given by

�4 ¼ Vn�b; (93)

where �b is given by Eq. (15). Note that both G4 and �4

are time-dependent. However, it must be remembered that
we are not in the Einstein frame. Similarly, the four-
dimensional energy density is given by �4 ¼ Vn�.
From Eqs. (87), (91), and (92), we get

G4 ¼ ð2þ nÞ½2ð3þ nÞð1� 3wiÞ þ 2n
2�
4ð3þ nÞð1� 3wi � nw�Þ

Geff

Vn

: (94)

Here, Vn is a constant, corresponding to the static internal
dimensions. As we expected

_G4

G4

¼
_Geff

Geff

: (95)

However, for the static internal dimensions case with a
constant brane tension, the effective Newton gravitational
constant is exactly constant. It depends on the equations of
state, the potential parameter 
, and the number of internal
dimensions.
In order to recover a four-dimensional cosmological

evolution in the Einstein frame, we proceed through three
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steps: (1) a dimensional reduction of the ð4þ nÞ-action by
integrating out the internal dimensions; (2) a conformal
transformation of the four-dimensional induced metric into
the Einstein frame; (3) a redefinition of the scale factor b
into a new scalar field to give its kinetic term a canonical
form. From the gravitational sector, the resulting four-
dimensional Einstein frame action is given by

S� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�h�

p
�

�
1

16	G4�
R� � 1

2
h���@��@��þ V�ð�Þ

�
; (96)

where we mark the quantities in the Einstein framewith the
subscript * and a new scalar field is defined by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2þ nÞ
16	G4�

s
lnb: (97)

We also have the relations between the variables in the
four-dimensional induced metric frame and those in the
Einstein frame as

dt� ¼ bn=2dt; a� ¼ bn=2a; (98)

where the scale factor b is appropriately expressed in �.
Hence we have the relation

Ha� ¼ b�n=2

�
Ha þ n

2
Hb

�
; (99)

where Ha� is the Hubble parameter in the Einstein frame,

Ha� ¼ 1

a�
da�
dt�

: (100)

In the static internal dimensions case, b ¼ b0 ¼ 1, we have
a� ¼ a so that Ha� ¼ Ha.

From the matter sector, we have

�� ¼ b�2n�4: (101)

Assuming Vn � bn, the evolution of the four-dimensional
energy density in the Einstein frame is given by

�� / b�ðn=2Þð1�3wiþ2w�Þa�3ð1þwiÞ� : (102)

Note that we recover standard four-dimensional energy
density for n ¼ 0 or if the equations of state satisfy the
following constraint:

1� 3wi þ 2w� ¼ 0: (103)

For instance, in the radiation-dominated era wi ¼ 1=3, we
find w� ¼ 0, the internal pressure drops to zero. Moreover,
in order to understand the physical interpretations of the
constraint (103), let us consider Eq. (76). Because the
components of the Einstein tensor are corresponding to

the matter field: G0
0 � t00, G

1
1 � t11, and G4

4 � t44, and
using the relations t11 ¼ �wit

0
0, t

4
4 ¼ �w�t

0
0, the con-

straint (103) can be interpreted as a necessary condition for
static internal dimensions.
We have shown that we can obtain the standard cosmol-

ogy in the Einstein frame by assuming a constant brane
tension. In the case of the nonminimally coupled to bulk
scalar field, in which the brane tension is a function of the
bulk scalar field, a conformal transformation is determined
by the form of brane tension. For instance, if the brane
tension is given by Eq. (58), the Einstein frame is obtained
by a conformal transformation of the four-dimensional
metric: h��� ¼ bne2’h��, where 2’ ¼ 
��=ð3þ nÞ.
Then the Hubble parameter in the Einstein frame is related
to the Hubble parameter in the induced metric frame as

Ha� ¼ b�n=2e�’

�
Ha þ n

2
Hb þ _’

�
; (104)

and the evolution of the four-dimensional energy density in
the Einstein frame is given by �� ¼ b�ne�4’�, with �
being the higher-dimensional energy density.

VI. CONCLUSIONS

In this paper we studied the brane-world cosmological
model in higher-dimensional spacetime with a bulk scalar
field. The ð4þ nÞ-dimensional gravitational field equa-
tions can be formulated to standard form with the extra
component. In the absence of the matter on the brane, we
can interpret the extra component as the energy-
momentum tensor for the dark radiation. We used this
formalism to discuss cosmology in the brane Universe in
the context of the Kaluza-Klein brane-world scheme, i.e.,
to consider Kaluza-Klein compactifications on the brane.
By assuming the cosmological symmetry on the Kaluza-
Klein brane, we derived the Friedmann equation and a
possible energy leak out of the brane into the bulk.
If the bulk and brane potentials obey the generalized

Randall-Sundrum condition and the energy conservation
for scalar field on the brane is satisfied, we find that the
brane Universe starts expanding away from the initial sin-
gularity both for the internal scale factor that is proportional
to the external scale factor and the static internal scale
factor. A significant result in the present study is that of
the possibility of energy flow out of the brane into the bulk,
which depends on the effective potential or the effective
cosmological constant on the brane. It is different with the
five-dimensional dilatonic brane-world cosmologies. By
constraining the potential parameter 
 and the effective
cosmological constant, there exist two possibilities of the
energy flows: on to and out of the brane. Finally, we derive
the Friedmann equation with matter on the brane. We find
that the effective gravitational constant depends on time
through the brane tension and the equation of state.
However, after appropriate conformal transformation, the
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four-dimensional Newton gravitational constant in the
Einstein frame is a true constant. A new result in Sec. V is
thatwe recover standard four-dimensional energy density in
the Einstein frame if the equations of state satisfy the
constraint Eq. (103).

There could be various extensions of our considerations.
By introducing a bulk scalar field, it is interesting to
stabilize the distance between the two Kaluza-Klein branes
as is done in the context of the first model introduced by
Randall and Sundrum. It also important to understand

inflation without inflaton and the quantum fluctuations of
brane-inflation in the Kaluza-Klein brane scenario with a
bulk scalar field. It is intriguing to consider the low energy
description of this brane-world model [51]. We leave these
issues for future studies.
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