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Based only on the assumption that the Universe is homogenous and isotropic on large scales,

cosmography is an ideal tool to investigate the cosmic expansion history in an almost model-independent

way. Fitting the data on the luminosity distance and baryon acoustic oscillations allows to determine the

confidence ranges for the cosmographic parameters hence giving some quantitative constraints that at

whatever theory has to fulfill. As an application, we consider here the case of teleparallel gravity also

referred to as fðTÞ gravity. To this end, we first work out analytical expressions to express the present day
values of fðTÞ derivatives as a function of the cosmographic parameters, which hold under quite general

and physically motivated conditions. We then use the constraints coming from cosmography to find out

the confidence ranges for fðTÞ derivatives up to the fifth order and show how these can be used to check

the viability of given teleparallel gravity models without the need to explicitly solve the second order

dynamic equations.
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I. INTRODUCTION

Various cosmological observations, including the
type Ia supernova (Sne Ia) [1], the cosmic microwave
background radiation [2], and the large-scale structure
[3,4], have revealed that the Universe is undergoing an
accelerating expansion, and it entered this accelerating
phase only in the near past. This unexpected observed
phenomenon poses one of the most puzzling problems in
cosmology today. Usually, it is assumed that there exists
dark energy (DE) in our Universe, as an exotic energy
component with negative pressure, which dominates the
Universe filled with cold dark matter and drives the
Universe to an accelerating expansion at recent times.

The simplest and most appealing candidate for DE is the
vacuum energy (cosmological constant,�) with a constant
equation of state (EoS) parameter, �1. This model is in
general agreement with current astronomical observations,
but has difficulties in reconciling the small observational
value of DE density to that coming from quantum field
theories. This is called the cosmological constant problem
[5]. Recently it was shown that the�CDMmodel may also
suffer from an age problem [6]. It is thus natural to pursue
alternative possibilities to explain the current acceleration
of the Universe. Observing the small deviations for the EoS
parameter from �1 requires a description of the DE that

allows the EoS to evolve across the phantom divide line�1
possibly multiple times. The present data seem to slightly
favor an evolving DE with the EoS parameter crossing�1
from above to below in the near past [7]. One may take the
observed accelerating expansion as a signal of the break-
down of our understanding of the laws of gravitation
and, thus, a modification of the theory of gravity theory
is needed.
Over the past decade numerous DE models have been

proposed, such as quintessence [8], phantom [9], k-essence
[10], tachyon [11], quintom [7,12]; as well as the
Chaplygin gas [13] and the generalized Chaplygin gas
[14], the holographic DE [15], the new age graphic DE
[16], the Ricci DE [17], and so on.
In addition, the extensions to gravity by making the

action a function of the spacetime curvature scalar R,
fðRÞ [18–21], or other curvature invariants [22], by cou-
pling the Ricci scalar to a scalar field [23], by introducing a
vector field contribution [24], or by using properties of
gravity in higher dimensional spacetimes have been widely
investigated [25]. Among the fðRÞ models, there are mod-
els that are verified by all the observational and theoretical
constraints and exhibit universe acceleration and phantom
crossing [26–30].
In a different approach, avoiding the curvature defined

via the Levi-Civita connection, one could explore an alter-
native way and use the Weitzenböck connection, which has
no curvature but instead torsion. This has the property that
the torsion is formed completely from products of first
derivatives of the tetrad, with no second derivatives appear-
ing in the torsion tensor. This approach was considered
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originally by Einstein in 1928 [31,32], as ‘‘teleparallelism.’’
It is closely related to standard general relativity (GR),
differing only in ‘‘boundary terms,’’ involving total deriva-
tives in the action. The theory is naturally formulated by
gauging external (spacetime) translation and underling
the Weitzenböck spacetime characterized by the metricity
condition and by the vanishing of the curvature tensor.
Translations are closely related to the group of general
coordinate transformations, which underlies general rela-
tivity. The theory possesses a number of attractive features
both from geometrical and physical viewpoints [33–48].

Some models based on a modification of the teleparallel
equivalent of general relativity (TEGR) are presented as
an alternative to inflationary models without an inflaton
[40,41] and DE models for the acceleration of the Universe
[42–48] where dark torsion is responsible for the observed
acceleration of the Universe, and the field equations are
always second order equations. This property makes these
theories simpler than the dynamical equations, resulting
in fðRÞ gravity among other advantages. It has been shown
that in theories of generalized TEGR, whose Lagrangians
are algebraic functions of the usual teleparallel
Lagrangian, the action and the field equations are not
invariant under local Lorentz transformations [49]. The
authors also argue that the usual teleparallel Lagrangian
equivalent to general relativity, is just a special case.

It is worth noting that all of the above models such as
dark energy, fðRÞ gravity, and fðTÞ gravity, have shown to
be, in a broad sense, in agreement with observational data.
As a consequence, unless higher precision probes of the
expansion rate and the growth of the structure become
available, these rival approaches cannot be discriminated.
This degeneration about the theoretical background sug-
gests that a more conservative approach to the problem of
cosmic acceleration, relying on as few model-dependent
quantities as possible, is welcome.

A possible solution could be to come back to the cos-
mography rather than finding solutions to the Friedmann
equations and testing them. Being only related to the
derivatives of the scale factor, the cosmographic parame-
ters make it possible to fit the data on the distance-redshift
relation without any a priori assumption on the underlying
cosmological model. In this case, the only assumption is
that the metric is the Robertson-Walker one. Almost a
century after Hubble’s discovery of the expansion of the
Universe, we can now extend cosmography beyond the
search for the value of the Hubble constant. The SNe Ia
Hubble diagram extends up to z ¼ 1:7 thus invoking the
need for, at least, a fifth order Taylor expansion of the scale
factor in order to give a reliable approximation of the
distance-redshift relation. As a consequence, it could be,
in principle, possible to estimate up to five cosmographic
parameters, although the still too small data set available
does not allow obtaining a precise and realistic determi-
nation of all of them.

Once these quantities have been determined, one could
use them to put constraints on the models. In a sense, we
are reverting the usual approach consisting of deriving the
cosmographic parameters as a sort of by-product of an
assumed theory. Here, we follow the other way around,
expressing the model characterizing quantities as a func-
tion of the cosmographic parameters. Such a program has
been particularly suited for the study of fourth order
theories of gravity, i.e. fðRÞ gravity [50,51]. As it is well
known, the mathematical difficulties entering the solution
of fourth order field equations make it quite problematic to
find analytical expressions for the scale factor and hence
predict the values of the cosmographic parameters. But, no
one has studied this procedure in fðTÞ gravity. A key role in
both the fðRÞ and fðTÞ scenarios is played by the choice
of the fðRÞ or the fðTÞ function. Under quite general
hypotheses, we will derive useful relations among the
cosmographic parameters and the present day value of

fðnÞðTÞ ¼ dnf=dTn, with n ¼ 0; . . . ; 5, whatever the
analytic form of fðTÞ is. These relations will then allow
to constrain the fðTÞ derivatives, provided model-
independent constraints on the cosmographic parameters
are available.
The paper is organized as follows. In Sec. II we will

review the fðTÞ gravity. In Sec. III we will introduce the
basic notions of the cosmographic parameters. Section IV
contains the main result of the paper, demonstrating how
the fðTÞ derivatives can be related to the cosmographic
parameters, while, in Sec. V, we use these relations and
previous constraints on the cosmographic parameters to
derive model-independent estimates of the present day
values of the fðTÞ derivatives. As a further application,
Sec. VI shows how these latter constraints can be used to
observationally validate a given class of TEGR models
without the need to solve the field equations. We summa-
rize and conclude in Sec. VII.

II. fðTÞ GRAVITY

Teleparallelism uses as dynamical object a vierbein field
eiðx�Þ, i ¼ 0, 1, 2, 3, which is an orthonormal basis for the
tangent space at each point x� of the manifold: ei:ej ¼ �ij,

where �ij ¼ diagð1;�1;�1;�1Þ. Each vector ei can be

described by its components e
�
i , � ¼ 0, 1, 2, 3 in a

coordinate basis; i.e. ei ¼ e
�
i @�. Notice that Latin indexes

refer to the tangent space, while Greek indexes label
coordinates on the manifold. The metric tensor is obtained

from the dual vierbein as g��ðxÞ ¼ �ije
i
�ðxÞej�ðxÞ.

Differing from general relativity, which uses the torsion-
less Levi-Civita connection, teleparallelism uses the
curvatureless Weitzenböck connection, whose non-null
torsion is

T�
�� ¼ �̂�

�� � �̂�
�� ¼ e�i ð@�ei� � @�e

i
�Þ: (2.1)
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This tensor encompasses all the information about the
gravitational field. The TEGR Lagrangian is built with
the torsion (2.1) and its dynamical equations for the
vierbein imply the Einstein equations for the metric. The
teleparallel Lagrangian is

T ¼ S��
� T�

��; (2.2)

where

S�
�� ¼ 1

2
ðK��

� þ �
�
�T��

� � ��
�T

��
�Þ (2.3)

and K��
� is the contorsion tensor

K��
� ¼ � 1

2
ðT��

� � T��
� � T�

��Þ; (2.4)

which equals the difference between Weitzenböck and
Levi-Civita connections.

In this work the gravitational field will be driven by a
Lagrangian density that is a function of T. Thus, the action
reads

I ¼ 1

16�G

Z
d4xefðTÞ; (2.5)

where e ¼ detðei�Þ ¼ ffiffiffiffiffiffiffi�g
p

. The case of fðTÞ ¼ T corre-

sponds to TEGR. If matter couples to the metric in the
standard form, then the variation of the action with respect
to the vierbein leads to the equations [46]

e�1@�ðeSi��Þf0ðTÞ� e�i T
�
��S�

��f0ðTÞþ Si
��@�ðTÞf00ðTÞ

þ 1

4
e�i fðTÞ ¼ 4�Gei

�T�
�; (2.6)

where a prime denotes differentiation with respect to T,
Si

�� ¼ ei
�S�

�� and T�� is the matter energy-momentum

tensor.
We will assume a flat homogeneous and isotropic FRW

universe, so

ei� ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ; (2.7)

where aðtÞ is the cosmological scale factor. By using (2.1),
(2.2), (2.3), and (2.4), we obtain

T ¼ �6H2; (2.8)

where H ¼ _a
a is the Hubble parameter. The substitution of

the vierbein (2.7) in (2.6) for i ¼ 0 ¼ � yields

12H2f0ðTÞ þ fðTÞ ¼ 16�G�: (2.9)

Besides, the equation i ¼ 1 ¼ � is

48H2f00ðTÞ _H � f0ðTÞ½12H2 þ 4 _H� � fðTÞ ¼ 16�Gp:

(2.10)

In Eqs. (2.9) and (2.10), � and p are the dark matter energy
density and pressure, respectively. It can be easily derived
that they accomplish the conservation equation

_�þ 3Hð�þ pÞ ¼ 0: (2.11)

We can rewrite Eqs. (2.9) and (2.10) as the usual form

H2 ¼ 8�G

3
ð�þ �TÞ; (2.12)

2 _Hþ 3H2 ¼ � 8�G

3
ðpþ pTÞ; (2.13)

where

�T ¼ 1

16�G
½2Tf0ðTÞ � fðTÞ � T=2�; (2.14)

pT ¼ 1

16�G
½2 _Hð4Tf00ðTÞ þ 2f0ðTÞ � 1Þ� � �T (2.15)

are the torsion contributions to the energy density and
pressure. Then, by using Eqs. (2.14) and (2.15), we can
define the effective torsion equation of state as

!T � pT

�T

¼ �1þ 4 _Hð4Tf00ðTÞ þ 2f0ðTÞ � 1Þ
4Tf0ðTÞ � 2fðTÞ � T

: (2.16)

This could be, in principle, related to the observed accel-
eration of the Universe. See for example [52].

III. COSMOGRAPHIC PARAMETERS

Standard candles (such as SNe Ia and, to a limited
extent, gamma ray bursts) are ideal tools in modern cos-
mology since they make it possible to reconstruct the
Hubble diagram, i.e. the redshift-distance relation up to
high redshift values. It is then customary to assume a
parameterized model (such as the concordance �CDM
one, or any other kind of dark energy scenario) and con-
trasting it against the data to check its viability and con-
straints its characterizing parameters. As it is clear, such an
approach is model dependent so that some doubts always
remain on the validity of the constraints on derived quan-
tities as the present day values of the deceleration parame-
ter and the age of the Universe. In order to overcome such a
problem, one may resort to cosmography, i.e. expanding
the scale factor in Taylor series with respect to the cosmic
time. Such an expansions leads to a distance-redshift rela-
tion, which only relies on the assumption of the Robertson-
Walker metric thus being fully model independent since it
does not depend on the particular form of the solution of
cosmic equations. To this aim, it is convenient to introduce
the following functions:

H ¼ 1

a

da

dt
(3.1)

q ¼ � 1

a

d2a

dt2
H�2 (3.2)

j ¼ 1

a

d3a

dt3
H�3 (3.3)

COSMOGRAPHY IN fðTÞ GRAVITY PHYSICAL REVIEW D 84, 043527 (2011)

043527-3



s ¼ 1

a

d4a

dt4
H�4 (3.4)

l ¼ 1

a

d5a

dt5
H�5; (3.5)

which are usually referred to as the Hubble, deceleration,
jerk, snap, and lerk parameters, respectively. Their present
day values (which we will denote with a subscript 0) may
be used to characterize the evolutionary status of the
Universe. For instance, q0 < 0 denotes an accelerated ex-
pansion, while j0 allows to discriminate among different
accelerating models.

It is then a matter of algebra to demonstrate the follow-
ing useful relations:

_H ¼ �H2ð1þ qÞ; (3.6)

€H ¼ H3ðjþ 3qþ 2Þ; (3.7)

H
:::

4 ¼ H4½s� 4j� 3qðqþ 4Þ � 6�; (3.8)

HðivÞ ¼H5½l�5sþ10ðqþ2Þjþ30ðqþ2Þqþ24�; (3.9)

where a dot denotes the derivative with respect to the

cosmic time t and HðivÞ ¼ d4H=dt4. Equations (3.6),
(3.7), (3.8), and (3.9) make it possible to relate the deriva-
tive of the Hubble parameter to the other cosmographic
parameters.

IV. fðTÞ DERIVATIVES VS COSMOGRAPHY

Rather than choosing a parameterized expression for
fðTÞ and then numerically solving modified Friedmann
equations for given values of the boundary conditions,
we try to relate the present day values of its derivatives
to the cosmographic parameters ðq0; j0; s0; l0Þ so that

constraining them in a model-independent way gives us a
hint as to what kind of fðTÞ model could be able to fit the
observed Hubble diagram.
As a preliminary step, it is worth considering Eq. (2.8).

Differentiating with respect to t, we easily get the follow-
ing relations:

_T ¼ �12H _H; (4.1)

€T ¼ �12½ _H2 þH €H�; (4.2)

T
:::¼ �12½3 _H €HþHH

:::�; (4.3)

TðivÞ ¼ �12½3 €H2 þ 4 _HH
:::þHHðivÞ�: (4.4)

The modified Friedmann Eqs. (2.9) and (2.10) can be
rewritten as

H2 ¼ �1

12f0ðTÞ ½T�m þ fðTÞ� (4.5)

and

_H ¼ 1

4f0ðTÞ ½T�m � 4H _Tf00ðTÞ�; (4.6)

where the dot denotes the derivative with respect to the
cosmic time t, and�m represents the dimensionless matter
density parameter. However, in order to enter other cosmo-
graphic parameters, we have to differentiate from Eq. (4.6)
three more times. We thus get

€H ¼ �m

4Hf0ðTÞ ½H
_T � Tð3H2 þ 2 _HÞ�

� 1

f0ðTÞ ½ð2
_H _TþH €TÞf00ðTÞ þH _T2f000ðTÞ�; (4.7)

H
::: ¼ �m

4H2f0ðTÞ ½Tð9H
4 þ 6H2 _Hþ 4 _H2Þ�H _Tð3 _Hþ 6H2ÞþHðH €T� 2 €HTÞ�

� 1

Hf0ðTÞ ½
_H €Hf0ðTÞþ ð2 _H2 _Tþ 3H €H _Tþ4H _H €TþH2T

:::Þf00ðTÞþH2 _T3fðivÞðTÞþH _Tð4 _H _Tþ3H €TÞf000ðTÞ�; (4.8)

and

HðivÞ ¼ �m

4H3f0ðTÞ ½Tð10H
_H €Hþ12H3 €H � 27H6 � 12H2 _H2 � 8 _H3 � 2H2H

:::Þ þH3

þH2 _Tð9H _H þ 27H3 � 5 €HÞ � 3H2 €Tð3H2 þ _HÞ þ 7H _H2 _T�
� 1

H2f0ðTÞ ½ð3H
_HH
:::þ _H2 €HþH €H2Þf0ðTÞ þH2 _T2ð7 _H _Tþ6H €TÞfðivÞðTÞ

þ ð4H2H
:::

_Tþ2 _H3 _T þ 7H2 _HT
:::þ10H _H2 €T þ 7H2 €H €Tþ11H _H €H _TþH3TðivÞÞf00ðTÞ

þHð10 _H2 _T2 þ 7H €H _T2 þ 21H _H _T €Tþ3H2 €T2 þ 4H2 _T T
:::Þf000ðTÞ þH3 _T4fðvÞðTÞ�; (4.9)

with fðivÞðTÞ ¼ d4fðTÞ=dT4 and fðvÞðTÞ ¼ d5fðTÞ=dT5.
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Since the last five equations have to hold along the full
evolutionary history of the Universe, they naively hold also
at the present day. As a consequence, we may evaluate
them in t ¼ t0 thus easily obtaining

H2
0 ¼

�1

12f0ðT0Þ ½T0�m0 þ fðT0Þ� (4.10)

_H 0 ¼ 1

4f0ðT0Þ ½T0�m0 � 4H0
_T0f

00ðT0Þ�; (4.11)

and so on for the next three ones.
So, we have five equations, i.e. (4.10), (4.11), (4.7), and

(4.9) evaluated at the present day. We call these, ‘‘final
equations,’’ which will turn out to be useful in the follow-
ing. But, one further relation is needed in order to close the
system and determine the six unknown quantities fðT0Þ,
f0ðT0Þ, f00ðT0Þ, f000ðT0Þ, fðivÞðT0Þ, and fðvÞðT0Þ. This may be
easily obtained by noting that, inserting back the physical
units, Eq. (2.9) reads

H2 ¼ 8�G

6f0ðTÞ
�
�� fðTÞ

16�G

�
; (4.12)

which clearly shows that, in fðTÞ gravity, the Newtonian
gravitational constantGN has to be replaced by an effective
(time-dependent) coupling Geff . However, the present day
value of Newtonian gravitational constant has to be recov-
ered, and then

Geffðz ¼ 0Þ ¼ GN ! f0ðT0Þ ¼ 1; � (4.13)

which means the recovery of TEGR. In other words, the
choice fðTÞ ¼ T gives rise to T ¼ �6H2 [see Eq. (2.8)],
and then Eq. (4.12) reduces to the standard

H2 ¼ 8�G

3
�: (4.14)

Let us now suppose that fðTÞmay be well approximated
by its fifth order Taylor expansion in T � T0, i.e. we set

fðTÞ ¼ fðT0Þ þ f0ðT0ÞðT � T0Þ þ 1

2
f00ðT0ÞðT � T0Þ2

þ 1

6
f000ðT0ÞðT � T0Þ3 þ 1

24
fðivÞðT0ÞðT � T0Þ4

þ 1

120
fðvÞðT0ÞðT � T0Þ5: (4.15)

In such an approximation, it is fðnÞðTÞ ¼ dnf=dTn ¼ 0
for n � 6.
Evaluating Eqs. (4.1), (4.2), (4.3), (4.4), and (2.8) at the

present time and using Eqs. (3.6), (3.7), (3.8), and (3.9), one
gets

T0 ¼ �6H2
0 ; (4.16)

_T 0 ¼ 12H3
0ð1þ q0Þ; (4.17)

€T 0 ¼ �12H4
0½q0ðq0 þ 5Þ þ j0 þ 3�; (4.18)

T
:::
0 ¼ �12H5

0½s0 � j0ð3q0 þ 7Þ � 3q0ð4q0 þ 9Þ � 12�;
(4.19)

TðivÞ
0 ¼ �12H6

0½l0 � s0ð4q0 þ 9Þ þ j0ð3j0 þ 44q0 þ 48Þ
þ 3q0ð4q20 þ 39q0 þ 56Þ þ 60�: (4.20)

After inserting all of these into the ‘‘final equations,’’we
can solve them under the constraint (4.13) with respect to
the present day values of fðTÞ and its derivatives up to the
fifth order. After some algebra, one ends up with the
desired result:

fðT0Þ
6H2

0

¼ �m0 � 2; (4.21)

f0ðT0Þ ¼ 1; (4.22)

f00ðT0Þ
ð6H2

0Þ�1 ¼ �3�m0

4ð1þ q0Þ þ
1

2
; (4.23)

f000ðT0Þ
ð6H2

0Þ�2 ¼ �3�m0ð3q20 þ 6q0 þ j0 þ 2Þ
8ð1þ q0Þ3

þ 3

4
; (4.24)

fðivÞðT0Þ
ð6H2

0Þ�3
¼ �3�m0

16ð1þ q0Þ5
½s0ð1þ q0Þ

þ j0ð6q20 þ 17q0 þ 3j0 þ 5Þ
þ 3q0ð5q30 þ 20q20 þ 29q0 þ 16Þ þ 9� þ 15

8
;

(4.25)

fðvÞðT0Þ
ð6H2

0Þ�4
¼ �3�m0

32ð1þ q0Þ7
½l0ð1þ q0Þ2 þ s0ð10q30 þ 43q20 þ 46q0 þ 13Þ þ 10j0s0ð1þ q0Þ þ 5j20ð6q20 þ 22q0 þ 3j0 þ 7Þ

þ j0ð45q40 þ 225q30 þ 412q20 þ 219q0 þ 32Þ þ 3q0ð35q50 þ 210q40 þ 518q30 þ 666q20 þ 448q0 þ 150Þ þ 60�
þ 105

16
; (4.26)

Equations (4.21), (4.22), (4.23), (4.24), (4.25), and (4.26) make it possible to estimate the present day values of
fðTÞ and its first five derivatives as function of the Hubble constant H0 and the cosmographic parameters ðq0; j0; s0; l0Þ
provided a value for the matter density parameter �m0 is given.
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The �CDM model

In order to get a first hint on the possible values of fðTÞ
and its derivatives, we have to reproduce the cosmographic
parameters for the�CDMmodel as the simplest case. This
is a minimal approach but it is useful to probe the self-
consistency of the model. The cosmographic parameters
for the �CDM model read

q ¼ �
�
H0

H

�
2
�
1��m0 ��m0

2a3

�
; (4.27)

j ¼
�
H0

H

�
3
�
1��m0 þ�m0

a3

�
3=2

; (4.28)

s ¼
�
H0

H

�
4
�
1� 2�m0 � 5�m0

2a3
þ�2

m0 þ
5�2

m0

2a3
� 7�2

m0

2a6

�
;

(4.29)

l ¼
�
H0

H

�
5
�
1� 2�m0 þ 5�m0

a3
þ�2

m0 �
5�2

m0

a3
þ 35�2

m0

2a6

�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��m0 þ�m0

a3

s �
; (4.30)

which, evaluated at the present time, give

q0 ¼ �1þ 3
2�m0; (4.31)

j0 ¼ 1; (4.32)

s0 ¼ 1� 9
2�m0; (4.33)

l0 ¼ 1þ 3�m0 þ 27
2�

2
m0: (4.34)

Inserting the previous equations in Eqs. (4.23), (4.24),
(4.25), and (4.26), we obtain

f00ðT0Þ ¼ f000ðT0Þ ¼ fðivÞðT0Þ ¼ fðvÞðT0Þ ¼ 0; (4.35)

and in the absence of these terms fðTÞ reduces to
fðTÞ � T � 2�. This is consistent with what we expected
for the�CDM model and can be assumed as a consistency
check.

V. OBSERVATIONAL CONSTRAINTS

In order to constrain the model by cosmography, i.e. to
estimate the function fðTÞ through its own value and that
of its derivatives at the present time, we need to constrain
observationally the cosmographic parameters by using
appropriate distance indicators. Moreover, we must take
care that the expansion of the distance related quantities in
terms of ðq0; j0; s0; l0Þ closely follows the exact expres-
sions over the range probed by the data used. Taking
SNe Ia and a fiducial �CDM model as a test case, one
has to check that the approximated luminosity distance1

deviates from the �CDM one less than the measurement
uncertainties up to z ’ 1:5 to avoid introducing any sys-
tematic bias. Since we are interested in constraining
ðq0; j0; s0; l0Þ, we will expand the luminosity distance DL

up to the fifth order in z, which indeed allows us to track the
�CDM expression with an error less than 1% over the full
redshift range. We have checked that this is the case also
for the angular diameter distance DA ¼ DLðzÞ=ð1þ zÞ2
and the Hubble parameter HðzÞ which, however, we ex-
pand only up to the fourth order to avoid introducing a
further cosmographic parameter.
In order to constrain the parameters ðh; q0; j0; s0; l0Þ,

Bouhmadi-Lopez et al. [51] have used the
Union2 SNeIa data set [53] and the baryon acoustic oscil-
lation (BAO) data from the analysis of the Sloan Digital
Sky Survey seventh release [54] adding a prior on h from
the recent determination of the Hubble constant by the
SHOES team [55]. We update here their analysis, adding
the measurement of HðzÞ obtained in [56] from the age of
passively evolving galaxies and in [57] from the radial
BAO. Exploring the five dimensional parameter space
with a Markov Chain Monte Carlo method, we obtained
the constraints summarized in Table I in agreement with
previous results in the literature [58–60]. Note that, be-
cause of the degeneracies among the five cosmographic
parameters, the best fit values can also be different from the
median ones, which is indeed what happens here. This is,
however, not a shortcoming of the fitting analysis, but a
consequence of the Bayesian approach giving more im-
portance to sampling the marginalized parameters distri-
butions rather than to looking for the best fit accordance

TABLE I. Constraints on the cosmographic parameters. Columns are as follows: 1. parameter id; 2. best fit; 3., 4. mean and median
from the marginalized likelihood; 5, 6, 68, and 95% confidence ranges.

x xBF hxi xmed 68% C.L. 95% C.L.

h 0.718 0.706 0.706 (0.693, 0.719) (0.679, 0.731)

q0 �0:64 �0:44 �0:43 (�0:60, �0:30) (�0:71, �0:26)
j0 1.02 �0:04 �0:15 (�0:88, �0:90) (�1:07, 1.40)
s0 �0:39 0.18 0.02 (�0:57, 1.07) (�1:04, 1.78)
l0 4.05 4.64 4.54 (2.99, 6.48) (1.78, 8.69)

1See [50] for the analytical expression.
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within a given model and the available data set.2 In par-
ticular, here, the best fit values are quite close to those
predicted for the �CDM model (for instance, j0 ¼ 1 for a
� dominated universe), while the median ones allow for
significant deviations (with the �CDM values being, how-
ever, within the 95% confidence ranges).

In order to translate the constraints on the cosmographic
parameters on similar constraints on the present day values
of fðTÞ and its derivatives, we should just use Eqs. (4.21),
(4.22), (4.23), (4.24), (4.25), and (4.26), evaluating them
along the final co-added and thinned chain of the cosmo-
graphic parameters and then looking at the corresponding
histograms. To this end, however, we should set the value
of �m0, which is not constrained by the fitting analysis
described before. To overcome this difficulty, we rely on
the WMAP7 determination of the physical matter density
!m ¼ �m0h

2 ¼ 0:1329 and, for each value of h along the
chain, we fix �m0 ¼ !m=h

2 having neglected the error on
!m since it is subdominant with respect to the one on h.
Note that the adopted estimate of !m comes from the fit to
the cosmic microwave background radiation anisotropy
spectrum and mainly depends on the early Universe phys-
ics only. Since it is reasonable to expect that GR is recov-
ered in this limit, we can safely assume the validity of this
result whichever fðTÞ model is considered. Defining for
shortness

fn ¼ fðnÞðT0Þ=ð6H2
0Þ�ðn�1Þ;

we finally get the constraints summarized in Table II and
shown in Fig. I where the degeneracy between some
couples of parameters is shown as an example. Note that,
as best fit value, we mean the one obtained by fixing the

cosmographic parameters to the best fit values. However,
because of the degeneracies among ðq0; j0; s0; l0Þ and the
nonlinear behavior of the relations with fn, it is possible
that the best fit fn are quite different from their median
values, which is indeed the case (in particular, for f5). Note
also that the confidence ranges become larger as the order
n of the derivative increases. This is indeed an expected
result since the higher is n, the larger is the number of
cosmographic parameters involved so that the weakness of
the constraints on the higher order cosmographic parame-
ters and the degeneracies among them makes the con-
straints on fn weaker and weaker as n gets larger. From a
different point of view, such a behavior simply reflects the
naive expectation that one has to go to deeper redshifts to
probe the exact functional shape of fðTÞ and hence put
severe constraints on the value of its high order derivatives.
As a further remark, we note that the constraints on
ðf3; f4; f5Þ are strongly asymmetric with a long tail ex-
tending towards negative values, causing a large offset
between the mean and the median. This is actually a
consequence of the term ð1þ q0Þ�	, with 	 ¼ ð3; 5; 7Þ
for ðf3; f4; f5Þ, respectively, which enters as a common
factor in Eqs. (4.24), (4.25), and (4.26). As q0 comes close
to�1, these term becomes increasingly large, thus making
fn explode. It is, however, worth noting that values of q0
close to �1 are indeed quite unlikely (although still
allowed by our fit to a limited data set) so that only the
95% confidence ranges are affected. A comprehensive
view of the situation is given in Fig. 1

A. Dependence on the expansion order

Although we have checked that our fifth order expansion
closely matches the exact luminosity and angular diameter
distances and the Hubble parameter within less than 1%, it
is worth noting that a decent approximation is also ob-
tained if we stop the expansion to the third or fourth order.
Cutting the expansion to order three (four) means that we
can only constrain cosmographic parameters up to the jerk
j0 (the snap s0) and hence work out confidence ranges for

0.4 0.3 0.2 0.1 0.0 0.1 0.2

6

4

2

0

f2

f 3

0.3 0.2 0.1 0.0 0.1 0.2
40

30

20

10

0

10

f2

f 4

0.3 0.2 0.1 0.0 0.1 0.2
500

400

300

200

100

0

100

f2

f 5

FIG. 1 (color online). Iso likelihood (68, 95, and 99% C.L.) contours for the fi quantities. The fuzziness is due to numerical artifacts.

2Qualitatively, one can say that the best fit value of, e.g. q0 is
less important than the median one since the best fit q0 is the
correct one only if the other parameters also take their best fit
values, while the median one is more reliable since it describes
the full distribution whatever the values of the other parameters
are.
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the fðTÞ derivatives up to the third (fourth) order. It is
nevertheless worth exploring how the constraints depend
on the order of the expansion. To this end, we fit the same
data set as above with both the third and fourth order
expansion of the involved quantities and then use the
correspondingMarkov chains to estimate confidence limits
on ðf0; f2; f3Þ. From the third order fit, we get (median and
68 and 65% C.L.)

f0 ¼ �1:741þ0:009þ0:017
�0:008�0:016

f2 ¼ 0:005þ0:054þ0:098
�0:069�0:154

f3 ¼ 0:097þ0:303þ0:475
�0:515�1:552;

while the fourth order fit gives

f0 ¼ �1:733þ0:011þ0:021
�0:009�0:019

f2 ¼ 0:043þ0:061þ0:113
�0:076�0:195

f3 ¼ 0:439þ0:266þ0:439
�0:441�1:536:

Comparing the value of fi for the different fits (including
the fifth order one in Table II) allows us to draw some
interesting lessons. First, although the median values are
different, the confidence ranges are well overlapped thus
indicating that the order of the expansion should not have
any statistically meaningful impact on the constraints.
However, further and accurate studies have to be per-
formed in order to confirm this statement. On the other
hand, increasing the order of the expansion shifts away
from the �CDM one (i.e. fi ¼ 0 for i > 1). This is, ac-
tually, a subtle effect of the degeneracy among the cosmo-
graphic parameters. Indeed, increasing the order n of the
expansion adds further parameters to the fit thus allowing
for much more combinations of the cosmographic parame-
ters able to fit well the same data. As a consequence, the
constraints on q0 will become weaker, allowing for models
with q0 closer to �1 and hence ðf2; f3Þ values far away
from the fiducial �CDM ones. We, nevertheless, recom-
mend the user to refer to the results in Table II since the
fifth order expansion provides a better approximation to the
underlying expansion history so that the fit is less affected
by any bias due to any error in the approximation.

B. Deviations from basic assumptions

The constraints discussed above have been obtained
under two basic underlying assumptions. First, we have

set f0ðT0Þ ¼ 1 in order to recover an effective gravitational
constant which matches the Newton one today. Actually,
although reasonable, there are no compelling reasons why
the Newton constant which is measured in laboratory ex-
periments is the same as the cosmological one. As such, it
is worth wondering how our results would change should
we allow for deviations from theGN ¼ Gcosmo assumption.
On the other hand, we have used the WMAP7 con-

straints on the physical matter density !M to infer the
present day matter density parameter and then use
Eqs. (4.21), (4.22), (4.23), (4.24), (4.25), and (4.26) to
constrain ðf0; f2; f3; f4; f5Þ from the cosmographic pa-
rameters. Some recent works [61] have, however, inves-
tigate the evolution of perturbations in fðTÞ theories
finding out remarkable differences with respect to the
standard GR. As a consequence, one can not exclude the
possibility to recover a correct growth of structure even if
fðTÞÞ does not reduce to GR in the early Universe. Should
this be the case, the use of the WMAP7 !M value is
incorrect.
Taking care of these possible effects is actually quite

easy. Indeed, some algebra shows that Eqs. (4.21), (4.22),
(4.23), (4.24), (4.25), and (4.26) can all be recast as:

fn ¼ P nðq0; j0; l0; s0Þ
ð1þ q0Þ	n

�M þ 
nð1þ "Þ

with P nðq0; j0; l0; s0Þ a polynomial function of its argu-
ments, 	n ¼ ð0; 1; 3; 5; 7Þ for n ¼ ð0; 2; 3; 4; 5Þ, 
n a con-
stant depending on n and we have set f0ðT0Þ ¼ 1þ ".
Using this simple formula allows to immediately scales
our constraints to different values of the !M and " pro-
vided one has a theoretical or observational estimate of
these quantities.

VI. COSMOGRAPHY VS fðTÞ MODELS

Up to now, we have never assumed any functional shape
for fðTÞ so that the constraints in Table I indeed holds for
the full class of TEGR theories provided one can approxi-
mate fðTÞ by its fifth order Taylor series over the redshift
range probed by the data. Such a result can also be read in a
different way. Given a fðTÞ model, its characterizing pa-
rameters must be chosen in such a way that the constraints
in Table I are satisfied. This consideration offers an inter-
esting route to check the viability of a given fðTÞ model

TABLE II. Constraints on the fi values from the Markov chain for the cosmographic parameters. The order of the columns is the
same as that in Table I.

x xBF hxi xmed 68% C.L. 95% C.L.

f0 �1:742 �1:733 �1:733 (�1:743, �1:723) (�1:751, �1:712)
f2 �0:033 0.113 0.147 (0.007, 0.208) (�0:153, 0.226)
f3 �0:092 0.530 0.815 (0.172, 0.921) (�1:483, 1.033)
f4 0.294 �0:955 1.061 (0.193, 2.306) (�18:307, 3.603)
f5 8.690 �68:893 6.371 (2.956, 11.014) (�370:966, 31.004)
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without the need of explicitly solving the field equations
and fitting the data.

As an example, let us assume the following model [62]:

fðTÞ ¼ 	T þ �T� lnT: (6.1)

Imposing Eq. (4.21) and f0ðT0Þ ¼ 1 gives

	 ¼ 2��m0 � ½1þ ð�m0 � 2Þ�� lnT0

1þ ð�� 1Þ lnT0

; (6.2)

� ¼ ð�m0 � 1ÞT1��
0

1þ ð�� 1Þ lnT0

; (6.3)

so that we can express fi for i ¼ ð2; 3; 4; 5Þ as function of �
only. We then proceed as follows. For each f2 value of the
sample obtained above from the cosmographic parameters

analysis, we solve f̂2ð�Þ ¼ f2. Since this equation has two
roots, we store them and then compute ðf3; f4; f5Þ for both
values thus obtaining an histogram for the model predic-
tion of these quantities. The median and 68% and 95%
confidence ranges read:

f3 ¼ �0:296þ0:272þ0:599
�0:115�0:149

f4 ¼ 0:891þ0:330þ0:424
�0:799�1:797

f5 ¼ �3:568þ3:143þ7:176
�1:274�1:633;

choosing the lowest � solution and

f3 ¼ 8:779þ0:193þ0:415
�0:088�0:131

f4 ¼ �3:120þ0:018þ0:032
�0:024�0:050

f5 ¼ �31:033þ0:371þ0:525
�0:811�1:810;

for the larger solution. Since the 95% CL in Table II are
quite large because of the impact of q0, we will use only the
68% confidence ranges which we compare the above con-
straints to. For the lower � solutions, both f3 and f5 are
smaller than the 68% CL from cosmographic parameters,
while the range for f4 has a marginal overlap. On the other
hand, choosing the largest � solution leads to ðf3; f4; f5Þ
values that fully disagree with the model-independent con-
straints. We therefore argue that the model (6.1) is disfa-
vored by the observational data.

In [62], another model was also proposed:

fðTÞ ¼ 	T þ �Tn (6.4)

where, imposing as before the constraints on fðT0Þ and
f0ðT0Þ, one easily gets:

	 ¼ ð2��m0Þn� 1

n� 1
; (6.5)

� ¼ ð�m0 � 1ÞT1�n
0

n� 1
: (6.6)

We then solve f̂2ðnÞ ¼ f2 and estimate the theoretically
expected values for the other derivatives obtaining:

f3 ¼ �0:285þ0:272þ0:599
�0:116�0:148

f4 ¼ 0:841þ0:331þ0:424
�0:801�1:802

f5 ¼ �3:317þ3:156þ7:215
�1:282�1:641:

These values are still in disagreement with the constraints
in Table II hence making us argue against this model too.
Actually, some caution is needed in this case. If we set
	 ¼ 1 and jnj small enough, Eq. (6.4) predicts an expan-
sion rate which can be made arbitrarily close to the�CDM
one. Indeed, if we use the best fit value of the cosmo-
graphic parameters, we find n ¼ �0:011 and quite small
values for ðf3; f4; f5Þ as expected for � term. Actually, the
disagreement with the constraints in Table II may be due to
a failure of one of the underlying assumptions in the
derivation of Eqs. (4.21), (4.22), (4.23), (4.24), (4.25), and
(4.26). Indeed, these relations have been obtained by
Taylor expanding fðTÞ to the fifth order thus implicitly
assuming that the higher order terms are subdominant.
Depending on the value of n, however, this assumption
can fail for the model (6.4) so that the constraints on fn
should not be considered reliable.

VII. CONCLUSIONS

Cosmography offers a valid tool to investigate cosmic
expansion in a model-independent way. The constraints on
the cosmographic parameters ðq0; j0; s0; l0Þ obtained by
fitting to SNe Ia Hubble diagram and BAO data are fully
general relying on the only assumption that the Universe is
homogenous and isotropic on large scales. As such, any
given cosmological model should predict ðq0; j0; s0; l0Þ
values which are in agreement with these constraints.
Such a premise makes it clear why studying the cosmog-
raphy of a given theory can offer a valuable help to check
its viability as an explanation of the observed cosmic
speed up.
Motivated by these considerations, we have discussed

the cosmography of TEGR theories obtaining the expres-
sion of fðTÞ and its derivatives as a function of the matter
density parameter �m0 and the cosmographic parameters
ðh; q0; j0; s0; l0Þ. It is worth stressing that the relations thus
found hold for all TEGR models provided they can be well
approximated by their fifth order Taylor expansion, at least
over the redshift range probed by the data used to constrain
the cosmography. A key role has been played by the
assumption f0ðT0Þ ¼ 1, meaning that the effective gravita-
tional constant equals the Newton one at redshift z ¼ 0.
Although this is a quite reasonable assumption, it never-
theless relies on the underlying identification of the
cosmological Gcosmo with the local one GN . Should
f0ðT0Þ � 1, one could rederive our results, but the price
to pay is to lower the order of the expansion of one degree.
Alternatively, one can leave f1 ¼ f0ðT0Þ as a free parame-
ter and check which is the impact on ðf2; f3; f4; f5Þ. Not
surprisingly, if f1 ’ 1þ "with j"j � 1, one could still use
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our relations to constrain ðf2; f3; f4; f5Þ making a system-
atic error which is by far smaller than the statistical un-
certainties unless unreasonable large values j"jð>0:1Þ are
adopted.

The above relations allow to transform the constraints on
ð�m0; hÞ and the cosmographic parameters ðq0; j0; s0; l0Þ
into similar ones for the ðf2; f3; f4; f5Þ quantities. Coming
out from a model-independent approach as cosmography,
these constraints have to be fulfilled by any TEGR model.
As such, we can investigate a priori (i.e. without solving
the field equation) of a given fðTÞ theory by simply com-
paring the theoretically predicted ðf2; f3; f4; f5Þ with the
observed ones. As an application, we have considered
here two particular classes showing that, although they
can in principle give rise to an accelerated expansion,
they are both unable to predict the observationally moti-
vated ðf2; f3; f4; f5Þ values so that they can be rejected.
Expanding on this idea, one could also reverse the ap-
proach and build up a class of theories that fits the above
constraints from the beginning and then investigate which
is the expansion history at higher z and the growth of
structure.

However, we have to stress again that the method pro-
posed here has some shortcomings: (i) the truncation of the
Taylor expansion at some predefined order can be problem-
atic due to the dropped higher order terms. Such terms
could reveal important and so an arbitrary truncation could
be dangerous; (ii) one would face difficulty when trying to
retain as high an order as possible, because the high order
terms are increasingly weakly constrained by the limited
data and could have large errors (for example, the con-
straints given in Table II and those in Sec. VA could not
give fðTÞ curves that agree very well with each other). In
this case, the second shortcoming is madeworse by the first
one.

To be more specific, the new constraints on the
ðh0; q0; j0; s0; l0Þ parameters make sense, as well as
their translation to the fiði ¼ 0; 2; . . . ; 5Þ parameters,

considering the fact that the higher i is, the bigger and
more uncertain is fi. This is a weakness of the method used
here, namely, the higher order terms in the Taylor expan-
sion, which could be important in the overall behavior of
fðTÞ, are more difficult to predict accurately. It is worth
noting that smaller deviations of ðh0; q0; j0; s0; l0Þ from the
corresponding �CDM values could cause very big devia-
tions of fis from their corresponding�CDM values, which
are identically zero.
Another comment is in order for the results in Sec. VA.

The fits have been performed with different orders of the
Taylor expansion. We can see that the f0 parameter per-
fectly agrees with the value in Table II, but not f2 or f3.
The reason is that we have used a different number of
parameters to fit the same curve. The assumption is that
the order of expansion has no statistically meaningful
impact on the constraints, but such a statement should be
confirmed by further studies using more complete data
sets. On the other hand, it is clear that the increasing order
of expansion shifts away from the �CDM fiducial values.
Despite these drawbacks, the approach is interesting and

might be made more accurate as soon as more data, espe-
cially those coming from higher-redshift surveys, are taken
into account.
As a final comment, it is worth noting how the renewed

interest in old dated cosmography has now opened the way
to an alternative and yet powerful method to investigate, on
the same ground, both dark energy models and modified
gravity theories, such as the fðRÞ and TEGR models. After
so many years, however, we are no longer interested in
finding only two numbers, namely ðh; q0Þ, but rather we
now need a fifth order expansion, hence five quantities, to
constrain not only the evolution of the Universe, but also
the underlying theory of gravity.
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