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In this paper we investigate to which extent noncommutativity, an intrinsically quantum property, may

influence the Friedmann-Robertson-Walker cosmological dynamics at late times/large scales. To our

purpose it will be enough to explore the asymptotic properties of the cosmological model in the phase

space. Our recipe to build noncommutativity into our model is based in the approach of Ref. [4] and can be

summarized in the following steps: i) the Hamiltonian is derived from the Einstein-Hilbert action (plus a

self-interacting scalar field action) for a Friedmann-Robertson-Walker space-time with flat spatial

sections, ii) canonical quantization recipe is applied, i.e., the mini-superspace variables are promoted

to operators, and the WDW equation is written in terms of these variables, iii) noncommutativity in the

mini-superspace is achieved through the replacement of the standard product of functions by the Moyal

star product in the WDW equation, and, finally, iv) semiclassical cosmological equations are obtained by

means of the WKB approximation applied to the (equivalent) modified Hamilton-Jacobi equation. We

demonstrate, indeed, that noncommutative effects of the kind considered here can be those responsible for

the present speed up of the cosmic expansion.
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I. INTRODUCTION

Noncommutativity of space-time coordinates, an old
idea dated back to 1947 [1], is the simplest expected modi-
fication to quantum field theory. Noncommutativity—the
central mathematical concept in quantum mechanics—
expresses uncertainty in the simultaneous measurement of
any pair of conjugate variables, such as position and mo-
mentum. In the presence of a strong magnetic field, non-
commutativity arises [2], even in a classical context. More
recently, noncommutativity has received increased interest
in connection with developments in string theory. Attempts
to connectM(atrix)-string theory to cosmology on the brane
[3] have shown that noncommutativity arises in the former
theory.

There are several approaches in the literature to build
noncommutativity into field theories. One of the authors
and collaborators have explored several of these ap-
proaches [4–12]. In some of these formalisms, the assump-
tion of noncommutativity among the space-time
coordinates has a consequence that the fields present do
not commute themselves. This is the particular case of the
Seiberg-Witten map [13] and its generalization by Wess
and collaborators [14], in which noncommutative fields are
obtained as an (infinite) expansion of the usual commuta-
tive fields in the noncommutative parameter. Space-time
noncommutativity has as a consequence a different product
of functions (the Moyal/star product), which induces non-
commutativity among the fields.

In cosmological settings an already well explored way to
include the effects of noncommutativity is given in

Ref. [4], where deformation of space-time itself is replaced
by noncommutativity in mini-superspace instead (see also
Refs. [15,16] where similar approaches are applied).1 The
latter proposal is inspired in various related results in the
literature, among which we can cite the above mentioned
case of the Seiberg-Witten map [6,13,18]. In the case of
quantum cosmology, the mini-superspace variables play
the role of the coordinates in configuration space.2 Thus,
as stated in [4], it seems reasonable to propose a kind of
noncommutativity among these specific gravitational var-
iables. The noncommutative proposal there is formulated
in terms of models with a finite number of degrees of
freedom, where the Wheeler-DeWitt (WDW) equation
resembles a Klein-Gordon equation, this time in terms of
the mini-superspace variables. One can then apply the
same procedure as in noncommutative quantum mechanics
to end up with a noncommutative version of quantum
cosmology [21].
In the present paper, we shall investigate the possible

effect of noncommutativity in the late-time/large-scale
cosmological dynamics. In Ref. [22] the effects of
noncommutativity were investigated within a dilatonic
cosmological model for an exponential dilaton potential.
The existence of such noncommutativity results in a de-
formed Poisson algebra between the mini-superspace
variables and their conjugated momenta. The authors
found that noncommutativity modifies the cosmic dynam-
ics at late times. Their result relies, however, on the study
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1For further consideration of the approach of [4] in the context
of extra-dimensional cosmology see, for instance, Ref. [17] and
references therein.

2See, for instance, Refs. [19,20], for an alternative path inte-
gral approach to quantum cosmology.
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of an exact solution of the field equations that, in the
commutative case, results in decelerating pace of expan-
sion both at early and late times. It is clear that the latter is
just a particular solution of the cosmological equations that
can be attained only after a very careful arrangement of the
initial conditions. Actually, as it was clearly and strictly
shown in Ref. [23]—through the use of the standard tools
of the (linear) dynamical systems analysis—the generic
cosmological evolution at late times, in the case of a
dilaton exponential potential-driven dynamics, depending
on the region in the parameter space, can be governed
either by an inflationary scalar field (SF)-dominated attrac-
tor solution, or by a scaling (also attractor) solution where
neither the SF nor the background fluid dominate. In the
latter case, the ratio of the energy densities of the compo-
nents of the cosmic mixture is a constant. As in the former
case, at late times the expansion may be inflating even in
this case.

The results of the study in Ref. [22], although relevant in
what respects the question put forward: can noncommuta-
tivity affect the dynamics of the universe in the large
cosmological scales?, are of limited importance in what
regards their reach. Actually, their results can not be ge-
neric since these are based on a particular exact solution.3

In the present paper, we aim at looking for a generic answer
by the use of the standard tools of the dynamical systems
analysis in the way the authors of Ref. [23] did. The basic
steps of the formalism we use to build noncommutativity
into our cosmological setting—as we already said it is
based on the approach of Ref. [4]—are the following:
i) starting from the Einstein-Hilbert action (plus a self-
interacting scalar field action), the Hamiltonian is derived
for a Friedmann-Robertson-Walker space-time with flat
spatial sections, ii) canonical quantization recipe is ap-
plied: the mini-superspace variables are promoted to
operators and the WDW equation is written in terms of
these variables, iii) noncommutativity in the mini-
superspace is achieved through the replacement of the
standard product of functions by the Moyal star product,
and iv) semiclassical cosmological equations are obtained
by means of the Wentzel-Kramers-Brillouin (WKB) ap-
proximation,4 applied to the (equivalent) modified
Hamilton-Jacobi equation [25]. After this we choose ade-
quate phase space variables and write the modified cosmo-
logical equations in the form of an autonomous system of
ordinary differential equations (ODE). Then we follow the
steps of Ref. [23].

In the present investigation, we do not restrict our study
to exponential potential only, but include a most general
situation when a coshlike potential is also considered. Our
results will indicate—in as much strict terms as in

[23]—that the noncommutative effects not only affect the
early-times dynamics, as expected due to their quantum
nature, but also the cosmic dynamics at late times.
Before going any further, we want to mention the main

’’drawbacks’’ of our approach: i) we will be considering
noncommutativity in mini-superspace rather than in space-
time itself, and, ii) following the approach of Ref. [4] we
will be missing noncommutativity among the momenta
conjugated of the mini-superspace variables. The former
drawback is not as worrying as the latter one, since,
although we are not dealing with direct space-time non-
commutativity, the kind of noncommutativity in mini-
superspace we will be considering, is expected to be a
derived consequence of the former [4–14]. Although the
latter drawback is of more concern, however, our approach
here can be considered as a first step towards a more
complete picture where noncommutativity of the conju-
gated momenta is also taken into account.
We want to make emphasis in the fact that, given the

above ’’drawbacks,’’ and the ’’freedom’’ to choose mini-
superspace coordinates in order to build noncommutativity
into quantum cosmology5—a theory yet lacking a strict
formulation—the cosmological model studied here can be
considered, at most, as a useful toy model to qualitatively
study possible cosmological consequences of noncommu-
tative effects. In this sense, this is just a first attempt at the
latter goal, and, consequently, in the present paper we shall
be concerned mainly with the cosmological asymptotics
and no attention will be paid to observational testing, a
subject that deserves an independent publication.
The paper has been organized in the following manner.

In Sec. II the basic mathematics of the model, as well as
of the approach undertaken here, are exposed. We pay
special attention to the following aspects: i) the canonical
quantization procedure for mini-superspace variables,
ii) introduction of noncommutativity through the Moyal
star product, and, iii) derivation of the (semi-)classical
cosmological equations by means of the WKB approxima-
tion. Section III is devoted to the study of the asymptotic
structure of the modified (semiclassical) cosmological
model, through the use of the dynamical systems tools.
The exponential and cosh-type of potentials are studied
separately. Figures with the relevant phase space portraits
are supplied. The results obtained are discussed in detail in
Sec. IV. In Sec. V,the most important results of the paper
are summarized and their reach commented on. We have
added an Appendix where we discuss a possible general-
ization of our results to include the presence of cold dark
matter (CDM) in general instead of a scalar field fluid,
through the exploration of a simple toy model. Here we use
units in which �2 ¼ 8�G ¼ 1.

3In other words, the given solution may be unstable and very
unlikely to arise in a real physical context.

4Also known as Jeffreys-Wentzel-Kramers-Brillouin (JWKB)
approximation [24].

5Recall that, even if one follows the more standard assumption
of noncommutativity among space-time coordinates, one would
not obtain the same results assuming noncommutativity, e.g.,
among cartesian or spherical coordinates.

OCTAVIO OBREGON AND ISRAEL QUIROS PHYSICAL REVIEW D 84, 044005 (2011)

044005-2



II. SET UP AND BASIC EQUATIONS

As already mentioned in the introduction, here we fol-
low the approach put forward for the first time in Ref. [4].
This time, however, we consider a homogeneous and iso-
tropic Friedmann-Robertson-Walker (FRW) space-time
with flat spatial sections. As a source of the Einstein’s
equations we choose a self-interacting scalar field ’. We
will consider self-interaction potentials of the exponential
and cosh-type.

A. Hamiltonian approach

To start with, we write the—general relativity
(GR)—Einstein-Hilbert (EH) action:6

Sg ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

R; (1)

where �2 � 8�G. If the homogeneous and isotropic FRW
metric—flat spatial sections—is considered, then we can

parametrize the metric as: ds2 ¼ �dt2 þ e2�ðtÞ�ijdx
idxj,

where �ðtÞ is the time-dependent scale factor. Then, after
integrating by parts, the above action can be rewritten as,

Sg ¼ 1

�2

Z
d3xdtLð�; _�Þ; (2)

where we have introduced the definition of the effective
Lagrangian: Lð�; _�Þ ¼ �3e3� _�2.

If, in addition to the standard EH (pure gravity) action
Sg, one introduces also a self-interacting scalar field (SF)

action:

S’ ¼ � 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½ð@’Þ2 þ 2Vð’Þ�; (3)

where Vð’Þ is the self-interaction potential, while ð@’Þ2 �
g��@�’@�’, then, the total effective Lagrangian under the

integral in the resulting action:

Stot ¼ 1

�2

Z
d3xdtLtotð�; _�;’; _’Þ;

can be written in the following form:

L tot ¼ e3�
�
�3 _�2 þ 1

2
_’2 � Vð’Þ

�
: (4)

The Euler-Lagrange equations yield to the second
Friedmann (also Raychaudhuri) equation, and to the
Klein-Gordon equation, respectively:

2 €�þ3 _�2¼�1

2
_’2þVð’Þ; €’þ3 _� _’¼�V;’; (5)

respectively. Here, and in what follows, V;’ � @V=@’.

The next step is to go onto the equivalent Hamiltonian
formulation. To this purpose, we introduce the canonical
momenta:

�� ¼ @Ltot

@ _�
¼ �6e3� _�; �’ ¼ @Ltot

@ _’
¼ e3� _’; (6)

respectively. The standard relationship between the classi-
cal Hamiltonian H and the effective Lagrangian Ltot:
H ð�;��; ’;�’Þ ¼ �� _�þ �’ _’�Ltotð�; _�;’; _’Þ,
yields to

H ¼ e�3�

12
½��2

� þ 6�2
’ þ 12e6�Vð’Þ�: (7)

B. Mini-superspace variables and
noncommutative WDW equation

Here, following Ref. [4], noncommutativity is achieved
by an appropriate deformation of the usual (commutative)
algebra of mini-superspace variables �, ’:

½�;’� ¼ 0 ! ½�0; ’0� ¼ �i�; (8)

where the new mini-superspace variables �0 and ’0 are
noncommutative coordinates on a new (mini-superspace)
base manifold [26], and the constant parameter � encodes
the noncommutative effects.7

We think it is appropriate to make a comment on the
physical motivations of the latter ansatz. Our assumption of
noncommutativity among the expansion factor �0 and the
scalar field ’0 is based in the results of previous studies
(see, for instance, Refs. [4–14]). In our model the parame-
ter � is expected to be a kind of effective (resulting)
measure of noncommutativity amongst fields that are ex-
panded in terms of the parameters related with noncom-
mutativity of usual space-time coordinates. The ansatz in
noncommutative quantum cosmology is also inspired in
noncommutative quantummechanics, due to the fact that�
(�0) and ’ (’0) play the role of ’’coordinates’’ in the mini-
superspace, and appear as such in the WDW equation to
study quantum cosmology [27].
Let us to promote the canonical momenta in Eq. (7) to

quantum operators (@� � @=@�, @’ � @=@’): �� !
�̂� ¼ �i@�, �’ ! �̂’ ¼ �i@’, i. e.,

H ! Ĥ ¼ e�3�

12
½@2� � 6@2’ þ 12e6�Vð’Þ�: (9)

The mini-superspace WDW equation then reads:

Ĥ�ð�;’Þ ¼ 0; (10)

where � is the wave-function of the universe.
Here we shall introduce the noncommutative effects

through the Moyal star product of functions:

Ĥ�ð�;’Þ ¼ 0 ! Ĥ ?�ð�;’Þ ¼ 0: (11)

Since under the star operation the terms containing @2� and
@2’ are unchanged, the effects of the Moyal/star product are

6For a pedagogical and readable explanation of the procedure
we are about to expose see Section 2 of Ref. [20].

7In what follows, for definiteness, we consider � to be a non-
negative quantity.

CAN NONCOMMUTATIVE EFFECTS ACCOUNT FOR THE . . . PHYSICAL REVIEW D 84, 044005 (2011)

044005-3



reflected in the WDW equation through a shift in the
potential:

Vð�;’Þ ?�ð�;’Þ ¼ V

�
�þ �

2
�̂’; ’� �

2
�̂�

�
�ð�;’Þ:

(12)

It has been shown that this is equivalent to performing the
following change of variables [26] (see also [28]):

�0 ¼ �þ �

2
�̂’; ’0 ¼ ’� �

2
�̂�; (13)

where the involved field variables obey the corresponding
commutation relationships in Eq. (8).

To make the point clear: we can write the WDW equa-
tion modified through the replacement of the standard
product of functions and operators by the Moyal/star prod-

uct Ĥ ?�ð�;’Þ ¼ 0, which results in Eq. (14) (see

below), or, equivalently, Ĥ�ð�0; ’0Þ ¼ 0, formulated in
terms of the noncommutative coordinates �0, ’0, of the
new base manifold. Here we adhere to the former point of
view, i.e., we keep the ’’old’’ commutative mini-
superspace variables �, and ’, so that the noncommuta-
tivity will be encoded in the new terms containing the
parameter �. The noncommutative counterpart of the
WDW equation then reads:

Ĥ ��ð�;’Þ ¼ 0;) ½@2� � 6@2’ þ Û�ð�;’Þ�� ¼ 0;

Û�ð�;’Þ � 12eð6��3i�@=@’ÞV
�
’þ i

�

2

@

@�

�
: (14)

If we further Taylor expand in the small parameter �—this
will entail assuming small �@Sð�Þ=@� and �@Sð’Þ=@’ in
the equivalent Hamilton-Jacobi formulation (see below)—
then, keeping up to linear terms:

eð6��3i�@=@’Þ ¼ e6�
�
1� 3i�

@

@’
þOð�2Þ

�
;

V

�
’þ i�

2

@

@�

�
¼ Vð’Þ þ i�

2
V;’

@

@�
þOð�2Þ:

Recalling that we demand the operators @=@� and @=@’
to act exclusively on the wave-function�, it can be shown
that, in the above considered linear approximation, the

potential energy operator in Eq. (14), Û� can be written
as follows:

Û �ð�;’Þ ¼ 12e6�
�
V � 3i�V@’ þ i�

2
V;’@�

�
: (15)

C. WKB approach

To get a consistent description of the cosmological
dynamics at any time we need a (semi) classical analog
of the deformed WDW Eqs. (14) and (15). Such a classical
approximation to the obtained (modified) WDW equation
may be based on the Hamilton-Jacobi formulation and the

WKB approach [24,25]. Hence, following the lines of
Ref. [25] and references therein, lets assume separability
of the wave-function in its arguments �, ’:

�ð�;’Þ / eiSð�ÞþiSð’Þ;

together with the following conditions on the derivatives of
the S-functions:��������@2Sð�Þ

@�2

���������
�
@Sð�Þ
@�

�
2
;

��������@
2Sð’Þ
@’2

���������
�
@Sð’Þ
@’

�
2
;

then, by substituting back into Eqs. (14) and (15), one
obtains (recall that in the linear approximation considered
here, one keeps terms up to Oð�Þ):�

@Sð�Þ
@�

�
2 � 6

�
@Sð’Þ
@’

�
2

¼ 12e6�
�
V þ 3�V

@Sð’Þ
@’

� �

2
V;’

@Sð�Þ
@�

�
: (16)

Next, in order to get the classical equations, as it is custom-
ary in the standard WKB procedure, we make the follow-
ing identifications:

@Sð�Þ
@�

¼ ��;
@Sð’Þ
@’

¼ �’; (17)

where�� and�’, are just the canonical momenta given by

Eq. (6). Hence, after substituting back (17) into Eq. (16)
(taking into account the definitions of the canonical mo-
menta in Eq. (6)), one obtains the following modified
Friedmann constraint:

3 _�2 ¼ 1

2
_’2 þ V þ 3�e3�ð _�V;’ þ _’VÞ: (18)

A dynamical equation to determine ’ can be derived
coming back to the Hamiltonian constraints (14) and (15),
which, in terms of the classical momenta ��, �’, result in:

H �¼e�3�

12
ð��2

�þ6�2
’Þþe3�

�
Vþ3�V�’��

2
V;’��

�
:

(19)

Here the noncommutative effect is encoded in the small
parameter �. Then, by taking into account Eq. (6), the
canonical Hamilton’s equation, _�’ ¼ �@H �=@’, yields

to the desired equation:

€’þ 3 _� _’ ¼ �V;’ � 3�e3�ð _�V;’’ þ _’V;’Þ: (20)

D. Cosmological equations

Equations (18) and (20) form a closed system of differ-
ential equations. The Raychaudhuri (also, second
Friedmann) equation can be derived by taking the time
derivative of the Friedmann Eq. (18) and substituting €’
from the modified Klein-Gordon Eq. (20). We obtain

OCTAVIO OBREGON AND ISRAEL QUIROS PHYSICAL REVIEW D 84, 044005 (2011)

044005-4



2 €�þ 3 _�2 ¼ � 1

2
_’2 þ V þ 3�e3�ð _�V;’ þ _’VÞ: (21)

Equations (18), (20), and (21), are the modified GR equa-
tions of motion provided by the WKB approach, for the
case where � is a small quantity.

A straightforward inspection of the modified cosmologi-
cal equations show that the effect of the kind of noncom-
mutativity explored in this paper is to modify the effective
self-interaction potential of the scalar field. Actually, the
second and third terms on the RHS of Eq. (21) can be
joined together into the effective potential Veff :

Veff ¼ V þ 3�e3�ð _�V;’ þ _’VÞ; (22)

which means that we can define the effective parametric
energy density and pressure of the scalar fluid: �eff

’ ¼
_’2=2þ Veff , p

eff
’ ¼ _’2=2� Veff , respectively. Hence, the

following set of ‘‘standard’’ field equations for a SF-
sourced cosmology is obtained:

3 _�2 ¼ �eff
’ ; 2 €�þ 3 _�2 ¼ �peff

’ ;

_�eff
’ þ 3 _�ð�eff

’ þ peff
’ Þ ¼ 0:

An alternative interpretation is possible, however.
Actually, it is really tempting to identify the following
effective energy density and pressure, respectively, of a
‘‘noncommutative’’ (NC) vacuum fluid (see Ref. [29] for a
related model):

�� ¼ �p� ¼ 3�e3�ð _�V;’ þ _’VÞ: (23)

After the above identification one may rewrite the cosmo-
logical Eqs. (18), (20), and (21), in the following compact
form (we also write the continuity equation for the effec-
tive noncommutative fluid):

3 _�2 ¼ �’ þ ��; 2 €�þ 3 _�2 ¼ �p’ � p�;

_�’ þ 3 _�ð�’ þ p’Þ ¼ � _’��; _�� ¼ _’��;
(24)

where, as usual, �’ ¼ _’2=2þ V, is the (parametric) en-

ergy density of the scalar field fluid, while p’ ¼ _’2=2�
V, is its parametric pressure.

Notice that, although the conservation equation is
not obeyed by each separate component of the cosmic
mixture, the mixture, as a whole, actually does obey the
continuity equation: _�tot þ 3 _�ð�tot þ ptotÞ ¼ 0, where
�tot ¼ �’ þ ��, and ptot ¼ p’ þ p�. It is evident that,

written in the above suggestive form, the cosmic dynamics
is governed by additional, nongravitational interactions
between the scalar field fluid and the effective NC fluid,
through the source term _’��. The dynamics of interacting
cosmic fluids is a very interesting scenario to look for
solutions to the cosmic coincidence problem [30–32].

Another interesting feature of this alternative interpre-
tation is that the effective NC fluid behaves just like a
cosmological ‘‘constant’’ (�� ¼ �p�), where, due to the
source term _’�� in the continuity equations, the

cosmological constant is in fact a dynamical quantity.
This means that the impact of noncommutativity on the
cosmic expansion at late times may be nonvanishing.
In the next sections, we shall explore the asymptotic

properties of the above cosmological model, to look for
generic features of the impact noncommutativity (of the
kind considered here) might have on the large-scale cosmic
dynamics.

III. DYNAMICAL SYSTEMS

Our task here will be to write the Eqs. (18), (20), and
(21), in the form of an autonomous system of ordinary
differential equations. To this end, we have to choose
appropriate phase space variables. In the present case our
starting choice is the following:

x � _’ffiffiffi
6

p
_�
; y � �e3� _�; z � �V;’

V
: (25)

Notice that x amounts to the dimensionless kinetic energy
of the scalar field squared, while y encodes the noncom-
mutative effects. The phase space variable z is sensitive to
the kind of self-interaction potential chosen. In what fol-
lows we restrict our study to non-negative z-s, since the
negative sector can be obtained from the non-negative one
by the transformation ’ ! �’.
The Friedmann Eq. (18) yields to the following con-

straint relating the dimensionless SF potential energy with
the variables x, y, z:

V

3 _�2
¼ 1� x2

1þ 3yð ffiffiffi
6

p
x� zÞ : (26)

The autonomous system of ODE that can be obtained
out of the cosmological Eqs. (18), (20), and (21), is the
following:

x0 ¼ �3xð1� x2Þ þ
ffiffiffi
3

2

s
ð1� x2Þ

�
1þ 3yð ffiffiffi

6
p

x� z�Þ
1þ 3yð ffiffiffi

6
p

x� zÞ
�
z;

y0 ¼ 3yð1� x2Þ; z0 ¼ � ffiffiffi
6

p
xz2ð�� 1Þ; (27)

where � � VV;’’=V
2
;’, and the tilde denotes derivative

with respect to the time-ordering variable � ¼ lna (basi-
cally the number of e-foldings).
The above system of ODE is a closed system of ordinary

differential equations only if the parameter � can be writ-
ten as a function of the variable z; � ¼ �ðzÞ. Indeed, for a
large class of self-interaction potentials which are very
popular in the cosmological context, � can be written in
the form of a polynomial in z.
The phase space relevant for this problem depends on

the particular kind of potential considered, but, in general it
can be defined as:

� ¼ fðx; y; zÞjy � 0; z � 0 . . .g: (28)
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The dots mean additional constraints on the phase space
variables, coming from the particular functional form
of the self-interaction potential under consideration. We
choose y � 0 since we are interested in expanding cosmol-
ogies only ( _�> 0, recall that we have chosen � to be a non-
negative quantity).

Several magnitudes of cosmological relevance
are the following. The deceleration parameter (q ¼
�ð1þ €�= _�2Þ):

q ¼ �1þ 3x2; (29)

and the dimensionless energy densities of the NC fluid and
of the SF:

��� ��

3 _�2
¼3ð1�x2Þð ffiffiffi

6
p

x�zÞy
1þ3yð ffiffiffi

6
p

x�zÞ ; �’¼1���; (30)

respectively. Recall that, since the effective NC fluid be-
haves like vacuum (p� ¼ ���), then the effective equation
of state (EOS) parameter, !� ¼ �1, always.

In general, for potentials which vanish at the mini-
mum—usually associated with relevant late-time behav-
ior—the phase space variable z is undefined, and one has to
choose an alternative variable. One possible choice is the
following:

�z ¼ 1

zþ 1
) z ¼ 1� �z

�z
; (31)

where, since z is a non-negative quantity, then 0 � �z � 1.
Besides, the resulting phase space spanned by the variables
x, y, �z is noncompact only in the y-direction, so that several
critical points might scape our study. A way out is to
transform also the variable y:

�y ¼ 1

yþ 1
) y ¼ 1� �y

�y
:

After the above transformations, the phase space spanned
by x, �y, �z, is a compact space, which means that all of the
existing equilibrium points are confined to a bounded
region.

In terms of x, �y, �z, the autonomous system of ODE (27)
transforms into:

x0 ¼ �3xð1� x2Þ þ
ffiffiffi
3

2

s
ð1� x2Þ

�
1� �z

�z

�

�
�
�y �zþ3ð1� �yÞ½ ffiffiffi

6
p

x�z� ð1� �zÞ�ð�zÞ�
�y �zþ3ð1� �yÞ½ ffiffiffi

6
p

x�z� ð1� �zÞ�
�
;

�y0 ¼ �3�yð1� �yÞð1� x2Þ;
�z0 ¼ ffiffiffi

6
p

xð1� �zÞ2½�ð�zÞ � 1�:

(32)

As already said, the phase space is now a compact
3-dimensional space spanned by the coordinates x, �y, �z,
and can be defined in the following way:

� ¼ fðx; �y; �zÞj � 1 � x � 1; 0 � �y � 1; 0 � �z � 1g: (33)

Recall that the ranges �y > 1 and �y < 0 are not being
considered since we are interested in describing the dy-
namics of expansion (contracting phases are not of interest
to us).
Such relevant cosmological parameters as the SF and

NC dimensionless energy density parameters, together
with the scalar field EOS parameter, can be given in terms
of the new variables as follows:

�� ¼ 3ð1� x2Þð1� �yÞ½ð ffiffiffi
6

p
xþ 1Þ�z� 1�

�y �zþ3ð1� �yÞ½ð ffiffiffi
6

p
xþ 1Þ�z� 1� ;

�’ ¼ 1���;

and

!’ ¼ 1þ 2ðx2 � 1Þ �y �z
�y �zþ3x2ð1� �yÞ½ð ffiffiffi

6
p

xþ 1Þ�z� 1� ;

respectively. Other relevant magnitudes remain un-
changed: q ¼ �1þ 3x2, !� ¼ �1.

A. Exponential potential

For the particular case when z ¼ 	 ) �z ¼ 1=ð	þ 1Þ, is
a constant: Vð’Þ ¼ V0 expð�	’Þ ) � ¼ 1. In this case
the system of ODE (32) appreciably simplifies, and instead
of a 3-dimensional phase space, one has a 2-dimensional
one, spanned by the variables x, �y:

x0 ¼ �
ffiffiffi
3

2

s
ð1� x2Þð ffiffiffi

6
p

x� 	Þ;

�y0 ¼ �3�yð1� �yÞð1� x2Þ:
(34)

We have, also, that q ¼ �1þ 3x2 (as before), and

�� ¼ 3ð1� x2Þð ffiffiffi
6

p
x� 	Þð1� �yÞ

�yþ 3ð ffiffiffi
6

p
x� 	Þð1� �yÞ :

The main qualitative properties of the phase space
spanned by the variables x, �y, �z, for this case, are summa-
rized below.

1. Critical points: Commutative (GR) limit

In the commutative GR-limit (y ¼ 0 ) �y ¼ 1), the
phase space is a linear space, and the critical points are

x ¼ �1 and x ¼ 	=
ffiffiffi
6

p
. Perturbing (linearly) in the neigh-

borhood of these points one obtains:


0� ¼ 6

�
1	 	ffiffiffi

6
p

�

; 
0 ¼ 3

�
	2

6
� 1

�

;

respectively, where 
 is the small perturbation. Hence,

the perturbation evolves according to 
�ð�Þ ¼

0 expðð6	

ffiffiffi
6

p
	Þ�Þ, for the points x ¼ �1, and 
ð�Þ ¼


0 expðð	2 � 6Þ�=2Þ, for x ¼ 	=
ffiffiffi
6

p
, respectively. This

means that, while the SF kinetic energy-dominated solu-
tion corresponding to the choice x ¼ 1 (also stiff-fluid
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solution), can be stable for 	 >
ffiffiffi
6

p
, the one corresponding

to x ¼ �1 is always unstable. For 	2 < 6 the SF kinetic/

potential energy-scaling solution x ¼ 	=
ffiffiffi
6

p
is stable, oth-

erwise it is also an unstable critical point.

2. Critical points: General case
(includes noncommutativity)

In the general case (including noncommutativity), the
critical points, Pi ¼ ðxi; �yiÞ, of the above autonomous sys-
tem of ODE are:

(i) SF kinetic energy-dominated solution: P�
K ¼

ð�1; �yÞ. The cosmological parameters, in this case,
are:

�� ¼ 0; �’ ¼ 1; q ¼ 2:

Since, in both cases, there is one vanishing eigen-
value of the corresponding linearization matrices:

i) 	1 ¼ 0, 	2 ¼ 6� ffiffiffi
6

p
	, for Pþ

K , ii) 	1 ¼ 0, 	2 ¼
6þ ffiffiffi

6
p

	, for P�
K , these critical points are

nonhyperbolic.

(ii) SF scaling solution: PK=V ¼ ð	= ffiffiffi
6

p
; 1Þ. The dimen-

sionless density parameters, and the deceleration
parameter are equal to:

�� ¼ 0; �’ ¼ 1; q ¼ �1þ 	2

2
:

The eigenvalues of the linearization around this
point are: 	1 ¼ 3� 	2=2, 	2 ¼ �3þ 	2=2, so
that it is a saddle equilibrium point.

(iii) SF/NC fluid-scaling solution: P’=� ¼ ð	= ffiffiffi
6

p
; 0Þ.

The relevant cosmological parameters are:

�� ¼ 1� 	2

6
; �’ ¼ 	2

6
; q ¼ �1þ 	2

2
;

while the eigenvalues of the linearization matrix
are: 	1 ¼ 	2 ¼ �3þ 	2=6. For 	2 < 6 this is the
future attractor in the phase space.

Summarizing the results of this subsection: i) the non-
commutative effects modify the early-times cosmic dy-
namics by erasing any past attractor (see Fig. 1), ii) these
effects also modify the late-times dynamics by replacing
the two possible future attractors according to the standard
GR-limit (either the stiff-fluid solution, or the SF kinetic/
potential energy-scaling solution) by the SF/NC-scaling
solution (critical point P’=�).

B. Potentials of the coshlike type

Here one is considering potentials of the following kind:

Vð’Þ ¼ V0½coshð	’Þ � 1�p; (35)

so that

z ¼ p	 sinhð	’Þ
coshð	’Þ � 1

; �ðzÞ ¼ 1� 1

2p
þ p	2

2z2
:

Hence, in terms of the variable �z:

�ð �zÞ ¼ ð2p� 1Þð1� �zÞ2 þ p2	2 �z2

2pð1� �zÞ2 ;

besides;

�ð�zÞ � 1 ¼ ðp2	2 � 1Þ�z2 þ 2�z� 1

2pð1� �zÞ2 :

If we substitute back into (32), and then we look for the
equilibrium points of the resulting autonomous system of
ODE, we obtain the results which we list below (see also
Tables I, II, and III).

1. Critical points: Commutative (GR) limit

The commutative case corresponds to the choice �y ¼ 1,
so that y ¼ 0 ) � ¼ 0 (the case _� ¼ 0 is of no interest for
cosmology). The corresponding critical points and their
properties are summarized in Table I. Here we list these
results. Recall that critical points are given by pairs ðx; �zÞ.

(i) Kinetic energy-dominated critical points:

P�
K ¼

�
�1;

1

1þ p	

�
;

0

0.2

0.4

0.6

0.8

1

y

–1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1
x

–1 –0.5 0 0.5 1
x

0

0.2

0.4

0.6

0.8

1

y

x

0

0.2

0.4

0.6

0.8

1

y

FIG. 1. Phase portraits for the exponential potential case (sub-
section [33]) for different choices of the exponential parameter
	: i) 	 ¼ 0 (top left), ii) 	 ¼ 0:5 (top right), and iii) 	 ¼ 3
(bottom). In this, as well as in the subsequent figures, the x, y
(and z) axes span the compact phase space variables x, �y (and �z),
respectively. Several orbits corresponding to different sets of
initial conditions are shown. In each case the initial conditions
on the noncommutative coordinate �y correspond to either �yð0Þ ¼
0:75 (upper groups of orbits), or to �yð0Þ ¼ 0:25 (lower groups of
orbits) only. The attractor structure of the scalar field/noncom-
mutative fluid-scaling solution (critical point P’=�) when 	

2 < 6

(upper panels), is evident.
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also known as stiff-fluid solution. For these points
!’ ¼ 1, and q ¼ 2, while the eigenvalues of the

linearization matrix are 	1 ¼ 6� ffiffiffi
6

p
p	, and 	2 ¼ffiffiffi

6
p

	, for Pþ
K , while for P�

K these are: 	1 ¼
6þ ffiffiffi

6
p

p	, 	2 ¼ � ffiffiffi
6

p
	. Hence, for p	 <

ffiffiffi
6

p
, Pþ

K

is the past attractor in the phase space, while, for

p	 >
ffiffiffi
6

p
, it is a saddle critical point instead. The

critical point P�
K is always a saddle point in the phase

space.
(ii) SF kinetic/potential energy-scaling solution:

PK=V ¼
�
p	ffiffiffi
6

p ;
1

1þ p	

�
:

For this case the SF EOS and the deceleration
parameters are given by !’ ¼ �1þ p2	2=3, q ¼
�1þ p2	2=2, respectively. Since the eigen-
values of the linearization matrix for this case

	1 ¼ �3þ p2	2=2, 	2 ¼ p	2, then this critical
point is a source (past attractor) whenever p2	2 >
6, while for p2	2 < 6 it is a saddle equilibrium
point. For p2	2 < 2 the corresponding cosmologi-
cal solution describes accelerated expansion.

(iii) SF potential energy (V)-dominated solution: PV ¼
ð0; 1Þ. The scalar field fluid mimics a cosmological
constant since !’ ¼ �1 and the peace of the cos-

mic expansion is accelerated (q ¼ �1). This solu-
tion is always the future attractor since the real
parts of the eigenvalues of the linearization matrix

are both negative: 2	1;2 ¼ �3ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2p	2=3

p Þ.
For p	2 > 3=2 the future attractor is a spiral equi-
librium point (see the Fig. 2).

Summing up: within the framework of standard (com-
mutative) GR-limit, the past attractor can be either the stiff-

fluid solution if p	 <
ffiffiffi
6

p
(theK=V energy-scaling solution

TABLE III. Eigenvalues of the linearization matrices corresponding to the critical points in

Table II. Here we have defined: m � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2p
p � p2	2Þ2=6p2

p
.

C. Points x �y �z 	1 	2 	3

Pþ
K 1 �y 1

1þp	 0 6� ffiffiffi
6

p
p	

ffiffiffi
6

p
	

P�
K �1 �y 1

1þp	 0 6þ ffiffiffi
6

p
p	 � ffiffiffi

6
p

	

PK=V
p	ffiffi
6

p 1 1
1�p	 p	2 �3þ p2	2

2 3� p2	2

2

PV 0 1 1 3 �3þm �3�m
P

V 0 1 0 3 �3þm �3�m

PNC 0 0 r �3 �3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 3p	2

p �3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 3p	2

p

TABLE I. Critical points and their properties for the coshlike potential Vð’Þ ¼
V0½coshð	’Þ � 1�p: the commutative GR-limit. The eigenvalues of the corresponding lineari-
zation matrices are shown in the right-hand columns.

C. Points x �z Existence !’ q 	1 	2

Pþ
K 1 1

1þp	 Always 1 2 6� ffiffiffi
6

p
p	

ffiffiffi
6

p
	

P�
K �1 1

1þp	 ’’ 1 2 6þ ffiffiffi
6

p
p	 � ffiffiffi

6
p

	

PK=V
p	ffiffi
6

p 1
1þp	 ’’ �1þ p2	2

3 �1þ p2	2

2 �3þ p2	2

2 p	2

PV 0 1 ‘‘ �1 �1 � 3
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3p	
2

q
Þ � 3

2 ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3p	
2

q
Þ

TABLE II. The critical points of the autonomous system (32) for the coshlike potential
Vð’Þ ¼ V0½coshð	’Þ � 1�p: general case (includes noncommutativity). Here we have defined

r ¼ ð2p� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2	2ð1� 2pÞp Þ=ð2p� 1þ p2	2Þ.

C. Points x �y �z Existence �’ �� !’ q

Pþ
K 1 �y 1

1þp	 Always 1 0 1 2

P�
K �1 �y 1

1þp	 ’’ 1 0 1 2

PK=V
p	ffiffi
6

p 1 1
1þp	 ’’ 1 0 �1þ p2	2

3 �1þ p2	2

2

PV 0 1 1 ’’ 1 0 �1 �1
P

V 0 1 0 ’’ Undefined Undefined �1 �1

PNC 0 0 r p � 1=2 0 1 �1 �1
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and the conjugated stiff-fluid solution are both saddle
critical points), or the K=V energy-dominated solution if

p	 >
ffiffiffi
6

p
. In the latter case the stiff-fluid solution (and its

indistinguishable conjugated, in this case) is always a
saddle equilibrium point. The future (late-time) attrac-
tor—a spiral point for p	2 > 3=2—is always the infla-
tionary SF potential energy-dominated solution. These
features are illustrated in the phase portrait in the Fig. 2.

2. Critical points: General case

While in the GR-limit there are found four critical
points, in the general case—considering NC effects of
the kind explored here—there are found two additional
critical points. Although all these critical points, Pi ¼
ðxi; �yi; �ziÞ, are exposed in the Table II (the eigenvalues of
the corresponding linearization matrices are shown in the
Table III), here we list them and discuss their basic
properties.

(i) Kinetic energy-dominated critical points (stiff-fluid
solution):

P�
K ¼

�
�1; �y;

1

1þ p	

�
:

For these points �’ ¼ 1 (�� ¼ 0), !’ ¼ 1, and

q ¼ 2. For Pþ
K the eigenvalues of the linearization

matrix are 	1 ¼ 0, 	2 ¼ 6� ffiffiffi
6

p
p	, and 	3 ¼

ffiffiffi
6

p
	,

while, for P�
K these are: 	1 ¼ 0, 	2 ¼ 6þ ffiffiffi

6
p

p	,

and 	3 ¼ � ffiffiffi
6

p
	. In both cases, since one of the

eigenvalues is vanishing, these are nonhyperbolic
points and we miss part of the information we could
obtain from the application of the standard tools of
the (linear) dynamical systems analysis. However,

for Pþ
K , as long as p	 >

ffiffiffi
6

p
, this is a saddle equilib-

rium point since 	2 and 	3 are of opposite sign. In
the case P�

K , since for positive p the eigenvalues 	2

and 	3 are of opposite sign, then we can say with
certainty that this is always a saddle critical point.
Additional information can be extracted from the
inspection of the phase portrait (see Fig. 3). It can
be corroborated that there are no past attractors there.

(ii) SF K=V energy-scaling solution:

PK=V ¼
�
p	ffiffiffi
6

p ; 1;
1

1þ p	

�
:

The cosmological magnitudes of relevance are
given by: �’ ¼ 1 (�� ¼ 0), !’ ¼ �1þ p2	2=3,

q ¼ �1þ p2	2=2. The eigenvalues of the lineari-
zation matrix for this case are: 	1 ¼ p	2, 	2 ¼
�3þ p2	2=2, 	3 ¼ 3� p2	2=2. Since the eigen-
values 	2 and 	3 are always of opposite sign, then
this critical point is always a saddle point in the
phase space, unlike in the GR-limit, when this point
can be also a past attractor.

(iii) SF V-dominated solution: PV ¼ ð0; 1; 1Þ. The rele-
vant parameters are �’ ¼ 1 (�� ¼ 0), !’ ¼ �1,

0.4
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0.8

1

1.2

1.4

1.6

1.8

2

z(t)

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
x(t)

FIG. 2. Standard GR-limit for the coshlike potential. The
following values of the free parameters have been chosen:
	 ¼ 5, p ¼ 0:25. Several orbits corresponding to different sets
of initial conditions are drawn. The SF potential energy-
dominated solution PV ¼ ð0; 1Þ is the late-time attractor. It is
seen that the orbits of the autonomous system of ODE spiral
down to the future attractor, which is associated with coherent
(damped) oscillations of the cosmological scalar field around the
minimum of the potential.
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0.4

z(t)

0

0.5

1

1.5

2

t

0

0.05

0.1

0.15

0.2

0.25

0.3

y

–0.4 –0.2 0 0.2 0.4
x

0

0.1

0.2

0.3

0.4

z
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FIG. 3. General case for the coshlike potential (includes non-
commutative effects). The flux in time � of the corresponding
autonomous system of ODE is shown for 	 ¼ 5, p ¼ 0:25 (top).
The projections of the phase space onto the different phase
planes are also shown (bottom). While the existence of the future
attractor—critical point PNC ¼ ð0; 0; 0:36Þ—corresponding to
the solution dominated by the noncommutative effects (see
Table II), is evident, there are not found past attractors.
Because of our choice of the free parameters above, p	2 > 3,
the late-time attractor is a spiral critical point. For p > 1=2 no
future attractor can be found in the phase space either.
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and q ¼ �1, while the eigenvalues of the lineari-
zation matrix are: 	1 ¼ 3, 	2;3 ¼ �3�m (the

quantity m is defined in the heading of Table III).
This is always a saddle equilibrium point in the
phase space.

(iv) Conjugated SF V-dominated critical point: P

V ¼

ð0; 1; 0Þ. In this case both�’ and�� are undefined.

The other quantities remain the same as in the
former case, including the eigenvalues of the linea-
rization matrix. This point can be associated with
the minimum of the coshlike potential (35).

(v) NC-dominated solution: PNC ¼ ð0; 0; rÞ, where the
quantity r has been defined in the heading of
Table II. This solution is dominated by the energy
density of the effective noncommutative fluid�� ¼
1 (�’ ¼ 0), and exist whenever p � 1=2. It is

associated with accelerated expansion since q ¼
�1. Whenever it exists, it is the late-time (future)
attractor since the real parts of the eigenvalues of the
corresponding linearization matrix are negative:

	1 ¼ �3, 	2;3 ¼ �3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 3p	2

p
. For p	2 > 3

this is a spiral critical point since the eigenvalues
of the linearization matrix are complex numbers.

A brief summary of the main results can be given:
i) noncommutative effects modify the early-times dynam-
ics by erasing any past attractor (neither the stiff-fluid
solution, nor the SF K=V-scaling solution can be source
points), ii) noncommutative effects also modify the late-
times dynamics: the stability of the SF potential energy-
dominated solution (the future attractor in the standard
GR-limit) is modified: it is now a saddle critical point.
For p � 1=2 the future attractor in the phase space is the
inflationary NC-dominated solution (equilibrium point
PNC). Additionally, the way in which the orbits in the phase
space approach to the late-time attractor is also modified:
while in the standard GR-limit the future attractor is a
spiral point for p	2 > 3=2, in the general case, due to the
influence of the noncommutative effects of the kind con-
sidered here, this attractor is a spiral point for p	2 > 3. The
above enumerated features can be appreciated in Fig. 3.

IV. DISCUSSION

The question that stands in the title of this paper is not as
trivial as it seems. To start with, noncommutativity, if it
really has played any role in the cosmological dynamics, is
expected to have influenced the very early stages of the
cosmic expansion, when, presumably, quantum effects had
an appreciable impact on the gravitational interactions of
matter. However, the relatively recent discovery that our
universe expands at an accelerated pace, has put forward
the possibility that tiny quantum effects that might have
passed unnoticed in the recent past of the cosmic history,
might be the cause of the present speed up of the expan-
sion. Actually, the simplest model that accommodates the
recent acceleration of the cosmic expansion rests on the

antigravitating effect of the quantum vacuum (the cosmo-
logical constant). Since the energy density of the vacuum
(�vac / �) does not evolve with the expansion, then, even
if it has been a tiny fraction of the matter-energy content of
the universe in the past, as long as the remaining compo-
nents of the cosmic mixture dilute with the expansion,
there is a moment in the future (present) of the cosmic
history when the negative pressure of the vacuum starts
dominating the cosmic dynamics, resulting in a new period
of inflation (also referred to as late-time inflation).
Therefore, it makes sense to ask whether noncommuta-

tive effects can have any appreciable impact on the destiny
of the cosmological evolution either. Besides, there is no
evidence that their influence on the early-times dynamics is
a generic feature. This is why we have focused in the study
of the asymptotic properties of FRW cosmological models
in connection with noncommutative quantum cosmology.
Here we have concentrated in a semiclassical WKB

approximation to the mini-superspaceWDWequation gen-
eralized to encompass noncommutativity of field variables
� and ’ by the introduction of the Moyal star product. The
resulting FRW cosmological Eqs. (18), (20), and (21) can
be given an (attractive) alternative interpretation in the
form of the Eqs. (24). Written in the latter form, the non-
commutative effects of the kind considered in this paper,
may be encoded in an additional (effective) NC matter
term which equation of state tracks that of the cosmologi-
cal constant p� ¼ ���, so that, its possible inflationary
effect is envisioned. However, unlike the usual cosmologi-
cal constant term, the energy density of the NC effective
fluid does actually evolve as the cosmic expansion pro-
ceeds, thanks to additional nongravitational interactions
with the scalar field through a source term / _’��.

8

These interactions are switched on by the Moyal star
product, which mixes the metric and the scalar field
components.
Since, in general, the Eqs. (18), (20), and (21) (or their

equivalent (24)) are very difficult to solve analytically, an
alternative way around is to invoke the dynamical systems
tools to extract very useful information about the asymp-
totic properties of the model instead. In this regard, knowl-
edge of the equilibrium points in the phase space—
corresponding to a given cosmological model—is very
important information since, independent of the initial
conditions chosen, the orbits of the corresponding autono-
mous system of ODE will always evolve for some time in
the neighborhood of these points. Besides, if the point were
a stable attractor, independent of the initial conditions, the
orbits will always be attracted toward it (either into the past
or into the future). Going back to the original cosmological

8Solar system measurements impose severe constraints to
occurrence of additional nongravitational interactions of matter,
however, when these interactions involve dark components of the
cosmic mixture, as in the present case, the issue is subtle and, in
general, these constraints may be evaded [31,32].
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model, the existence of the equilibrium points can be
correlated with generic cosmological solutions that might
really decide the fate and/or the origin of the cosmic
evolution.

What the results of our dynamical systems analysis have
revealed is that, independently of the kind of self-
interaction potential considered: i) exponential potential,
or ii) coshlike potential, the noncommutative effects of the
kind considered here9 affect not only the early-times dy-
namics but also modify the late-time behavior. Below we
will discuss this issue in detail.

A. Exponential potential

Exponential potentials and their combination have been
intensively studied in the recent past in connection with
cosmological applications [33]. These arise in supergravity
and in superstring after dimensional reduction [34].

The dynamical systems study of the NC cosmological
model considered here reveals that, while for standard
(GR) FRW cosmology the stiff-fluid solution, x ¼ 1, is

always the past attractor and the scaling solution, x ¼
	=

ffiffiffi
6

p ) _’2=2V ¼ 	2=ð6� 	2Þ, is the future attractor,10

in the most general case, which includes noncommuta-
tive effects, there are no past attractors at all. In other
words, the noncommutative effects modify the early-time
dynamics by erasing any past attractor from the phase
space. This means, in turn, that the starting point of the
cosmic dynamics is uncertain: if we evolve the cosmo-
logical equations from given initial data (given, say, in
the present epoch) back into the past, the result is highly
dependent on these data. However, the stiff-fluid solution
continues being an equilibrium point, which means that
the cosmological evolution may evolve for some time in
the vicinity of this solution. Hence, the noncommutative
effects modify the stability properties of the equilibrium
configuration associated with the early-times cosmic
dynamics.

The surprising fact was to find that the NC effects also
modify the late-times dynamics. Actually, in the general
case, the SF kinetic/potential energy-scaling solution,

PK=V ¼ ð	= ffiffiffi
6

p
; 1Þ ) � ¼ 0, _’2=2V ¼ 	2=ð6� 	2Þ, is al-

ways a saddle critical point (it was the late-time attractor in
the GR-limit), while the late-time attractor is the SF/NC

fluid-scaling solution P’=� ¼ ð	= ffiffiffi
6

p
; 0Þ ) �’=�� ¼

	2=ð6� 	2Þ. This solution is inflationary (i.e., it is corre-
lated with accelerated expansion of the universe) whenever
	2 < 2.

B. Coshlike potential

The coshlike potential (35),

Vð’Þ ¼ V0½coshð	’Þ � 1�p;
has been studied in connection with the so called scalar
field dark matter (SFDM) models [35–37].
In a natural scenario for cosmic dynamics, the scalar field

’ runs from arbitrarily large negative values (j’j � 1) to
vanishing ones (j’j � 1). In consequence at early times the
dynamics is driven by an exponential potential

j’j � 1

	
) Vð’Þ � V0

2
e�p	’;

whereas at late times it is associated with a power-law
potential:

j’j � 1

	
) Vð’Þ � 1

2
m2’2p; m2 � V0	

2:

In general, for positive p-s, there is an oscillatory phase
around the minimum of this potential which plays an
important role in the late-time dynamics. It has been dem-
onstrated [38] that in the limit when the oscillation period
is much smaller than the time scale of the cosmic expan-
sion, coherent scalar field (damped) oscillations behave
like a fluid with hp’i ¼ h!’i�’, where the mean equation

of state of the fluid h!’i depends upon the form of the

scalar field potential Vð’Þ [38]. In particular, for V ¼
V0’

n ) h!’i ¼ ðn� 2Þ=ðnþ 2Þ. Hence, for the potential
(35), at late times—during the oscillatory phase—the mean
equation of state is determined by

h!’i ¼
	
p’

�’



¼ p� 1

pþ 1
:

Notice that for p ¼ 1 the scalar field behaves like pressur-
eless dust, h!’i ¼ 0. A scalar field potential with this

value of p could therefore play the role of cold dark matter
(also known as SFCDM) in the universe. For, p < 1=2, this
potential is a good candidate for quintessence models of
dark energy (DE) [36,39].
The known results of the dynamical systems study of

this kind of potential—within standard, commutative,
FRW cosmology—show that (see subsection III B 1):
i) The past attractor can be either the stiff-fluid-dominated

solution Pþ
K ¼ ð1; 1=1þ p	Þ (!’ ¼ 1, q ¼ 2), if p	 <ffiffiffi

6
p

, or, whenever, p	 >
ffiffiffi
6

p
, it is the SF scaling solution

PK=V ¼ ðp	= ffiffiffi
6

p
; 1=1þ p	Þ (!’ ¼ �1þ p2	2=3, q ¼

�1þ p2	2=2), ii) the SF potential energy-dominated so-
lution PV ¼ ð0; 1Þ (!’ ¼ �1, q ¼ �1, meaning that ’ ¼
’0, Vð’Þ ¼ V0), is always the past attractor. For p	2 >
3=2 this is a spiral point signaling that the field ’ performs
damped (coherent) oscillations around the minimum of the
potential Vð’Þ at late times, until the stable de Sitter
solution is attained. This oscillatory stage is what can be

9We frequently repeat this sentence because there are several
different ways to build noncommutativity into a given cosmo-
logical setting.
10The case for 	 >

ffiffiffi
6

p
, where the stiff fluid and the scaling

solutions exchange their stability properties, is not being con-
sidered since this condition would imply negative energy.
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identified properly with SFCDM [37]. The above features
are clearly illustrated in Fig. 2.

What kind of modifications of the above picture are
produced by the noncommutative effects? According to
the results of subsection III B 2, after NC effects of the
kind explored here—WKB approach to the mini-
superspace WDW equation, supplemented with the
Moyal star product—are switched on, the past asymptotic
structure of the phase space is modified: there are no past
attractors there.

The interesting finding is that the future asymptotics of
the phase space is also modified. Actually, first, the stabil-
ity of the SF potential energy-dominated solution (critical
point PV above in subsection III B 2), which was the late-
time attractor in the standard commutative theory, is modi-
fied: it is now a saddle equilibrium point. Second, an
additional conjugated (twin) SF potential energy-
dominated solution P


V arises. Third, the oscillatory behav-

ior of the perturbation is also modified by noncommuta-
tivity: while in the standard GR picture coherent
oscillations arise for p	2 > 3=2, in the NC-modified pic-
ture the damped oscillations occur whenever p	2 > 3.
Finally, the late-time attractor is the inflationary solution
that is dominated by the NC effects (critical point PNC for
which �� ¼ 1, see Fig. 3). The latter attractor exists
whenever p � 1=2. Hence, the noncommutative effects
may be the cause that the universe inflates at late times.

A genuine objection against our finding that the present
speed up of the cosmic expansion might be due to the effect
of noncommutativity, can be based on the argument that
the scalar field itself (alone) may fuel the late-time infla-
tion. So that, why to complicate that simple quintessential
picture with the inclusion of unknown noncommutative
effects of quantum nature originated very early in the
cosmic history?

A reply to this kind of objection can be based on the
following arguments. First, the SF models of dark energy
are plagued with serious problems: fine tuning of initial
conditions, the coincidence problem, etc. Besides the no-
tion of dark energy itself is very unappealing and faces
serious challenges to find support in the standard scheme of
the fundamental interactions.11

A second argument is a bit more technical. Recall that a
scalar field with a coshlike potential of the kind (35),
can be a nice model of dark matter if one chooses p ¼ 1
[35–37], while, for p < 1=2, it is a good candidate for
quintessence model of dark energy instead [36,39].
However, the latter statements are true only for noninter-

acting scalar fields—no additional interaction with the
other components of the cosmic mixture. In particular, in
the present case where the scalar field interacts with the
effective NC fluid, the above statements are not true. This
can be clearly seen by recalling that the influence of non-
commutativity can be alternatively understood as a modi-
fication to the SF self-interaction potential. Hence, the
range of values of the parameter p for which the coshlike
potential correctly explains the dark matter is shifted to
lower values. Even if under the effects of noncommutativ-
ity, the (interesting for cosmology) picture with a late-time
attractor inflationary solution arises for p � 1=2, due to the
mentioned shift in p, the scalar field with the potential (35)
can be a good candidate to account for the dark matter. This
statement is supported by the results of the dynamical
systems study discussed above: for, p	2 > 3, coherent
(damped) oscillations of the SF perturbation around the
NC-dominated solution, arise. This oscillatory behavior is
what can be interpreted as the (SF)CDM [37]. Hence, to
close our line of argument; in our model the scalar field
plays the role of CDM, while the noncommutative effects
account for the late-time speed up of the expansion of the
universe.
In the Appendix, through the inspection of a simplified

toy model, we avoid relying on the scalar field component
to show that the noncommutative effects can, in fact, be a
nice candidate to explain the cosmic speed up at late times.

V. CONCLUSION

In the present paper we have addressed the question,
formerly explored in Ref. [22], about the possible impact
of noncommutative effects of quantum nature on the dy-
namics at large cosmological scales, by the study of a
simplified model [4,15,16].
While in [22] the issue was investigated in connection

with a given particular solution of the corresponding modi-
fied cosmological equations (and for an exponential dila-
ton/scalar field self-interaction potential), here we have
approached this subject from the dynamical systems per-
spective, and, additionally, have included the coshlike
potential which serves as a good model of cold dark matter,
known as SFCDM [35–37].
The recipe used by us to build noncommutativity into the

FRW (flat) cosmological model was based in the approach
of Ref. [4] (see also [15,16]). It can be summarized in the
following steps: i) the Hamiltonian is derived from the
Einstein-Hilbert action (plus a self-interacting scalar field
action) for a FRW space-time with flat spatial sections,
ii) canonical quantization recipe is applied, i.e., the mini-
superspace variables are promoted to operators, and the
WDW equation is written in terms of these variables,
iii) noncommutativity in mini-superspace variables is
achieved through the replacement of the standard product
of functions by the Moyal star product in the WDW equa-
tion, and, finally, iv) (semiclassical) modified cosmological

11This is why alternative ways to explain the present stage of
acceleration of the cosmic expansion have been explored. These
include modifications of the laws of gravity. It is in this latter
vein where our proposal fits. Modifications of gravity of quan-
tum nature, such as inclusion of noncommutative effects, can
be an interesting alternative to explain this—up to date—
mysterious speed up of the expansion of the universe.
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equations are obtained by means of the WKB approxima-
tion applied to the (equivalent) modified Hamilton-Jacobi
equation.

Our results corroborate—on the grounds of a solid dy-
namical systems basis—the results of [22] regarding the
dynamics at late times. Noncommutativity does actually
modify (appreciably indeed) the future asymptotics of the
model: the late-time (future) attractor, whenever it exists, is
associated with a solution of the cosmological equations
that is dominated by the NC effects. Even in the case when
the future attractor does not exist, the stability properties of
the critical points associated with the future asymptotics
are drastically modified. This is a robust result since it is
not based on the study of a concrete particular solution, but
on the exploration of the differential equations flux in the
phase space corresponding to the original cosmological
model.

However, in what regards the early-time dynamics, our
results differ from the ones in Ref. [22]. Actually, here we
have shown that the past asymptotics are also modified by
the noncommutativity: past attractors (also, source critical
points) are erased by the NC effects. This is not an un-
expected result since NC effects of quantum nature are
designed to modify the cosmological evolution at early
times, when, probably, the quantum effects played a major
role in the gravitational dynamics. The discrepancy with
the results of the mentioned reference may be a conse-
quence of the different approaches undertaken. Besides,
the fact that according to the outcomes of [22] the early-
times dynamics are not affected by the noncommutativity,
supports our argument that the solution studied therein was
a particular, structurally unstable solution of the modified
cosmological equations.

We want to recall that the present approach suffers from
several drawbacks: i) we have considered noncommutativ-
ity of mini-superspace variables rather than of space-time
coordinates themselves, and, ii) following the approach of
[4] we did not consider noncommutativity among the
momenta conjugated of the mini-superspace variables.
While the former drawback is not worrying since the
kind of noncommutativity between the metric and the
scalar field we have explored is expected to be a derived
consequence of direct space-time noncommutativity
[13,14], the latter drawback is of more concern. A more
complete study along the lines followed here, where non-
commutativity of the conjugated momenta is also consid-
ered, is the subject of ongoing research.

Since the modified cosmological model studied in the
present paper can be, at most, a useful toy model to seek for
qualitative aspects of the impact of noncommutativity at
large scales, consequently we have not discussed any
possible observational test to check it. Anyway, given
that inclusion of noncommutativity the way it was included
here affects not only the late-time cosmic dynamics, but
also the dynamics at very early times in a nontrivial way, it

should be expected that the evolution of density perturba-
tions in our model (in particular the grow of structure) is
very different from the one predicted by other competing
cosmological models, as for instance, the �CDM model,
so that the new features can be detected by CMB measure-
ments. The study of such an important issue deserves an
independent publication. In the last instance, the present
study can be considered as a first (modest) step towards a
deeper understanding of the possible influence of primor-
dial quantum processes in phenomena taking place at
cosmological scales.
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APPENDIX: PHENOMENOLOGICAL
TOY MODEL

Here we will speculate that, instead of the scalar field,
one has a barotropic fluid with vanishing pressure pDM ¼ 0
(dust), that can be identified with the cold dark matter in
the universe. To do this in a consistent way within the
framework of our NC model, it will suffice to notice that
for a scalar field with vanishing pressure p’ ¼ _’2=2�
V ¼ 0 ) �’ ¼ _’2. Then it is legitimate to make the re-

placement �’ ! �DM ) _’ ! � ffiffiffiffiffiffiffiffiffiffi
�DM

p
(in what follows,

for definiteness, we shall consider only the positive root in
the latter expression). This procedure will result in the
following set of cosmological equations for our NC phe-
nomenological model (compare with Eq. (24)):

3 _�2 ¼ �DM þ ��; 2 €�þ 3 _�2 ¼ �p�;

_�DM þ 3 _��DM ¼ � ffiffiffiffiffiffiffiffiffiffi
�DM

p
��; _�� ¼ ffiffiffiffiffiffiffiffiffiffi

�DM
p

��: (A1)

The first thing we want to notice is that, as before, the
cosmic dynamics are governed by the—additional, non-
gravitational—interaction between the CDM and the NC
fluid. A simple inspection of the above equations reveals
that the pace of the expansion is determined by the corre-
lation between the energy densities of both components
of the cosmic mixture. Actually, it can be demonstrated
that, in the present case, the deceleration parameter q �
�ð1þ €�= _�2Þ can be expressed in the following form:

q ¼ ��� � �DM=2

�� þ �DM

:

Hence, if the CDM energy density dilutes with the
cosmic expansion at higher rate than the NC fluid, as
long as �� > �DM=2, the expansion transits from being
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decelerated in the past to being accelerated into the future.
The above possibility, however, depends on the way �DM

and �� evolve with the expansion of the universe. To make
the discussion more precise it will be mandatory to go onto
the phase space. The asymptotic structure will then clearly
show which solutions are generic and, besides, will also
reveal their stability properties.

To obtain an autonomous ODE out of the latter set of
cosmological equations, it will suffice to define a single

phase space variable: x � ffiffiffiffiffiffi
��

p
=

ffiffiffi
3

p
_�. In terms of this

variable, the Friedmann constraint can be written in the
following compact form: �DM ¼ �DM=3 _�2 ¼ 1� x2.
Since the dimensionless CDM energy density parameter
has to be necessarily a non-negative quantity, then jxj � 1.
However, since we are interested in cosmic expansion
exclusively, negative values of x will not be considered.
Another useful quantity is the deceleration parameter
q ¼ ð1� 3x2Þ=2.

The following autonomous ordinary differential equa-
tion is obtained:

x0 ¼
ffiffiffi
3

p
2

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� x2Þ

q i
: (A2)

The critical values of the x-variable are:
i) x ¼ 0—CDM-dominated (�DM ¼ 1), decelerated solu-
tion (q ¼ 1=2), and ii) x ¼ 1—NC fluid-dominated
(�� ¼ 1), inflationary solution (q ¼ �1). The CDM-
dominated solution is unstable. Actually, let us perturb

this solution, i.e., x ! 0þ 
. According to (A1) the

perturbation 
 will uncontrollably grow: 
ð�Þ ¼ 
ð0Þ�
expðð ffiffiffi

3
p þ 3Þ�=2Þ.

To explore the stability of the NC-dominated solution it
is recommendable to make the following replacement in

Eq. (A1): x ! y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, so that the autonomous ODE

can be written as: 2y0 ¼ � ffiffiffi
3

p ð1� y2Þð1þ ffiffiffi
3

p
yÞ. We recall

that this equation is not valid at the point y ¼ 0 (x ¼ 1),
since in the process of its derivation we divided by y.
However, since we will be interested in perturbations
around y ¼ 0, i.e., around x ¼ 1, but will not evaluate at
the point y ¼ 0 itself, the above equation will be accurate
enough. Let us now perform small perturbation 
 around
y ¼ 0. According to the latter equation, the perturbation
will decay as: 
ð�Þ / expð�3�=2Þ. In consequence, the
NC-dominated solution is stable.
Stated in terms of the dynamical systems language: i) the

CDM-dominated solution is the past attractor, while, ii) the
NC-dominated solution is the future attractor. This dem-
onstrates that the noncommutative effects alone can be,
indeed, a candidate to explain the late-time speed up of the
cosmic expansion.
The above is a nice cosmic scenario since transition

from decelerated into accelerated expansion is generic.
However, as with any toy model, it really does not correctly
describe the past dynamics of the universe, since one needs
to consider, also, other cosmic components as, for instance,
a radiation term.
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