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The interaction between gravitational and electromagnetic radiation has a rather long research history.

It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals.

Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic

resonances have been investigated as a means of more efficient gravity-wave detection methods. In

this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski

background, which also applies to astrophysical environments where gravity is weak, at the second

perturbative level. We use covariant methods that describe gravitational waves via the transverse

component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties

of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an

incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravita-

tionally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial

data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging,

gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our

Minkowski space study to cosmology and discuss analogies and differences in the physics and in the

phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.
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I. INTRODUCTION

Gravitational and electromagnetic waves are believed to
interact in a variety of ways. The literature contains a
number of studies showing how gravitational radiation
affects the propagation of electromagnetic signals by mod-
ifying their amplitude, their wavelength, their polarization,
and their direction, either in vacuum or in the presence of
conductive plasmas (e.g., see [1]). There are also solutions
of Einstein’s equations that describe colliding plane gravi-
tational and electromagnetic waves on a flat Minkowski
background. Only recently, however, techniques that could
construct interacting solutions from the wave parameters
before the collision were introduced (see [2] and references
therein). Historically, most of the interest in the coupling
between the Weyl and the Maxwell fields has been moti-
vated by the ongoing search for gravitational-wave signals
and by the quest for new and potentially more efficient
detection mechanisms [3]. Several of the aforementioned
references raise the possibility of resonances between the
two sources and then exploit it, either as a novel gravity-
wave detection method [3] or as a general relativistic
mechanism of amplifying large-scale magnetic fields [4].

Gravitational waves can affect electromagnetic signals
directly (e.g., by modifying their amplitude, wavelength,
etc.) as well as indirectly (e.g., by altering the geometry, or
the nature, of the host environment) [5]. Here, we are
interested in the direct effects, with particular emphasis
on the possibility of resonances. The gravitoelectromag-
netic interaction is studied at second order on an empty,
static Minkowski background. This means that our results

apply to environments where the gravitational field is
weak, like the interstellar space or the laboratory, for
example. In contrast to the majority of the approaches,
which are metric based, we employ the 1þ 3 covariant
approach to general relativity [6]. The main difference is in
the description of the gravitational radiation, which cova-
riantly is monitored through the electric and magnetic
components of the Weyl tensor [7]. The latter determines
the free (i.e., the long-range) gravitational field, the trans-
verse part of which corresponds to gravity waves.
Weyl curvature distortions affect the propagation of

electromagnetic signals via Maxwell’s equations. Gravita-
tional waves trigger (pure-tensor) shear perturbations that
directly affect both the electric and the magnetic compo-
nent of the signal, through (the generalized) Ampere’s and
Faraday’s laws. On a Minkowski background, the two
sources propagate as simple (linear) plane waves, while
their interaction is monitored by a second-order system
that describes the gravitationally induced electromagnetic
signal. Not surprisingly, the latter differs from the original
one, and the differences depend on the specifics of the
gravitoelectromagnetic interaction. For our purposes, how-
ever, the most important feature of the aforementioned
second-order system is that it describes two forced oscil-
lations (one for each component of the electromagnetic
signal). The importance lies in the long known fact that
forced vibrations provide the natural physical environment
for resonances to occur. This means that, in principle at
least, the interaction between gravitational and electro-
magnetic waves can lead to the resonant amplification of
the latter.
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Although resonances can occur spontaneously, they re-
quire rather special conditions. More specifically, the
driving and the driven wave must oscillate in tune. In our
case, the driving force of the gravitationally induced elec-
tromagnetic signal is described as a superposition of two
waves. The characteristics of the latter, their effectivewave-
lengths, in particular, are fixed at the beginning of the
interaction. The same initial conditions also determine the
wavelength of the gravitationally induced—the driven—
electromagnetic signal. We provide a set of formulas that
allows one to calculate the specifics of the induced electro-
magnetic wave for a variety of initial conditions. We find
that thewavelengths of the driving and the driven waves are
generally different, in which case the resulting electromag-
netic oscillation will experiencemild amplification (if any).
When the circumstances are favorable, however, these two
wavelengths will coincide, and the driving and the driven
source will oscillate in resonance. It is then that the ampli-
tude of the gravitationally induced electromagnetic signal is
found to diverge. Whether this happens or not, according to
our analysis, depends also on the interaction angle between
the original electromagnetic and gravitational waves. Here,
we find that Weyl-Maxwell resonances occur when the
aforementioned two interacting waves propagate in the
same, or in the opposite, direction.

These results should not come as a complete surprise.
After all, we were dealing with forced oscillations, where
resonances naturally occur. In fact, gravitoelectromagnetic
resonances have a rather long history in the relevant litera-
ture, and certain types of them have been proposed in the
past as efficient mechanisms of gravitational-wave detec-
tion. To the best of our knowledge, however, the first time
such strong (diverging) resonances were reported in the
literature was in the context of cosmology [4]. Given that,
and also for reasons of completeness and comparison, we
extend our analysis to include cosmological environments,
as well. In cosmology, the host spacetime is no longer
static, empty, or flat. This means that, although the basic
physics of the gravitoelectromagnetic interaction remain
essentially the same, the specifics change. The main dif-
ference appears to come from the expansion, which adds a
‘‘friction’’ term to the wave equations that generally makes
the resonance peak narrower.

II. ELECTROMAGNETIC AND GRAVITATIONAL
WAVES IN MINKOWSKI SPACE

In weak-gravity environments, for example, in the inter-
stellar space (away from massive compact stars) or in the
laboratory, the spacetime is effectively flat. There, one can
use the Minkowski metric to describe the geometry of the
host environment.

A. Electromagnetic waves

Consider electromagnetic radiation traveling on an
empty, static Minkowski background. The Maxwell field

is invariantly described by means of the antisymmetric
Faraday tensor (Fab), which splits into its electric and
magnetic components once a family of timelike observers
is introduced. Assuming that ua is the four-velocity of the
aforementioned observers (normalized so that uau

a¼�1),
the corresponding electric and magnetic fields are Ea ¼
Fabu

b and Ba ¼ "abcF
bc=2, respectively ("abc is the Levi-

Civita tensor of the observers’ three-dimensional space).
On our Minkowski background, the two fields obey the
linear wave equations [8]

€E a � D2Ea ¼ 0 (1a)

and

€B a � D2Ba ¼ 0; (1b)

with the overdots indicating proper-time derivatives along
the observers’ worldlines. Also, D2 ¼ DaDa represents the
covariant Laplacian operating on the observers’ three-
dimensional rest space.1

Equations (1a) and (1b) are straightforward to solve. To
proceed, we decompose the components of the electromag-
netic signal by introducing the familiar harmonic splitting

Ea ¼
X
n

EðnÞQ
ð1ÞðnÞ
a (2a)

and

Ba ¼ X
n

BðnÞQ
ð2ÞðnÞ
a ; (2b)

where Qð1ÞðnÞ
a , Qð2ÞðnÞ

a are the corresponding vector harmo-
nics and n is the eigenvalue/wave number of the associated
electromagnetic mode. Note that n2¼nana, with na rep-
resenting the wave vector along the propagation direction
of the signal. Also, by construction, DaEðnÞ ¼ 0 ¼ DaBðnÞ,
_Qð1ÞðnÞ
a ¼ 0 ¼ _Qð2ÞðnÞ

a , DaQð1ÞðnÞ
a ¼ 0 ¼ DaQð2ÞðnÞ

a , and

DhbQ
ð1ÞðnÞ
ai ¼ 0 ¼ DhbQ

ð2ÞðnÞ
ai .2 Finally, we point out that

both of the harmonic functions satisfy the vector version
of the Laplace-Beltrami equation; that is,

D 2QðiÞðnÞ
a ¼ �n2QðiÞðnÞ

a ; (3)

with i ¼ 1; 2. Substituting decompositions (2a) and (2b)
back into Eqs. (1a) and (1b) and then using expression (3),
the original wave formulas recast into

€E ðnÞ þ n2EðnÞ ¼ 0 and €BðnÞ þ n2BðnÞ ¼ 0; (4)

which now monitor the linear evolution of the signals’ nth
harmonic mode. Both of the above are straightforward to
solve, leading to the solution

1Given the flatness of the background metric, we have
Da ! @a and D2 ¼ DaDa ! @a@a ¼ @2 to zero order.

2Angled brackets indicate the symmetric and trace-free com-
ponent of second-rank spacelike tensors.
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EðnÞ ¼
�
EðnÞ
0 sinðnt0Þ þ 1

n
_EðnÞ
0 cosðnt0Þ

�
sinðntÞ

þ
�
EðnÞ
0 cosðnt0Þ � 1

n
_EðnÞ
0 sinðnt0Þ

�
cosðntÞ (5)

for the electric component of the Maxwell field and to the
solution

BðnÞ ¼
�
BðnÞ
0 sinðnt0Þ þ 1

n
_BðnÞ
0 cosðnt0Þ

�
sinðntÞ

þ
�
BðnÞ
0 cosðnt0Þ � 1

n
_BðnÞ
0 sinðnt0Þ

�
cosðntÞ (6)

for its magnetic counterpart. This set monitors the propa-
gation of an electromagnetic wave on an empty, static
Minkowski background to first order. Note that the zero
suffix indicates a given initial time, at which both the
amplitude and the phase of signal are determined.

B. Gravitational waves

On the same Minkowski space, we will also consider the
propagation of gravitational radiation. Covariantly, gravi-
tational waves are described by means of the transverse
parts of the electric and magnetic components of the Weyl
field (e.g., see [7]). Nevertheless, given the symmetries of
our background and the absence of matter, linear Weyl
curvature distortions are monitored by the pure-tensor
modes of the shear.3 These are isolated by imposing the
first-order constraint Db�ab ¼ 0 (e.g., see [6]), which in
our case is trivially satisfied at all times. Moreover, on a
Minkowski background, the transverse component of the
shear obeys the linear wave equation

€� ab � D2�ab ¼ 0: (7)

As before, the overdots indicate time differentiation rela-
tive to the fundamental observers, and D2 ¼ DaDa repre-
sents their associated 3D Laplacian operator. We also
introduce the harmonic splitting

�ab ¼
X
k

�ðkÞQ
ðkÞ
ab; (8)

where �ðkÞ is the k mode of the shear perturbation and

Da�ðkÞ ¼ 0. Note that k2 ¼ kaka, with k being the mode’s

eigenvalue/wave number and ka the corresponding wave

vector. Also, QðkÞ
ab are tensor harmonic functions, which

satisfy the conditions QðkÞ
ab ¼ QðkÞ

habi,
_QðkÞ
ab ¼ 0 ¼ DbQðkÞ

ab

and the tensor form

D 2QðkÞ
ab ¼ �k2QðkÞ

ab (9)

of the Laplace-Beltrami equation. Combining expressions
(7)–(9) leads to the linear wave equation

€� ðkÞ þ k2�ðkÞ ¼ 0; (10)

which monitors the kth harmonic mode of a gravitational
wave propagating on an empty, static Minkowski back-
ground. As it is straightforward to show, the above accepts
the solution

�ðkÞ ¼
�
�ðkÞ

0 sinðkt0Þ þ 1

k
_�ðkÞ
0 cosðkt0Þ

�
sinðktÞ

þ
�
�ðkÞ

0 cosðkt0Þ � 1

k
_�ðkÞ
0 sinðkt0Þ

�
cosðktÞ; (11)

with the zero suffix corresponding to a given initial time
and the quantities in brackets determining the character-
istics of the wave (i.e., its amplitude and phase).

III. GRAVITOELECTROMAGNETIC
INTERACTION IN MINKOWSKI SPACE

Technically speaking, gravitational waves affect the
propagation of their electromagnetic counterparts through
Maxwell’s equations. These combine to provide a set of
two wave equations (one for each component of the elec-
tromagnetic field), which allows us to study the coupling
between the two sources at different perturbative levels.

A. Second-order equations

The last two sections considered the linear evolution of
electromagnetic and gravitational radiation on an empty,
static Minkowski background. Here, we will look into the
nonlinear (second-order, in particular) interaction of these
two sources. Our aim is to study the effect of gravitational
waves on electromagnetic signals. At the aforementioned
perturbative level, the interaction between theWeyl and the
Maxwell fields is governed by the system [8]

€Ea � D2Ea ¼ �ab
_~E
b þ "abc ~BdD

b�cd � 2"abc�
b
dD

hc ~Bdi

�Rab
~Eb � Eab

~Eb þHab
~Bb (12)

and

€Ba � D2Ba ¼ �ab
_~B
b � "abc ~EdD

b�cd þ 2"abc�
b
dD

hc ~Edi

�Rab
~Bb � Eab

~Bb �Hab
~Eb; (13)

where ~Ea, ~Ba and Ea, Ba are the electromagnetic compo-
nents before and after the interaction, respectively. The
former obey the simple, linear wave solutions (5) and (6)
given in Sec. II A. Similarly, the transverse part of the shear
satisfies solution (11). We also note that Rab is the per-
turbed (linear) three-Ricci tensor, while Eab and Hab rep-
resent the (linearized on our Minkowski background)
electric and magnetic parts of theWeyl tensor, respectively.
Then, to first order, we have [6]

3This is also true for gravitational waves propagating on a
Friedmann-Robertson-Walker (FRW) background (see
Sec. IVA).
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R ab ¼ Eab; Eab ¼ � _�ab (14a)

and

Hab ¼ curl�ab; (14b)

with curl�ab ¼ "cdhaDc�d
bi by definition. Substituting the

auxiliary linear relations (14a) and (14b) into Eqs. (12) and
(13), the latter recast into

€E a � D2Ea ¼ �ab
_~E
b þ 2 _�ab

~Eb þ "abc ~BdD
b�cd

� 2"abc�
b
dD

hc ~Bdi þ ~Bbcurl�ab (15)

and

€B a � D2Ba ¼ �ab
_~B
b þ 2 _�ab

~Bb � "abc ~EdD
b�cd

þ 2"abc�
b
dD

hc ~Edi � ~Ebcurl�ab; (16)

respectively. This set monitors the effects of gravitational
radiation on electromagnetic signals propagating on a
Minkowski background at second order.

According to expressions (15) and (16), the interaction
between electromagnetic and gravitational radiation leads
to electromagnetic waves that are generally different from
their original counterparts. In particular, the specifics of the
induced electromagnetic signals (i.e., their amplitude,
wavelength, and direction of propagation) depend on those
of the interacting sources. For our purposes, however,
the most important implication of (15) and (16) is that
gravitational-wave distortions can drive electromagnetic
signals. This is important because forced oscillations pro-
vide the natural physical environment for resonances to
occur. In other words, Eqs. (15) and (16) imply that the
interaction between the Weyl and the Maxwell field can
lead to the resonant amplification of the latter.

B. Resonant couplings

Resonances require rather special conditions, which
makes themmore likely to occur in controlled environments
than spontaneously in nature. If gravitoelectromagnetic
resonances are possible, the system of (15) and (16) should
contain resonant solutions. To demonstrate (analytically)
that this is indeed the case, let us ignore the backreaction of
the electric component upon its magnetic counterpart and
vice versa. Then, Eqs. (15) and (16) reduce to

€E a � D2Ea ¼ �ab
_~E
b þ 2 _�ab

~Eb (17)

and

€B a � D2Ba ¼ �ab
_~B
b þ 2 _�ab

~Bb; (18)

respectively. To simplify themathematics, without compro-
mising the basic physics, suppose that both the electromag-
netic signal and the gravitational wave are monochromatic.
Then, we may use the decompositions

~E a ¼ ~EðnÞ ~Q
ð1ÞðnÞ
a and ~Ba ¼ ~BðnÞ ~Q

ð2ÞðnÞ
a (19)

for the components of the original electromagnetic field and

�ab ¼ �ðkÞQ
ðkÞ
ab (20)

for the gravitationally induced shear perturbation. As men-
tioned before, the characteristics of the gravitationally
driven (the induced) electromagnetic wave depend on those
of the originally interacting sources. This dependence is
encoded in the decomposition

Ea ¼ Eð‘ÞQ
ð1Þð‘Þ
a and Ba ¼ Bð‘ÞQ

ð2Þð‘Þ
a ; (21)

where Qð1Þð‘Þ
a ¼ QðkÞ

ab
~Qb

ð1ÞðnÞ and Qð2Þð‘Þ
a ¼ QðkÞ

ab
~Qb

ð2ÞðnÞ by
construction. These are vector harmonic functions, with
_Qð1Þð‘Þ
a ¼0¼ _Qð2Þð‘Þ

a and DaQð1Þð‘Þ
a ¼ 0 ¼ DaQð2Þð‘Þ

a . Also,

D 2Qð1Þð‘Þ
a ¼ �‘2Qð1Þð‘Þ

a (22a)

and

D 2Qð2Þð‘Þ
a ¼ �‘2Qð2Þð‘Þ

a ; (22b)

with

‘2 ¼ n2 þ k2 þ 2nk cos�: (23)

The last expression relates the wavelength of the gravita-
tionally driven electromagnetic wave to the wavelengths
and the interaction angle (�, with 0 � � � �) of the origi-
nal sources. More specifically, given the values of n, k, and
�, one can employ (23) to obtain a unique value for ‘.
Substituting decompositions (19)–(21) back into expres-

sion (17) and using the Laplace-Beltrami Eq. (22a), we
arrive at

€E ð‘Þ þ ‘2Eð‘Þ ¼ �ðkÞ _~E
ðnÞ þ 2 _�ðkÞ ~EðnÞ: (24)

The driving force in the right-hand side is determined by
the interaction between the original electromagnetic signal
and the incoming gravitational wave. Following the dis-
cussion given in Secs. II A and II B, these are monitored by

~E ðnÞ ¼ A sinðntþ #AÞ (25a)

and

�ðkÞ ¼ B sinðktþ #BÞ; (25b)

with the amplitudes and the phases depending on the initial
conditions [see solutions (5) and (11)]. Without loss of
generality, we may set the phases in (25a) and (25b) to
zero. Then, expression (24) leads to
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€Eð‘Þ þ ‘2Eð‘Þ ¼ 1
2Cðn� 2kÞ sin½ðk� nÞt�
þ 1

2Cðnþ 2kÞ sin½ðkþ nÞt�; (26)

where C ¼ AB. Clearly, proceeding in an exactly analo-
gous way, we obtain the wave equation of the gravitation-
ally driven magnetic component

€Bð‘Þ þ ‘2Bð‘Þ ¼ 1
2Cðn� 2kÞ sin½ðk� nÞt�
þ 1

2Cðnþ 2kÞ sin½ðkþ nÞt�: (27)

The last two equations show that the force driving the
propagation of the gravitationally induced electromagnetic
signal can be expressed as the superposition of two waves,
the specifics of which are determined by the initial con-
ditions. In particular, the effective wave numbers of the
driving oscillations are m1;2 ¼ k� n, while that of the

gravitationally driven electromagnetic signal (‘) is given
by (23). Clearly, when the initial conditions are favorable,
these wave numbers coincide. Then, both the driving and
the driven waves will oscillate in resonance.

C. Resonant solutions

The simplest resonant case occurs for k ¼ n, that is,
when the original sources share the same wavelength
(although their directions of propagation may differ).
Then, it is straightforward to show that the pair of (26) and
(27) reduces to

€E ð‘Þ þ ‘2Eð‘Þ ¼ F sinðmtÞ (28a)

and

€B ð‘Þ þ ‘2Bð‘Þ ¼ F sinðmtÞ; (28b)

with F ¼ 3Ck=2 and m ¼ 2k. In other words, the driving
force can be expressed as a single wave with amplitude and
wavelength depending on those of the original sources.
The solutions of (28a) and (28b) are, respectively, given by

Eð‘Þ ¼ W sinð‘tþ ’Þ þ F
‘2 �m2

sinðmtÞ (29)

and

Bð‘Þ ¼ W sinð‘tþ ’Þ þ F
‘2 �m2

sinðmtÞ; (30)

where the values of the integration constants (W and ’)
are fixed at the onset of the gravitoelectromagnetic inter-
action. Both of the above show the amplitude of the
gravitationally driven (the induced) electromagnetic wave
to diverge as ‘ ! m. According to relation (23), this
corresponds to � ! 0. Consequently, the interaction be-
tween electromagnetic and gravitational radiation, which
share the same wavelength and propagate in the same
direction on a Minkowski background, will resonantly
amplify the electromagnetic signal.

Generally, the wavelengths of the interacting gravita-
tional and electromagnetic signals will be different
(i.e., k � n). More specifically, in most physically realistic

situations, we expect that the wavelength of the gravita-
tional radiation will far exceed that of its electromagnetic
counterpart. This implies that typically n � k. In addition,
the two originally interacting waves will generally have
nonzero (and, in principle, different) phases. When k � n
and #A, #B � 0, a similar analysis shows that the solution
of Eq. (24) takes the form

Eð‘Þ ¼ W sinð‘tþ ’Þ þ F 1

‘2 �m2
1

sinðm1tþ!1Þ

þ F 2

‘2 �m2
2

sinðm2tþ!2Þ; (31)

where F 1;2 ¼ Cðn� 2kÞ=2, m1;2 ¼ k� n, and !1;2 ¼
#A � #B. It goes without saying that an exactly analo-
gous solution describes the propagation of the gravitation-
ally driven magnetic component, as well. Following (31),
the amplitude of the electromagnetic wave diverges as
‘ ! jm1;2j. In the first case, this translates to ‘!jk�nj,
which occurs when�!� [see Eq. (23)]. When ‘!kþn,
on the other hand, we find that� ! 0. Therefore, the inter-
action between electromagnetic and gravitational waves,
which have different wavelengths but propagate in the
same or in the opposite direction on a Minkowski back-
ground, will resonantly amplify the electromagnetic signal.

IV. GRAVITOELECTROMAGNETIC
INTERACTION IN COSMOLOGY

The basic physics leading to the Weyl-Maxwell reso-
nances of the previous section are generic and not particu-
lar to the geometrical structure of the Minkowski space.
This means that, at least in principle, analogous effects
should also take place within more general spacetimes, like
those related to cosmology, for example.

A. Background and linear dynamics

In cosmology, the spacetime is no longer empty, static,
and flat, which means that the specifics of the interaction
between the Weyl and the Maxwell fields generally
change. Here, we will consider the gravitoelectromagnetic
coupling on an FRW background with Euclidean spatial
hypersurfaces. Wewill assume, in particular, a spatially flat
Friedmann universe containing a single barotropic fluid.
The time evolution of this model is determined by the zero-
order set

H2 ¼ 1
3�;

_H ¼ �H2 � 1
6�ð1þ 3wÞ (32a)

and

_� ¼ �3H�ð1þ wÞ; (32b)

where H ¼ _a=a is the Hubble parameter (a is the cosmo-
logical scale factor), � is the density, and w ¼ p=� is the
barotropic index of the matter (with p representing the
isotropic pressure).
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Let us now perturb the above defined background with
propagating gravitational and electromagnetic waves.4 As
before, the former are monitored by the transverse compo-
nent of the shear, which now obeys the linear wave equa-
tion (e.g., see [6])

€� ab � D2�ab ¼ �5H _�ab � 3
2H

2ð1� 3wÞ�ab: (33)

At the same perturbative level, and given that our FRW
background has flat spatial sections, the magnetic field
decays adiabatically at all times. This means that, to linear
order,

~B a / a�2; (34)

irrespective of the type of matter that fills the universe and
of its electric properties (i.e., of whether the electrical
conductivity is high or low [9]). Next, we will look into
the interaction between these two sources at the second
perturbative level.

B. Second-order gravitomagnetic interaction

Inflation is probably the best available mechanism ca-
pable of causally producing large-scale gravitational and
electromagnetic perturbations. These distortions start as
subhorizon quantum fluctuations and freeze out as classical
perturbations once outside the Hubble scale (e.g., see [10]).
Also, throughout the de Sitter phase, the cosmic medium is
believed to be a very poor electrical conductor. After
inflation, during reheating and the subsequent radiation
era, the electrical conductivity of the matter increases
rapidly. As a result, the electric fields gradually vanish,
and the currents freeze the magnetic field in with the fluid.
Put another way, the post-inflationary universe satisfies the
ideal magnetohydronamic (MHD) requirements. Never-
theless, causality ensures that the MHD limit holds only
well within the Hubble scale. Beyond the horizon, how-
ever, the electric currents had no time to establish them-
selves, and the low-conductivity approximation of the
de Sitter period still holds.

In what follows, we will consider the gravitomagnetic
interaction at the time the Weyl and the Maxwell fields
start crossing back inside the Hubble radius. Close to the
horizon, the electric currents are not yet sufficiently strong
to freeze the magnetic fields in with the matter. Thus, the
electric fields are still present, though weakened by the
ever increasing strength of the currents. All these mean
that, near the Hubble threshold, the effect of the gravita-
tional waves on the magnetic fields is monitored by the
second-order expression [8]

€B a � D2Ba þ 5H _Ba þ 3ð1� wÞH2Ba

¼ 2ð _�ab þ 2H�abÞ ~Bb: (35)

In analogy with the Minkowski space case discussed
earlier, Ba represents the gravitationally induced magnetic
field. The main difference between the above and Eq. (18)
in Sec. III B is in the expansion and the matter terms seen in
the left-hand side of (35). As in the Minkowski case, the
most important feature (for our purposes) of the latter
expression is the gravitomagnetic term in its right-hand
side. The presence of this particular source term means that
Weyl curvature distortions can drive magnetic oscillations
in cosmological environments, as well. In other words,
Weyl-Maxwell resonances can also occur between cosmo-
logical gravitational waves and large-scale, primordial
magnetic fields.

C. Cosmological gravitomagnetic resonances

The outcome of the gravitomagnetic interaction is de-
termined by the coupled system of (33)–(35) and by the
evolution of our background model [see Eqs. (32a) and
(32b)]. To proceed further, we harmonically decompose
the perturbations in a manner analogous to that used in
Sec. III B. Then, expressions (33) and (35) take the form

€� ðkÞ þ 5H _�ðkÞ þ
�
3

2
ð1� 3wÞH2 þ

�
k

a

�
2
�
�ðkÞ ¼ 0 (36)

and

€B ð‘Þ þ 5H _Bð‘Þ þ
�
3ð1� wÞH2 þ

�
‘

a

�
2
�
Bð‘Þ

¼ 2ð _�ðkÞ þ 2H�ðkÞÞ ~BðnÞ; (37)

respectively. Note that ‘ is the eigenvalue/wave number of
the gravitationally driven B field, k is that of the gravita-
tional wave, n determines the scale of the background B
field, and the three are related by Eq. (23) [4]. Also,
according to the linear relation (34), we have ~BðnÞ ¼
~B0
ðnÞða0=aÞ2 at all times, where the zero suffix specifies a

moment during the universe’s evolution.
Current observations indicate that the current Hubble

length lies close to 103 Mpc. This implies that most of
the astrophysically relevant scales have entered the
horizon during the late radiation era. Then, solving (36)

for w ¼ 1=3, a / t1=2, and H ¼ 1=2t, we obtain

�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð�ðkÞ

0 Þ2 þ a0ð _�ðkÞ
0 Þ2

q
k

�
t0
t

�

� cos

�
k

a0H0

�
1�

ffiffiffiffi
t

t0

s �
þ �

�
; (38)

with � ¼ tan�1ða0 _�ðkÞ
0 =k�ðkÞ

0 Þ representing the phase and

the zero suffix indicating the beginning of the radiation

4The gravitomagnetic interaction was considered in [4], as-
suming a weakly magnetized FRW background. This meant that,
strictly speaking, the mechanism was linear in perturbative
terms. Here, to facilitate a direct comparison with the
Minkowski space study of the previous section, we adopt a
magnetic-free background and consider the coupling between
the Weyl and the Maxwell fields at the second perturbative level.
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epoch. Substituting the above into the right-hand side of
Eq. (37), while taking into account that ~BðnÞ / a�2 always,

we arrive at

€Bð‘Þ þ 5

2t
_Bð‘Þ þ

�
1

2t2
þ

�
‘

a0

�
2
�
t0
t

��
Bð‘Þ

¼ 2 ~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð�ðkÞ

0 Þ2 þ a20ð _�ðkÞ
0 Þ2

q
a0

�
t0
t

�
5=2

� sin

�
k

a0H0

�
1�

ffiffiffiffi
t

t0

s �
þ �

�
: (39)

The latter monitors the gravitationally induced magnetic
field as it crosses inside the Hubble horizon of a radiation

dominated, spatially flat FRW universe. Like its
Minkowski counterpart before, expression (39) describes
a forced oscillation, where the driving force on the right-
hand side is the result of the gravitomagnetic interaction.
Unlike its Miknowski analogue, on the other hand, Eq. (39)
contains extra terms due to the expansion of the universe
and the presence of matter. Another difference is in the
amplitude of the driving wave, which is no longer constant
but decays in time.
The nature of (39) means that resonant solutions, analo-

gous to those found in Minkowski space, are, in principle,
possible in cosmology, as well. The additional (expansion-
related) terms, on the other hand, suggest that the specifics
of the resonances may differ. Indeed, solving Eq. (39), we
obtain (see also Sec. IVA and Eq. (22) in [4])

Bð‘Þ ¼ �
~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð�ðkÞ

0 Þ2 þ a20ð _�ðkÞ
0 Þ2

q
‘H0

�
t0
t

�
Si

�
‘� k

a0H0

ffiffiffiffi
t

t0

s �
sin

�
‘

a0H0

� ffiffiffiffi
t

t0

s
� k

‘

�
� �

�

�
~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð�ðkÞ

0 Þ2 þ a20ð _�ðkÞ
0 Þ2

q
‘H0

�
t0
t

�
Ci

�
‘� k

a0H0

ffiffiffiffi
t

t0

s �
cos

�
‘

a0H0

� ffiffiffiffi
t

t0

s
� k

‘

�
� �

�
; (40)

where SiðxÞ and CiðxÞ represent the sine and the cosine
integral functions, respectively [11]. Following the above,
the gravitationally induced B field generally oscillates
with an amplitude that decays adiabatically in time (i.e.,
Bð‘Þ / t�1 / a�2). At any given time, however, the ampli-
tude depends on the initial conditions. This dependence
is crucial because it also determines the argument of
the aforementioned integral functions. The latter are
known to satisfy the conditions limx!0SiðxÞ ¼ 0 and
limx!0CiðxÞ ¼ �1 [11]. Therefore, the presence of the
cosine integral function in solution (40) ensures that the
amplitude of the gravitationally driven magnetic field di-
verges when the two sources oscillate in resonance (i.e., for
k ! ‘). The same integral functions also mean that reso-
nances between the Weyl and the Maxwell fields in cos-
mology have a much narrower peak than their Minkowski
space analogues. This is due to the universal expansion,
which acts as a dumping force and weakens the overall
effect of the gravitoelectromagnetic resonance. Broader
resonance peaks can be achieved when the source term
in the right-hand side of Eq. (39) drops slower with time.
In particular, the resonant amplification of the induced B
field is exactly analogous to that seen in Eq. (30), when the
amplitude of the driving wave depletes as t�2 instead of
t�5=2. This can happen, for example, when the background
magnetic field decays as a�1 (i.e., ~B / t�1=2 during the
radiation era), like many of the B fields proposed in various
scenarios of primordial magnetogenesis [9]. Then, one
obtains

Bð‘Þ ¼
2a0 ~B

ðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð�ðkÞ

0 Þ2 þ a0ð _�ðkÞ
0 Þ2

q
k2 � ‘2

�
t0
t

�

� sin

�
k

a0H0

� ffiffiffiffi
t

t0

s
� 1

�
� �

�
(41)

for the gravitationally driven magnetic field [4]. The above
solution shows resonant magnetic amplification, when
k ! ‘, analogous to that of the Minkowksi background
[compare (41) to Eq. (30) earlier].
Note that, in principle at least, the amplification effect of

the resonances seen in solutions (40) and (41) is indepen-
dent of the amount of energy stored in gravity-wave per-
turbations. In practice, this means that even the weak
gravitational waves that inflation is expected to produce
can resonantly amplify primordial (most likely, also infla-
tionary) magnetic fields during the subsequent evolution of
the universe. We should also point out that the amplifica-
tion mechanism discussed above operates around the time
of the second horizon crossing. There, the accompanying
primordial electric fields are still present, although weak-
ened by the ever growing effect of the currents. Deep inside
the Hubble radius, however, the currents will dominate,
eliminate the electric fields, and freeze their magnetic
counterparts into the highly conductive cosmic fluid.
Once the freezing-in process is completed, the ideal
MHD limit will be established. Then onwards, resonances
are no longer possible, and our amplification mechanism
ceases to operate [4]. In the meantime, however, the
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universe has been permeated by large-scale magnetic fields
that are substantially stronger than the original ones and,
perhaps, strong enough to seed the galactic dynamo [12].

V. DISCUSSION

The basic physical principles behind the gravito-
electromagnetic interaction are simple and essentially
independent of the environment. More specifically,
gravitational-wave distortions interact and can act as
driving forces of electromagnetic radiation, irrespective
of the structure of the host spacetime. This means that
gravitoelectromagnetic resonances are, in principle, pos-
sible both in astrophysics and cosmology, as well as in the
laboratory. Nevertheless, there are still major differences
between these environments, which are expected to affect
the phenomenology of the resulting resonances. Among
the goals of the present study was to identify such anal-
ogies and differences. The approach we have adopted
describes gravitational-wave perturbations via the trans-
verse component of the shear, rather than by using the
pure-tensor part of the metric perturbation. This facilitates
a direct and physically more transparent coupling between
the gravitational and the electromagnetic fields through
Maxwell’s equations. In line with the purposes of our
study, the Weyl-Maxwell coupling was considered first
on an empty Minkowski background, and the results
were then compared to those obtained within a perturbed
FRW cosmology. In either case, we have allowed for the
presence of gravitational and electromagnetic waves and
analyzed the effects of the former on the latter at second
order. In both cases, we have found that the system of
equations monitoring the gravitoelectromagnetic interac-
tion contained resonant solutions. To be precise, under
favorable initial conditions, when the driving and the
driven waves oscillate in tune, the amplitude of the gravita-
tionally induced electromagnetic/magnetic field was found
to diverge. There were, however, differences, as well.

Applied to Minkowski space, the gravitoelectromagnetic
interaction led to a textbooklike wave equation that de-
scribes forced oscillations free of any dumping terms. In
cosmology, however, the expansion of the universe acts as
a source of dumping that weakens the resonance, in the
same (more or less) way that inhibits the growth of density
perturbations. This weakening is reflected in the resonance
peak, which in cosmology is generally narrower.
Resonances can occur either spontaneously in nature or

under controlled conditions in the laboratory. In either
case, weak vibrations lead to oscillations of disproportion-
ately large amplitude. It is not surprising, therefore, that
resonances between gravitational and electromagnetic
waves have been discussed as a potential gravity-wave
detection mechanism. This way, the ubiquitous presence
of electromagnetic radiation could prove a very useful ally
in our ongoing effort to detect the still elusive gravity-wave
signals. Cosmology is also an area where resonances be-
tween the Weyl and the Maxwell fields could have an
effect, by amplifying weak primordial magnetic fields to
astrophysically relevant strengths. Then, one may be able
to address the still open issue of cosmic magnetogenesis,
within the realm of standard cosmology and conventional
electrodynamics. In principle, analogous gravitoelectro-
magnetic resonances should also occur on spacetimes
with more complicated structures, although then one would
probably have to use numerical (rather than analytical)
methods to identify them. Overall, in view of the generic
nature of the Weyl-Maxwell coupling within general rela-
tivity and given that forced oscillations provide the natural
stage for resonances to occur, the question may be how
often such resonances take place, rather than whether they
happen at all. This remains to be seen. If the answer turns
out to be ‘‘positive,’’ however, the ubiquitous presence of
magnetic and electromagnetic fields in our cosmos may
have been partly achieved at the expense of gravitational
radiation.

[1] D.M. Zipoy, Phys. Rev. 142, 825 (1966); F. I.
Cooperstock, Ann. Phys. (N.Y.) 47, 173 (1968); A.M.
Cruise, Mon. Not. R. Astron. Soc. 204, 485 (1983); R.
Fakir, Astrophys. J. 418, 202 (1993); E. Montanari,
Classical Quantum Gravity 15, 2493 (1998); G. Brodin
and M. Marklund, Phys. Rev. Lett. 82, 3012 (1999); E.
Montanari and M. Calura, Ann. Phys. (N.Y.) 282, 449
(2000); M. Halilsoy and O. Gurtug, Phys. Rev. D 75,
124021 (2007); V. Faraoni, New Astron 13, 178 (2008);
C. Barrabes and P. A. Hogan, Phys. Rev. D 81, 064024
(2010).

[2] G. A. Alekseev and J. B. Griffiths, Phys. Rev. Lett. 87,
221101 (2001); Classical Quantum Gravity 21, 5623
(2004); J. B. Griffiths and J. Podolsky, Exact Space-

Times in Einstein’s General Relativity (Cambridge
University Press, Cambridge, England, 2009).

[3] V. B. Braginsky and M.B. Mensky, Gen. Relativ. Gravit. 3,
401 (1972); V. B. Braginsky, L. P. Grishchuk, A. G.
Doroshkevich, V. B. Zeldovic, I. D. Novikov, and M.V.
Sazkin, Sov. Phys. JETP 38, 865 (1974); L. P. Grishchuk,
in Proceedings of the Ninth International Conference on
General Relativity and Gravitation, edited by E.
Schmutzer (Cambridge University Press, Cambridge,
England, 1983); U.H. Gerlach, Phys. Rev. D 46, 1239
(1992); A.M. Cruise, Classical Quantum Gravity 17, 2525
(2000); G. Brodin and M. Marklund, ibid. 20, L45 (2003);
L. P. Grishchuck, arXiv:gr-qc/0306013.

[4] C. G. Tsagas, Phys. Rev. D 81, 043501 (2010).

CHRISTOS G. TSAGAS PHYSICAL REVIEW D 84, 043524 (2011)

043524-8

http://dx.doi.org/10.1103/PhysRev.142.825
http://dx.doi.org/10.1016/0003-4916(68)90233-9
http://dx.doi.org/10.1086/173382
http://dx.doi.org/10.1088/0264-9381/15/8/024
http://dx.doi.org/10.1103/PhysRevLett.82.3012
http://dx.doi.org/10.1006/aphy.2000.6045
http://dx.doi.org/10.1006/aphy.2000.6045
http://dx.doi.org/10.1103/PhysRevD.75.124021
http://dx.doi.org/10.1103/PhysRevD.75.124021
http://dx.doi.org/10.1016/j.newast.2007.08.005
http://dx.doi.org/10.1103/PhysRevD.81.064024
http://dx.doi.org/10.1103/PhysRevD.81.064024
http://dx.doi.org/10.1103/PhysRevLett.87.221101
http://dx.doi.org/10.1103/PhysRevLett.87.221101
http://dx.doi.org/10.1088/0264-9381/21/23/021
http://dx.doi.org/10.1088/0264-9381/21/23/021
http://dx.doi.org/10.1007/BF00759177
http://dx.doi.org/10.1007/BF00759177
http://dx.doi.org/10.1103/PhysRevD.46.1239
http://dx.doi.org/10.1103/PhysRevD.46.1239
http://dx.doi.org/10.1088/0264-9381/17/13/305
http://dx.doi.org/10.1088/0264-9381/17/13/305
http://dx.doi.org/10.1088/0264-9381/20/5/101
http://arXiv.org/abs/gr-qc/0306013
http://dx.doi.org/10.1103/PhysRevD.81.043501


[5] P. Tourrenc, Gen. Relativ. Gravit. 9, 123 (1978); 9, 141
(1978).

[6] C. G. Tsagas, A. Challinor, and R. Maartens, Phys. Rep.
465, 61 (2008).

[7] S.W. Hawking, Astrophys. J. 145, 544 (1966); R.
Maartens, G. F. R. Ellis, and S. T. C. Siklos, Classical
Quantum Gravity 14, 1927 (1997); P. A. Hogan and
E.M. O’Shea, Phys. Rev. D 65, 024117 (2002).

[8] C. G. Tsagas, Classical Quantum Gravity 22, 393 (2005).
[9] D. Grasso and H. Rubinstein, Phys. Rep. 348, 163 (2001);

A. Kandus, K. E. Kunze, and C.G. Tsagas, ibid. 505, 1
(2011).

[10] E.W. Kolb and M. S. Turner, The Early Universe
(Addison-Wesley, Redwood City, 1990); A. R. Liddle

and D.H. Lyth, Cosmological Inflation and Large-Scale
Structure (Cambridge University Press, Cambridge,
England, 2000); M. Giovannini, A Primer on the Physics
of the Cosmic Microwave Background (World Scientific,
New Jersey, 2008).

[11] M. Abramowitz and I. A. Stegun, Pocketbook of
Mathematical Functions (Deutsch, Frankfurt, 1984).

[12] H. K. Moffat, Magnetic Field Generation in Electrically
Conducting Fluids (Cambridge University Press,
Cambridge, England, 1978); F. Krause, in The Cosmic
Dynamo, edited by F. Krause, K.H. Radler, and G.
Rudiger, IAU Symposium Vol. 157 (Dordrecht, Kluwer,
1993), p. 487; A. Brandenburg and K. Subramanian, Phys.
Rep. 417, 1 (2005).

GRAVITOELECTROMAGNETIC RESONANCES PHYSICAL REVIEW D 84, 043524 (2011)

043524-9

http://dx.doi.org/10.1007/BF00760148
http://dx.doi.org/10.1007/BF00760149
http://dx.doi.org/10.1007/BF00760149
http://dx.doi.org/10.1016/j.physrep.2008.03.003
http://dx.doi.org/10.1016/j.physrep.2008.03.003
http://dx.doi.org/10.1086/148793
http://dx.doi.org/10.1088/0264-9381/14/7/025
http://dx.doi.org/10.1088/0264-9381/14/7/025
http://dx.doi.org/10.1103/PhysRevD.65.124017
http://dx.doi.org/10.1088/0264-9381/22/2/011
http://dx.doi.org/10.1016/S0370-1573(00)00110-1
http://dx.doi.org/10.1016/j.physrep.2011.03.001
http://dx.doi.org/10.1016/j.physrep.2011.03.001
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://dx.doi.org/10.1016/j.physrep.2005.06.005

