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It has been shown that extremal Kerr black holes can be used as particle accelerators and arbitrarily

high energy may be obtained near the event horizon. We study particle collisions near the event horizon

(outer horizon) and Cauchy horizon (inner horizon) of a non-extremal Kerr black hole. First, we provide a

general proof showing that particles cannot collide with arbitrarily high energies at the outer horizon.

Second, we show that ultraenergetic collisions can occur near the inner horizon of a Kerr black hole with

any spin parameter a.
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I. INTRODUCTION

Whether Kerr black holes can serve as particle accelera-
tors with infinite collision energy has recently been dis-
cussed. Bañados, Silk and West (BSW) [1] showed that
particles falling from rest outside an extremal Kerr black
hole (a ¼ M) can collide with arbitrarily high center-of-
mass energies when the collision occurs arbitrarily close to
the horizon. The BSW mechanism has been further dis-
cussed and generalized to different spacetimes (See e.g.
[2–7]). Jacobson and Sotiriou [8] pointed out that infinite
energies for the colliding particles can only be attained at
infinite time. Authors also argued [9] that such a high
energy may not be realizable due to the theoretical upper
bound a=M ¼ 0:998 [10]. The BSW mechanism would be
more realistic if it worked for non-extremal Kerr black
holes (a <M). Although numerical analysis indicates that
the collision energies are finite near the horizon of a non-
extremal Kerr black hole, no rigorous proof has been given.
In this paper, we prove analytically that infinite center-of-
mass energies can never be attained outside a non-extremal
Kerr black hole. Compared with previous literature, our
proof is general in the following senses. First, the collision
takes place anywhere outside the black hole, not confined
to the equatorial plane � ¼ �

2 . Second, we allow the 4-

velocities of the two particles to be arbitrary. In particular,
the 4-velocities have nonvanishing _� components. Finally,
we release the restriction that particles fall from infinity,
allowing them to fall from anywhere outside the black
hole. Our analysis shows that infinite energies can only
be attained at the horizon and one of the particles must
have a critical angular momentum. However, with such an
angular momentum, there always exists a potential barrier
outside the black hole preventing the particle from ap-
proaching the event horizon.

Since the event horizon of a non-extremal Kerr black
hole cannot serve as a particle accelerator creating infinite
collision energies, it is natural to ask whether the inner

horizon can make a difference. This issue has recently been
explored by Lake [11]. The author claimed in the original
version that the center-of-mass energy for two colliding
particles is generically divergent at the inner horizon and
no fine tuning is required. Then in the Erratum this claim
was withdrawn because physical constraints forbid such
collisions. We reexamine this issue in details and arrive at
the following conclusions. We first confirm, using different
arguments, that a generic divergence at the inner horizon is
not possible. We further show that for a critical angular
momentum, the center-of-mass energy diverges at the in-
ner horizon. Such a divergence is similar to that proposed
by BSW where a critical angular momentum also is re-
quired. The difference is that there is no restriction on the
spin parameter a. So in principle, infinite collision energies
can be obtained near the inner horizon of any non-extremal
Kerr black hole.

II. COLLISIONS NEAR THE EVENT
HORIZON r ¼ rþ

In this section, we consider two particles colliding
outside a Kerr black hole and show that in any case, they
cannot collide with arbitrarily high center-of-mass ener-
gies. The Kerr metric is given by [12]

ds2 ¼ �
�
�� a2sin2�

�

�
dt2 � 2asin2�ðr2 þ a2 ��Þ

�
dtd�

þ
�ðr2 þ a2Þ2 � �a2sin2�

�

�
sin2�d�2

þ�

�
dr2 þ �d�2; (1)

where

� ¼ r2 þ a2cos2�; � ¼ r2 þ a2 � 2Mr: (2)

Without loss of generality, we shall choose

M ¼ 1 (3)
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in the rest of this paper. We shall deal with the non-
extremal case, i.e.,

0< a< 1: (4)

Suppose a particle of mass m moves in the spacetime
with 4-velocity ua ¼ ð @@�Þa, where � is the proper time.

The 4-velocity of one of the particles at the point of
collision takes the general form

ua ¼ _t

�
@

@t

�
a þ _r

�
@

@r

�
a þ _�

�
@

@�

�
a þ _�

�
@

@�

�
a
: (5)

The geodesic motion is determined by the following con-
served quantities [12]

E ¼ �gabu
a

�
@

@t

�
b ¼

�
1� 2r

�

�
_tþ 2arsin2�

�
_�; (6)

L ¼ gabu
a

�
@

@�

�
b

¼ � 2arsin2�

�
_tþ ðr2 þ a2Þ2 � �a2sin2�

�
sin2� _�; (7)

� 1 ¼ gabu
aub; (8)

where E is the conserved energy per unit mass and L is the
angular momentum per unit mass. Solving Eqs. (6) and (7)
yields

_t ¼ a4E� 4aLrþ 2Er4 þ a2Erð2þ 3rÞ þ a2E�cos2�

2��
;

(9)

_� ¼ að2Er� aLÞ þ L�csc2�

��
: (10)

Since ua is a future-directed timelike vector, it follows that
_t > 0 near the horizon r ¼ rþ [12]. By expanding the
numerator of Eq. (9) around r ¼ rþ and requiring the
leading term to be non-negative, we find

L � 2E

a
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ: (11)

Note that Eq. (11) was also derived in [13] from the null
energy condition.

Then Eq. (8) yields

_r ¼ � 1

2
ffiffiffi
2

p
�

ffiffiffi
S

p
; (12)

where

S ¼ 8��ð�1� _�2�Þ � csc2�½�a4E2 þ 4a2L2

� 6a2E2rþ 16aELr� 16L2r� 5a2E2rþ 8L2r2

� 4E2r4 þ a2E2� cos4�þ 4ð�4aELrþ E2r4

þ a2L2 þ a2E2rð2þ rÞÞ cos2��: (13)

Note that we have chosen the minus sign for _r, referring to
ingoing geodesics. We shall discuss the plus sign at the end
of this section.
Obviously, a physically allowed trajectory satisfies

S � 0: (14)

Suppose two particles with the same mass m collide
each other. The center-of-mass energy is given by [1]

Ec:m: ¼ m
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gabu

aub2

q
: (15)

For simplicity, we define the effective center-of-mass
energy

Eeff ¼ �gabu
aub2 : (16)

We find

Eeff ¼ �� _� _�2 � E0

8��
; (17)

where

E0 ¼ ð�a4EE2 þ 4a2LL2 � 6a2EE2rþ 8aE2Lr

þ 8aEL2r� 16LL2r� 5a2EE2r
2 þ 8LL2r

2

� 4EE2r
4 þ 4ð�2aðE2Lþ EL2Þrþ EE2r4

þ a2ðLL2 þ EE2rð2þ rÞÞÞ cos2�
þ a2EE2� cos4�Þcsc2�þ ffiffiffi

S
p ffiffiffiffiffi

S2
p

: (18)

Here S2 is obtained by replacing L, E, _� with L2, E2, _�2 in
Eq. (13).
Our purpose is to examine whether an infinite Eeff

defined in Eq. (17) exists under the constraints (4), (11),
and (14). As physical requirements, all the constants E, L,
etc. should be finite. Otherwise, infinite collision energies
can be produced even in Minkowski spacetime. It is also
reasonable to assume that _� and _�2 are finite at the horizon.
This is because one can define

L� � gabu
a

�
@

@�

�
b ¼ � _� (19)

as the ‘‘angular momentum with respect to �.’’ Note that
unlike L, L� is not constant along geodesics. However, it is
plausible to require that L� be finite everywhere, particu-
larly at the horizon. It then follows from Eq. (19) that _� is
finite at the horizon.
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Hence, it is easy to see from Eq. (17) that an infinite Eeff

cannot be obtained unless � ¼ 0, i.e., the collision must
occur at the outer horizon r ¼ rþ or the inner horizon
r ¼ r�. To check if Eeff could be infinite, we expand E0
at r ¼ rþ and find

E0 ¼ �0 þ �1ðr� rþÞ þ . . . ; (20)

where

�0 ¼ 8½�a2LL2 þ Eð�8þ 4a2 � 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ÞE2

þ 2aðEL2 þ E2LÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

þ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
L� 2Eð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a

�
2

vuut

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
L2 � 2E2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a

�
2

vuut �
: (21)

Using Eq. (11), the square root terms can be simplified and
one finds

�0 ¼ 0: (22)

The vanishing of �0 is important because it rules out the
divergence of Ec:m: for generic angular momentums.

Now it is obvious that Eeff cannot be infinite unless �1 is

infinite. Since
ffiffiffi
S

p jr¼rþ appears in the denominator of �1,

an infinite �1 requires

Sjr¼rþ ¼ 2a2ðL� LcÞ2 ¼ 0: (23)

Thus, if we choose

L ¼ Lc ¼ 2Eð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a
; (24)

Ec:m: will become arbitrarily large at the horizon r ¼ rþ.
However, to make sure that the particle with this critical
angular momentum can actually reach the horizon,
Eq. (14) must hold outside the horizon. By Taylor expan-
sion, we find

S ¼ a0 þ a1ðr� rþÞ þ . . . : (25)

For L ¼ Lc, a0 ¼ 0 and a1 is given by.

a1 ¼ b1 þ
�

2E2

a2sin2�
þ 2 _�2

�
b2; (26)

where

b1 ¼ �32þ 32a2 � 32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
þ 16a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

� 16a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
cos2�; (27)

b2 ¼ �64þ 80a2 � 16a4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ð�64þ 48a2 � 3a4 � a4 cos4�Þ

þ 4a2ð�4þ 4a2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
þ 4a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ cos2�:

(28)

Simple analysis shows that both b1 and b2 are negative for
0< a< 1. Therefore,

a1 < 0; (29)

which means S is negative near the horizon and conse-
quently the particle with L ¼ Lc cannot approach the
horizon. The barrier outside the horizon is illustrated in
Fig. 1.
In the above argument, we have chosen the minus sign in

Eq. (12) for both particles. The same choice was made by
BSW. What if the two particles choose different signs?

In that case, the plus sign in front of
ffiffiffi
S

p
in Eq. (18) will

become a minus sign and consequently �0 in Eq. (20) will
not vanish. Therefore, such two particles will collide
with infinite energy even without a fine turning on angular
momentum. But to make this happen, one of the particles
must be outgoing ( _r > 0) on the horizon. For a non-
extremal black hole, even holding a particle still at the
horizon requires an infinite local force [12]. Therefore, the
configuration with _r > 0 should be ruled out.

III. COLLISIONS NEAR THE INNER
HORIZON r ¼ r�

Now we discuss the motions in the region r� < r < rþ.
Because of the different natures of the inner and outer
horizons, some of the arguments in section II will break
down in this section. We shall highlight the differences.
As illustrated in Fig. 2, we consider two particles cross-

ing the event horizon of the right-hand universe and hitting
each other at the Cauchy horizon of the left-hand universe.
The general equations (5)–(10) remain unchanged.

FIG. 1. The plot of SðrÞ in the region r > rþ. The parameters
are chosen as: a ¼ 0:999, � ¼ �

2 , L ¼ Lc.
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However, Eq. (11) is derived from the fact that rat is a
past-directed timelike vector, which is no longer true out-
side the inner horizon. Instead, rar becomes past-directed
in this region and any particle must fall in the direction of
_r < 0, i.e.,

_r ¼ � 1

2
ffiffiffi
2

p
�

ffiffiffi
S

p
< 0: (30)

It should be noticed that Eq. (12) holds because we have
chosen the ingoing mode for both particles in the region
r > rþ, while Eq. (30) holds for any particle in the region
r� < r < rþ. Note that Eqs. (13)–(18) remain unchanged.
Then we expand E0 at r ¼ r�. Corresponding to Eq. (20),
we have

E0 ¼ �0 þ �1ðr� r�Þ þ . . . ; (31)

where

�0 ¼ 8

�
�a2LL2 þ Eð�8þ 4a2 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ÞE2

þ 2aðEL2 þ E2LÞð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

þ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
L� 2Eð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a

�
2

vuut

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
L2 � 2E2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a

�
2

vuut �
: (32)

This equation can be simplified by choosing the ingoing
mode for both particles, as depicted in Fig. 2. Here in the
region r� < r < rþ, the ingoing mode means _t < 0 (By the
same argument as given at the end of section II, _t > 0 at
the left-hand Cauchy horizon is not physically realizable).
Then using the same argument which led to Eq. (11),
we find

�
L� 2Eð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a

��
L2 � 2E2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a

�
� 0;

(33)

which leads to

�0 ¼ 0: (34)

Again, the necessary condition for Eeff blowing up at the
horizon is that �1 blows up, which requires

Sjr¼r� ¼ 8a2ðL� L0
cÞ2 ¼ 0; (35)

where

L0
c ¼ 2Eð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a
: (36)

Therefore, an infinite collision energy near the inner hori-
zon requires that one of the particles has the momentum

L ¼ L0
c (37)

and the other particle has any different angular momentum.
For the collision near the event horizon, we have shown
that a potential barrier always exists. But the geodesic
motions near the inner horizon are very different. We shall
show that there is no potential barrier in the vicinity of the
inner horizon. For our purposes, it is sufficient to consider
the motions in the equatorial plane and let E ¼ 1, in which
case, S given in Eq. (13) reduces to

S ¼ 16r½a4 � 4ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þðr� 2Þ þ a2ðr2 þ 2rþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� 8Þ�

a2
: (38)

By Taylor expansion, we find

S ¼ 32

a2

�
5� a2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� 4ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ

a2

�
ðr� r�Þ þ . . . : (39)

FIG. 2. Penrose diagram for the Kerr spacetime in the region
r� � r � rþ. Two particles cross the event horizon and collide
at the inner horizon. The dashed lines refer to surfaces of
constant r.
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By plotting the coefficient of r� r� as a function of a, we
see immediately that S > 0 for any 0< a< 1 in the vicin-
ity of r ¼ r�.

Now we show, by a concrete example, that such a
collision can be realized at the Cauchy horizon for two
particles falling from rest at infinity.

The orbits of the two particles are confined to the
equatorial plane � ¼ �

2 . The parameters are chosen as

E ¼ E2 ¼ 1; (40)

L ¼ L0
c; (41)

L2 ¼ L0
c

2
: (42)

As depicted in Fig. 3, the center-of-mass energy blows
up at r ¼ r�. Figure 4 shows S > 0 and S2 > 0 for all
r > r�, i.e., the two particles can fall from infinity all the
way to the Cauchy horizon. Figure 5 plots _tðrÞ in the region
r > r�. We see that _t and _t2 are positive in the region
r > rþ, as expected. For r� < r < rþ, _t and _t2 are nega-
tive. This means both particles must hit the left-hand
Cauchy horizon, as depicted in Fig. 2. Otherwise, there
will be a turning point _t ¼ 0 in this region. It should also be
noticed that _t2 ! �1, meaning that this particle will cross
the Cauchy horizon. But for the first particle which has a
critical angular momentum, _t is finite as r ! r�. Thus,FIG. 3. Plot of the center-of-mass energy.

FIG. 5. Plots of _tðrÞ and _t2ðrÞ.

FIG. 4. Plots of the functions SðrÞ and S2ðrÞ. Both functions are positive in the range r > r�.
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instead of crossing the Cauchy horizon, this particle spirals
asymptotically onto the horizon. This is the necessary
mechanism for an infinite center-of-mass energy as pointed
out in [8]. One can also check that _r vanishes on the
Cauchy horizon while _r2 does not, which is consistent
with the behaviors of _t and _t2.

IV. CONCLUSIONS

We have provided a rigorous proof showing that the
center-of-mass energy cannot be divergent at the event
horizon of a non-extremal black hole. This proof is general
and exhausts all of the possibilities. The motion of particles
is not confined to the equatorial plane and the particles may
be released from any point outside the black hole. We find
that a critical angular momentum is required for the diver-
gence of Ec:m: at the horizon. However, with this angular
momentum, the particle can never reach the horizon. In

relation to Lake’s work, we first prove that no divergence of
energy occurs at the inner horizon for particles with generic
angular momentums. A critical angular momentum is re-
quired for the divergence. We show with an explicit ex-
ample that two particles can fall from infinity all the way to
the inner horizon and collide with an arbitrarily high center-
of-mass energy. We have shown that such arbitrarily high
energies can be obtained in any non-extremal Kerr space-
time, unlike the case in [1] that requires the black hole to be
exactly extremal. Since extremal black holes do not exist in
nature, the ultraenergetic collisions near Cauchy horizons
may be more practical and realizable.
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[1] M. Bañados, J. Silk, and S.M. West, Phys. Rev. Lett. 103,
111102 (2009).

[2] O. B. Zaslavskii, Phys. Rev. D 82, 083004 (2010).
[3] O. B. Zaslavskii, Classical Quantum Gravity 28, 105010

(2011).
[4] S.W. Wei, Y.X. Liu, H. Guo, and Chun-E Fu, Phys. Rev.

D 82, 103005 (2010).
[5] S.W. Wei, Y. X. Liu, H. Guo, and Chun-E Fu, J. High

Energy Phys. 12 (2010) 066.
[6] M. Kimura, K. Nakao, and H. Tagoshi, Phys. Rev. D 83,

044013 (2011).
[7] T. Harada and M. Kimura, Phys. Rev. D 83, 084041 (2011).

[8] T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104,
021101 (2010).

[9] E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U.
Sperhake, Phys. Rev. Lett. 103, 239001 (2009).

[10] K. S. Thorne, Astrophys. J. 191, 507 (1974).
[11] K. Lake, Phys. Rev. Lett. 104, 211102 (2010); 104,

259903(E) (2010).
[12] R.M. Wald, General Relativity (The University of

Chicago Press, Chicago, 1984).
[13] T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 103,

141101 (2009).

SIJIE GAO AND CHANGCHUN ZHONG PHYSICAL REVIEW D 84, 044006 (2011)

044006-6

http://dx.doi.org/10.1103/PhysRevLett.103.111102
http://dx.doi.org/10.1103/PhysRevLett.103.111102
http://dx.doi.org/10.1103/PhysRevD.82.083004
http://dx.doi.org/10.1088/0264-9381/28/10/105010
http://dx.doi.org/10.1088/0264-9381/28/10/105010
http://dx.doi.org/10.1103/PhysRevD.82.103005
http://dx.doi.org/10.1103/PhysRevD.82.103005
http://dx.doi.org/10.1007/JHEP12(2010)066
http://dx.doi.org/10.1007/JHEP12(2010)066
http://dx.doi.org/10.1103/PhysRevD.83.044013
http://dx.doi.org/10.1103/PhysRevD.83.044013
http://dx.doi.org/10.1103/PhysRevD.83.084041
http://dx.doi.org/10.1103/PhysRevLett.104.021101
http://dx.doi.org/10.1103/PhysRevLett.104.021101
http://dx.doi.org/10.1103/PhysRevLett.103.239001
http://dx.doi.org/10.1086/152991
http://dx.doi.org/10.1103/PhysRevLett.104.211102
http://dx.doi.org/10.1103/PhysRevLett.104.259903
http://dx.doi.org/10.1103/PhysRevLett.104.259903
http://dx.doi.org/10.1103/PhysRevLett.103.141101
http://dx.doi.org/10.1103/PhysRevLett.103.141101

