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We develop a fast technique based on the generalized slow-roll (GSR) approach for computing the

curvature bispectrum of inflationary models with features. We show that all triangle configurations can be

expressed in terms of three simple integrals over the inflationary background with typical accuracy of

better than �20%. With a first-order GSR approach the typical accuracy can be improved to better than

the �5% level. We illustrate this technique with the step potential model that has been invoked to explain

the WMAP temperature power spectrum glitches at ‘� 20–40 and show that the maximum likelihood

model falls short of observability by more than a factor of 100 in amplitude. We also explicitly

demonstrate that the bispectrum consistency relation with the local slope of the power spectrum is

satisfied for these models. In the GSR approach, the bispectrum arises from integrals of nearly the same

function of the background slow-roll parameters as the power spectrum but with a stronger weight to the

epoch before horizon crossing. Hence this technique enables reverse engineering of models with large

bispectrum but small power spectrum features.
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I. INTRODUCTION

In this paper, we develop the generalized slow-roll
(GSR) approach to obtain the bispectrum of curvature
fluctuations produced by features in the inflaton potential.
Bispectra for these kinds of models have been previously
considered by a computationally intensive direct integra-
tion of the curvature fluctuations for each configuration
[1,2]. The GSR approach provides a computationally effi-
cient method that involves only a single function of the
inflationary background.

The GSR approximation was originally introduced to
allow for accurate solutions of the power spectrum for
models where the slow-roll parameters are small but not
necessarily constant [3]. This method was subsequently
extended for cases in which the potential can have large
features and the slow-roll parameters are not small [4].

Violations of slow roll arise when the inflaton traverses a
feature, such as a step or a bump, in its potential. As the
inflaton rolls across the feature, some of its potential
energy is converted into kinetic energy or vice versa. By
keeping the amplitude of the feature small, one is able to
ensure that inflation is not interrupted; however, by arrang-
ing for the feature to be sharp, the inflaton undergoes a
sharp transient acceleration which temporarily violates
slow roll.

The possibility of sharp features in the inflationary
potential has a long history. Starobinsky first discussed
the spectrum of adiabatic fluctuations for a potential with
sharp features [5]. In particular, sudden downward step
features can arise naturally in models of inflation derived
from supergravity [6]. Detailed numerical analysis showed

that these features in the potential lead to oscillating fea-
tures in the spectrum of curvature fluctuations [7] and
consequently, such models have been invoked to explain
glitches observed in the temperature power spectrum at
scales around ‘� 20–40 [8–11]. Although the bispectrum
for such models has been previously studied [1,2], the
intensive computation required has prevented a full assess-
ment of its observability. The authors in [1,2] wrote down
an approximate analytic form for the bispectrum produced
by a step but did not pursue it further. Consequently we use
this step model to illustrate the GSR bispectrum technique.
While we find that the bispectrum produced by a step with
the parameters chosen to best fit the glitch at ‘ ¼ 20–40 is
unobservable, by abandoning this prior and adjusting the
width and height of the step, larger bispectra can be pro-
duced [1].
Features have also been shown to arise from other

phenomenological processes: duality cascades [12,13],
waterfall transitions [14], the imprints of heavy physics
on the inflaton [15], fast phase transitions [16], and mul-
tiple field scenarios [17]. Sudden changes in the sound
velocity in more general inflationary models have also
been shown to give rise to such features [18]. The tech-
niques we develop here apply only to cases where inflation
is being driven by a single effective degree of freedom. The
crucial assumption is that there is only one ‘‘clock.’’ We
work with canonical kinetic terms but expect the general-
ization to other forms to be straightforward.
The outline of this paper is as follows. In Sec. II we

review the formalism for computing the bispectrum in
the literature. We derive the GSR approximation for the

PHYSICAL REVIEW D 84, 043519 (2011)

1550-7998=2011=84(4)=043519(15) 043519-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.043519


bispectrum in Appendix B and apply it to the step model in
Sec. III. In Appendix B, we test our calculations against
results in the literature. We use the fast GSR approximation
in Sec. IV to estimate the observability of the bispectrum
step features for a model that fits the WMAP power spec-
trum glitches. Throughout we work in units where the

reduced Planck mass MPl ¼ ð8�GÞ�1=2 ¼ 1.

II. BISPECTRUM FORMALISM

In this section we begin by briefly outlining the general
method used to evaluate the bispectrum employed by
Maldacena [19] and extended by Weinberg [20].

We work in comoving gauge, where the time slicing is
chosen so that the scalar fluctuations are in the metric, and
make use of the interaction picture, where these curvature
fluctuationsR evolve according to the equations of motion
derived from the quadratic action

S2 ¼ 1

2

Z
dtd3xa32�H

�
_R2 � ð@RÞ2

a2

�
: (1)

In this picture, the three-point function arises from inter-
action terms defined to leading order by the cubic action
[19]

S3 ¼
Z

dtd3x

�
a3�2HR _R2 þ a�2HRð@RÞ2

� 2a�H
_R@R@�þ a3�Hð _�H � _�HÞR2 _R

þ �H
2a

@R@�@2�� d

dt
ða32�H _RfðRÞÞ

�
; (2)

which evolve the states. Here

�H ¼ �
€�
_�H

; �H ¼
_�2

2H2
; � ¼ a2�H@

�2 _R;

fðRÞ ¼ � 1

2
ð�H � �HÞR2 þ . . . ; (3)

overdots are derivatives with respect to cosmic time t, @i
refers to the spatial derivative, spatial indices here are
contracted with the Kronecker delta, @2 ¼ �ij@i@j, and

‘‘. . .’’ denotes terms which vanish outside the horizon.
The form of the action in Eq. (2) is slightly different

from that originally written down by Maldacena [19].
Maldacena omits the total derivative terms, while includ-
ing terms proportional to the first-order equations of mo-
tion which are of the form fðRÞ�L2=�R. However, since
these terms are evaluated on shell, their contribution to any
Feynman graph is formally zero. Maldacena removes these
terms by performing a field redefinition to a new variable
Rn ¼ R� fðRÞ. As described in [21], the inclusion of
the boundary term in the last line of Eq. (2) accounts for the
terms one obtains by performing the field redefinition.

We quantize the theory in the usual way. The transla-
tional invariance of the background makes it convenient to
expand the field R in Fourier components

R ðx; tÞ ¼
Z d3q

ð2�Þ3 e
iq�xRqðtÞ: (4)

Rotational invariance and Hermiticity imply that the most
general solution takes the form

R̂ qðtÞ ¼ RqðtÞâðqÞ þR�
qðtÞâyð�qÞ; (5)

where q ¼ jqj is the magnitude of the comoving momen-
tum and hats denote operators. In the quantum theory, âðqÞ
and âyðqÞ can be thought of as creation and annihilation
operators satisfying

½âðqÞ; âyðq0Þ� ¼ ð2�Þ3�ðq� q0Þ: (6)

With these definitions, we can construct the Fock space by
applying creation operators to the state annihilated by all of
the âðqÞwhich we call the vacuum, j0i. We can then define
the two-point function, or propagator,

hR̂qðtÞR̂q0 ðt0Þi ¼ RqðtÞR�
q0 ðt0Þð2�Þ3�ðqþ q0Þ; (7)

which follows by simply normal ordering. The prescription
of the ‘‘in-in’’ formalism for the expectation value of a
product of field operatorsOðtÞ is to evaluate the expression

hOðtÞi ¼ hUyðt; t0ÞOðtÞUðt; t0Þi; (8)

where Uðt; t0Þ is the time evolution operator

Uðt; t0Þ ¼ T exp

�
�i

Z t

t0

HIðtÞdt
�
: (9)

The average in Eq. (8) denoted by h. . .i is a quantum
average with respect to the vacuum state of the free field
theory governed by the action in Eq. (1). For the problem at
hand, we take the initial time t0 to be in the asymptotic
past, t0 ¼ �1ð1þ i"Þ, where the i" prescription projects
out the Bunch-Davies state initially.
The tree-level bispectrum is then given by expanding

Eq. (8) [with OðtÞ ¼ Rk1
ðt�ÞRk2

ðt�ÞRk3
ðt�Þ] to linear

order

hR̂k1
ðt�ÞR̂k2

ðt�ÞR̂k3
ðt�Þi

¼2<
�
�i

Z t�

�1
dthR̂k1

ðt�ÞR̂k2
ðt�ÞR̂k3

ðt�ÞHIðtÞi
�
: (10)

In this work we are interested in potentials in which
the inflaton undergoes a sharp transient acceleration but

ADSHEAD et al. PHYSICAL REVIEW D 84, 043519 (2011)

043519-2



inflation is not interrupted. Consequently, �H � 1 every-
where and the bispectrum is dominated by the term
proportional to the derivative of �H. To a very good
approximation, for the purposes of this paper, the cubic
action defined in Eq. (2) reduces to

S3 �
Z

dtd3x

�
a3�Hð _�H � _�HÞR2 _R

� d

dt
ða3�Hð�H � �HÞR2 _RÞ

�
: (11)

For this cubic action in Eq. (2), the interaction
Hamiltonian is

HIðtÞ ¼ �
Z

d3x

�
a3�Hð _�H � _�HÞR̂2 _̂R

� d

dt
ða3�Hð�H � �HÞR̂2 _̂RÞ

�
: (12)

Switching to conformal time, � ¼ Rtend
t dt0=a (defined to

be a positive quantity during inflation) and working in
Fourier space, we obtain for the interaction Hamiltonian

HIð�Þ ¼ �
Z d3qa

ð2�Þ3
d3qb
ð2�Þ3

d3qc
ð2�Þ3 ð2�Þ

3�3ðqa þ qb þ qcÞ

�
�
a2�H
3�2

ð�H � �HÞ0ðR̂qa
R̂qb

R̂qc
Þ0

� d

d�

�
a2�H
3�

ð�H � �HÞðR̂qa
R̂qb

R̂qc
Þ0
��

; (13)

where here and throughout 0 	 d=d ln�. In this ex-
pression, the fields R are interaction picture fields whose
time dependence is governed by the Hamiltonian derived
from the quadratic action in Eq. (1).
We are only interested in the connected part of the three-

point function here, since this is the only part that contrib-
utes to the non-Gaussianity. This is evaluated from Eq. (10)
using Eq. (7) and Wick’s theorem. Defining the bispectrum
through

hR̂k1
R̂k2

R̂k3
i ¼ ð2�Þ3�ðk1 þ k2 þ k3ÞBRðk1; k2; k3Þ;

(14)

we find

BRðk1; k2; k3Þ ¼ 4<
�
iRk1ð��ÞRk2ð��ÞRk3ð��Þ

�Z 1

��

d�

�2
a2�Hð�H � �HÞ0ðR�

k1
R�

k2
R�

k3
Þ0

þ a2�H
��

ð�H � �HÞðR�
k1
R�

k2
R�

k3
Þ0j�¼��

��
: (15)

The bispectrum in Eq. (15) may appear to depend on the
final time ��. However, if we consider modes that are well
outside the horizon, integrate Eq. (15) by parts and use the
equation of motion for R, we obtain

BRðk1; k2; k3Þ
¼ 4<

�
iðk21 þ k22 þ k23ÞRk1Rk2Rk3

�
Z 1

��
d�a2�Hð�H � �HÞR�

k1
R�

k2
R�

k3

�
: (16)

We have also dropped the contributions from terms like

a2
�
d lnRk

d ln�

�
2 ¼ Oðk4�4Þ (17)

since these converge essentially as inverse powers of the
scale factor for these modes. Since the modes under con-
sideration are well outside the horizon, they have become

constant, and we can pull them out of the integral and write
this expression as

BRðk1; k2; k3Þ ¼ 4<
�
iðk21 þ k22 þ k23ÞjRk1 j2jRk2 j2jRk3 j2

�
Z 1

��
d�a2�Hð�H � �HÞ

�
; (18)

which is obviously identically zero, regardless of the time
at which we choose its evaluation. The badly divergent
integral cannot acquire an imaginary part.
One might worry that this statement holds only at lead-

ing order. In writing down Eq. (18) we have neglected the
decaying mode which may be amplified by the divergent
integrand if it were not decaying fast enough at late times.
It is easy to see that this does not occur by examining the
asymptotic expansion of the mode functions R about the
superhorizon limit [20],

R kð�Þ ¼ R0
k

�
1þ k2

Z 0

�

d�0

a2�H

Z �0

1
d�00a2�H

�
þAk

Z 0

�

d�0

a2�H

�
1þ k2

Z 0

�0

d�00

a2�H

Z �00

1
d~�a2�H

�
þ . . . ; (19)
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whereR0
k andAk are complex constants and ‘‘. . .’’ refers

to terms higher order in k in the expansion. Thus, the
leading-order corrections to Eq. (18) are proportional to

=½R0
kAk�

Z 1

��
d�a2�Hð�H � �HÞ

Z 0

�

d�0

a2�H
; (20)

which, as long as the slow-roll parameters are well be-
haved, converges essentially as an inverse power of the
scale factor.

Upon examination of Eq. (16), it can be seen that this
conclusion is in fact a direct consequence of the general
theorem proved by Weinberg [20]. Equation (16) can be
thought of as arising from a ‘‘dangerous interaction.’’ That
is, an interaction that diverges as a at late times, but con-
tains only fields and not time derivatives of fields. Then,
due to Weinberg’s theorem the integrals over the time
coordinates of the interaction converge exponentially fast
in cosmic time at late times. We also point out that the
second term in Eq. (2) takes this form, and we are safe in
concluding that it does not give large or divergent contri-
butions to correlation functions at late times.

This property shows that the time independence of the
three-point function after horizon crossing is enforced by
the boundary term regardless of how the slow-roll parame-
ters are evolving.

III. GENERALIZED SLOW ROLL

The generalized slow-roll (GSR) approach introduced
by Stewart [3] is a technique for predicting the curvature

power spectrum in models where the inflation continues
uninterrupted but the slow-roll parameters �H and �H

evolve rapidly due to the presence of sharp features in
the inflaton potential.
Here we extend the GSR approach in twoways. First, we

generalize the techniques for the calculation of the bispec-
trum. Second, we make them appropriate for the calcula-
tion of large amplitude features as was done for the power
spectrum in Ref. [4]. The latter involves adding certain
formally higher-order terms, which can be justified from an
iterative expansion as discussed in Appendix A. We use
this approach to develop a fast technique that can be used
to approximate all configurations of the bispectrum for
these kinds of models.
We present only the main results in this section, leaving

the details of the derivation and an overview of the GSR
technique to Appendix A. In the subsections we present
comparisons of our approximation to the exact computa-
tion in the equilateral, squeezed and flat limits.

A. Zeroth-order expressions

The GSR approach proceeds by iteratively correcting
the evolution of the mode function for the effect of devia-
tions from de Sitter space [see Eq. (A7)].
At zeroth order, we employ only the de Sitter forms for

the Rk mode functions in a specific way described in
Appendix A. Equation (15) then simplifies to

BRðk1; k2; k3Þ � ð2�Þ4
k31k

3
2k

3
3

�Rðk1Þ�Rðk2Þ�Rðk3Þ
4

�
�I0ðKÞk1k2k3 � I1ðKÞ

X
i�j

k2i kj þ I2ðKÞKðk21 þ k22 þ k23Þ
�

(21)

involving integrals separable in k,

I0ðKÞ ¼
Z 1

0

d�

�
G0

Bðln�ÞðK�Þ sinðK�Þ;

I1ðKÞ ¼ GBðln��Þ þ
Z 1

��

d�

�
G0

Bðln�Þ cosðK�Þ;

I2ðKÞ ¼ GBðln��Þ þ
Z 1

��

d�

�
G0

Bðln�Þ
sinðK�Þ
K�

;

(22)

which depend only on the perimeter of the triangle K ¼
k1 þ k2 þ k3. Thus the bispectra for all possible triangles
can be efficiently obtained by precomputing these three
integrals. Note that the trigonometric functions for I1 and
I2 for K� � 1 approach unity and so the expressions
become independent of the arbitrarily chosen end point
��. While this cancellation is guaranteed by the form of the
action in Eq. (15), it is not guaranteed to occur order by
order in the GSR expansion of the mode functions. This is
due to the fact that in Eq. (15), the effects of the source are
compensated by the response of the derivative of the

curvature on super horizon scales. At zeroth order in the
GSR approximation, the mode function does not respond
to the feature at all, leaving this aspect of the source
uncompensated. As we explain in Appendix A we have
included the appropriate higher-order terms in the source
function in order to enforce this cancellation.
The inclusion of higher-order terms modifies the source

from Eq. (15) to

G0
B ¼

�
�H � �H

f

�0
; with GB ¼

�
�H � �H

f

�
; (23)

where

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2�H

p
H

ðaH�Þ; (24)

and �2
R ¼ k3PR=2�2 is the curvature power spectrum.

Note that for constant �H � 1, aH� ¼ 1 and f�2 ¼ �2
R

is the usual slow-roll result for the power spectrum.
The modification to the source and the replacement of

the power spectrum for the zeroth-order external modes
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evaluated at �� in Eq. (15) represent the two higher-order
corrections we have introduced. Both have the effect of
enforcing that the bispectrum is insensitive to features in
the inflaton potential for modes that are superhorizon scale
when the inflaton crosses the feature. For the source, this is
achieved by making it a exact derivative of a combination
of slow-roll parameters and affects mainly the I1 and I2
terms.

In other words, we enforce that the three-point correla-
tion function of curvature perturbations remains exactly
constant outside the horizon at zeroth order in the GSR
expansion of the mode functions. In Appendix A, we show
that the higher-order terms we add to the zeroth-order
approach are compatible with a fully first-order GSR
computation.

It is interesting to note the similarities and differences
between how evolution in the slow-roll parameters affect
the power spectrum and bispectrum. The source to the
power spectrum is [see Eq. (A15)]

G0 ¼ 2

3

�
f00

f
� 3

f0

f
� f02

f2

�
� � 2

3
fG0

B; (25)

where the approximation follows for cases where f00=f is
the dominant contribution to both, as in the step potential
below. As noted above, in the ordinary slow-roll approxi-
mation f�2 is the amplitude of the power spectrum. Thus,
the presence of the extra factor of f serves to make the
bispectrum scale as the square of the power spectrum,
leaving an otherwise similar source for the power spectrum
and bispectrum.

The main difference between the impact of features on
the power spectrum and bispectrum is in the I0 integral in
Eq. (22). Unlike those for the power spectrum, this integral
carries a divergent K� sinðK�Þ term as K� ! 1 which
can be traced back to the appearance of derivatives of the
mode functions in Eq. (15).

The implication is that deviations generate bispectrum
correlations while the modes are deeper within the horizon
compared with the power spectrum. Thus one generically
expects that the impact of features in the inflaton potential
on the bispectrum extends to higher k than in the power
spectrum, enhancing their observability.

B. Step potential

As an example, we consider the potential [7]

Vð�Þ ¼ 1

2
m2�2

�
1þ c tanh

�
���s

d

��
; (26)

which corresponds to a smooth step at � ¼ �s of
fractional height c and width d. Such a feature in the
inflationary potential has been invoked to explain the
‘‘glitches’’ in the cosmic microwave background (CMB)
temperature anisotropy data at ‘ ¼ 20–40 [9,10].
Addressing the observability of the corresponding features

in the bispectrum requires a fast approach to their calcu-
lation (see § IV).
For concreteness we adopt the WMAP5 maximum like-

lihood values of the parameters of the step potential [11]

fm; c; d;�sg
¼ f7:126� 10�6; 1:505� 10�3; 0:02705; 14:668g:

We plot the bispectrum and power spectrum source func-
tions for this model in Fig. 1. Note their similar structure
once rescaled in amplitude. In Appendix B we consider an
alternate choice of parameters to make contact with results
in the literature.
Following the notation of the existing literature [1,2], we

construct plots related to

G ðk1; k2; k3Þ ¼ k31k
3
2k

3
3

ð2�Þ4 ~A2
S

BRðk1; k2; k3Þ; (27)

where ~AS is an arbitrary constant that is of order the
curvature power spectrum normalization without the step

feature. In practice we take ~AS ¼ 2:39� 10�9. Since G
has dimensions of k3, we typically divide it by some
representative k3. In Fig. 2 we show the one-dimensional
GSR bispectrum integrals of Eq. (22) for this model. Note
that I0ðKÞ dominates, especially at high k as discussed
above.

C. Equilateral limit

In the equilateral limit k1 ¼ k2 ¼ k3 ¼ keq and

Eqs. (21) and (27) simplify to

FIG. 1 (color online). Bispectrum source G0
B and power spec-

trum source G0 in the GSR approximation for the step potential
model (see § III B). The bispectrum source has been rescaled by
a constant related to ~AS ¼ 2:39� 10�9 to eliminate its scaling
with the power spectrum squared. Both sources share similar
structure with features that integrate to zero as required for
constant superhorizon behavior.
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Gðkeq;keq;keqÞ
k3eq

¼�3
RðkeqÞ
4 ~A2

S

½�I0�6I1þ9I2�K¼3keq : (28)

For equilateral triangles, the contribution from I0 domi-
nates the result (see Fig. 2) and hence the comparison with
the numerical evaluation of Eq. (15) tests this aspect of
the GSR approximation (see Fig. 3). The zeroth-order
GSR approximation captures the amplitude and phase of
the oscillations fairly well. The largest deviations are at
low k for modes that were right on the horizon when the
inflaton crossed the feature in Fig. 1. We show in
Appendix A that these are associated with the neglect of

first-order terms involving other combinations of the real
and imaginary parts of the mode functions.

D. Squeezed limit

For squeezed triangles kS 	 k1 � k2 � k3 	 kL and

GðkS;kL;kLÞ
k3L

¼�RðkSÞ�2
RðkLÞ

4 ~A2
S

½�2I1þ4I2�K¼2kL : (29)

Note that in this limit only I1 and I2 contribute and
hence the comparison in Fig. 4 tests a different aspect of
the GSR approximation. In particular I1 and I2 carry the
main impact of the source correction discussed below
Eq. (22) since their windows carry superhorizon weight.
In Appendix A, we use these triangle configurations to
develop and test our approximation.
As a further check, it is well-known that the bispectrum

of curvature fluctuations produced by an inflationary
model with a single clock obeys a consistency relation
which relates the squeezed limit of the bispectrum to the
slope of the power spectrum [19]. The squeezed limit
corresponds to one of the curvature fluctuations in the
bispectrum having a much longer wavelength than the
remaining two kS � kL. In this limit, the consistency
relation implies [22]

GðkS; kL; kLÞ
k3L

� ��2
RðkLÞ�2

RðkSÞ
4 ~A2

S

d ln�2
R

d lnk

��������kL

: (30)

In addition to the comparison of our approximation to the
numerical results in this limit, we use the numerically
computed local slope to test the consistency relation itself.
The result is plotted in Fig. 4, which shows excellent

FIG. 4 (color online). Zeroth-order GSR approximation for
squeezed bispectra k1 ¼ kS � k2 � k3 ¼ kL in the step poten-
tial model compared with exact results of evaluating Eq. (15).
Here kS ¼ 10�5 Mpc�1. For comparison the prediction from the
consistency relation with the slope of the curvature power
spectrum is also shown.

FIG. 3 (color online). Zeroth-order GSR approximation for
equilateral configurations in the step potential model compared
with exact results of evaluating Eq. (15).

FIG. 2 (color online). Bispectrum integrals in the zeroth-order
GSR approximation for the step potential model as a function of
the perimeter of the triangles K ¼ k1 þ k2 þ k3. All bispectrum
triangles can be formed efficiently from these three integrals.
Weights reflect how the integrals contribute to equilateral con-
figurations. Note that I0 dominates the high k structure.
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agreement between the numerically computed bispectrum
in the squeezed limit, and the result obtained from the
slope of the power spectrum and the consistency relation.
There are small discernible differences away from the
effects of the feature; however, we attribute these to our
truncation of the action at Eq. (11).

E. Flat limit

The final limit we consider is the flat limit, where
kF ¼ k1 ¼ 2k2 ¼ 2k3 and the wavevectors are colinear.
Here

GðkF; kF=2; kF=2Þ
k3F

¼ �RðkFÞ�2
RðkF=2Þ

16 ~A2
S

½�I0 � 7I1 þ 12I2�K¼2kF (31)

and the approximation involves a combination of all
three integrals. In Fig. 5, we show that the approximation
works comparably well for flat triangles as equilateral and
squeezed triangles.

IV. CMB SIGNAL-TO-NOISE

Given the step potential model that fits the glitches in the
CMB power spectrum, the corresponding features in the
bispectrum described in the previous section [9–11] are a
firm prediction [1,2]. What is less clear is to what extent
they are observable. Indeed the fact that the model is
designed to fit low multipole ‘� 20–40 glitches in the
power spectrum implies that these features will be strongly
impacted by the cosmic variance of the dominant Gaussian
fluctuations [1]. On the other hand, bispectrum features
generically extend to higher k and hence ‘ than power
spectra (see § III A).

An estimate of the signal-to-noise in the bispectrum for
the step potential has been hampered by the lack of a
computationally efficient method for estimating the curva-
ture bispectrum. Our zeroth-order GSR technique is ideal
for these purposes as the bispectrum for any configuration
can be simply formed from three precomputed integrals in
Eq. (22).

A. Cosmic variance

The temperature or angular bispectrum is defined as the
three-point function of the spherical harmonic coefficients
a‘m of the temperature anisotropy

B‘1‘2‘3 ¼
X

m1m2m3

‘1 ‘2 ‘3
m1 m2 m3

� �
ha‘1m1

a‘2m2
a‘3m3

i: (32)

The cosmic variance of the Gaussian part of the field puts
an irreducible limit on the signal-to-noise ratio of�

S

N

�
2 ¼ X

‘3
‘2
‘1

B2
‘1‘2‘3

C‘1C‘2C‘3d‘1‘2‘3
; (33)

where

d‘1‘2‘3 ¼ ½1þ �‘1‘2 þ �‘2‘3 þ �‘3‘1 þ 2�‘1‘2�‘2‘3� (34)

accounts for permuted contractions of repeated ‘’s and the
angular power spectrum is defined by

ha�‘ma‘0m0 i ¼ �‘‘0�mm0C‘: (35)

Thus to evaluate the signal-to-noise in the angular bispec-
trum we require not only a fast method for computing the
curvature bispectrum but also for computing angular bis-
pectra from curvature bispectra.

B. Approximations

To obtain an order of magnitude estimate for the signal-
to-noise ratio, we seek only a crude computation of the
angular bispectrum from the curvature bispectrum. We
therefore take the flat-sky approach and the Sachs-Wolfe
limit for the temperature anisotropy.
In the flat-sky approximation, the angular bispectrum is

defined by the three-point function of the Fourier moments
of the temperature field given by aðlÞ
haðl1Þaðl2Þaðl3Þi ¼ ð2�Þ2�ðl1 þ l2 þ l3ÞBð‘1;‘2;‘3Þ: (36)

For ‘1, ‘2, ‘3 � 1, it is related to the all-sky bispectra
as [23]

B‘1‘2‘3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s
‘1 ‘2 ‘3

0 0 0

 !

� Bð‘1;‘2;‘3Þ: (37)

Under the Sachs-Wolfe approximation, the temperature
field as a function of angle n̂ on the sky is the projection of
the curvature field onto the sphere at the recombination
distance D from the observer

FIG. 5 (color online). Zeroth-order GSR approximation for flat
configurations with k1¼kF with k2¼k3¼kF=2 in the step po-
tential model compared with exact results of evaluating Eq. (15).
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aðn̂Þ ¼ � 1

5
Rðx ¼ Dn̂Þ ¼ � 1

5

Z d3k

ð2�Þ3 Rke
ik�Dn̂;

(38)

so that

Bð‘1;‘2;‘3Þ ¼ � 2

53D4

Z 1

0

dk1k
2�

Z 1

�1
dk2k
2�

BRðk1; k2; k3Þ;
(39)

where

k1 ¼ ðl1=D; k1kÞ; k2 ¼ ðl2=D; k2kÞ;
k3 ¼ �k1 � k2;

(40)

and k is the direction along the line of sight, orthogonal to
the plane of the sky. Note that even in this approximation,
the signal-to-noise in the angular bispectrum is a five
dimensional sum over the curvature bispectrum.

For consistency, we also compute C‘ under the same
flat-sky, Sachs-Wolfe approximation for the cosmic vari-
ance in Eq. (33)

C‘ ¼ 1

52D2

Z dkk
2�

PRðk ¼ ðl=D; kkÞÞ: (41)

In Fig. 6 we show the cumulative signal-to-noise as a
function of the maximum ‘ in the sum of Eq. (33) for the
step model of § III B. This model falls short of predicting
observable effects by more than 104 in the number of
bispectrum triangles or more than 102 in the amplitude of
the bispectrum. Consequently, the crudeness of our curva-
ture to angular bispectrum calculation is justified.

V. DISCUSSION

We have developed a computationally efficient tech-
nique based on the generalized slow-roll approach for
calculating the curvature bispectrum of models with fea-
tures in the inflaton potential. This technique allows all
configurations of the bispectrum to be calculated based on
three precomputed integrals over the inflationary back-
ground reducing the dimensionality of the problem from
three to one.
In this zeroth-order approximation, the accuracy is suf-

ficient to capture the overall amplitude and structure of the
bispectra to typically better than 20%. We have also de-
veloped a first-order approximation that that brings the
typical accuracy to better than several percent at the ex-
pense of raising the dimensionality to two.
The accuracy of the zeroth-order approximation more

than suffices to make an estimate of the observability of
the bispectrum features in the step potential model that best
fits the WMAP power spectrum glitches at ‘� 20–40. We
find that the bispectrum amplitude is more that a factor of
100 too small to be observable in a cosmic variance limited
measurement of CMB temperature anisotropy.
We have also explicitly verified that the consistency

relation holds for a model of inflation which violates
slow roll due to a sharp downward step feature in its
potential. We find excellent agreement through the region
affected by the feature, while small disparities at smaller
and larger wave number are consistent with our neglect of
additional terms suppressed by Oð�HÞ in the cubic action.
Two key general insights arise from the comparison of

the GSR approach to the power spectrum and bispectrum.
First, the dominant source of both is a similar combination
of slow-roll parameters from the solution of the inflation-
ary background. Second, the bispectrum is generated while
modes were deeper within the horizon compared with the
power spectrum.
The latter fact implies that features in the bispectrum

generically persist to higher wave number k than the power
spectrum and provides a template for constructing models
with large bispectrum features but small power spectrum
features.
Indeed recent work has revealed an intriguing

‘‘decoupling’’ limit under which large non-Gaussianity
may be produced while the power spectrum remains
largely unperturbed [24,25]. The application of the tech-
niques we develop here may be able to extend the region of
validity for these scenarios into the region where gravity is
not completely decoupled, merely very weakly coupled.
We defer these considerations to a future work.
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APPENDIX A: GENERALIZED
SLOW ROLL

We begin in A 1 by reviewing the generalized slow-roll
(GSR) formalism [3,4,26], collecting some important re-
sults and establishing our notation. Employing the same
methods used to correct the power spectrum in A 2, we
derive the GSR expansion in for the bispectrum in A 3. We
apply this expansion to the zeroth-order expansion used for
the main results of the paper in A 4. This expression
involves corrections for the superhorizon modes based on
a more accurate first-order approach that we develop and
test in A 5.

The treatment and notations used here mirror the pre-
sentation in [4]. The reader is directed to these earlier
works for further details. For notational compactness
we express functions of the three separate bispectrum k
values as

FðkiÞ 	 Fðk1; k2; k3Þ (A1)

throughout this Appendix.

1. GSR corrections to the mode functions

Varying the action (1), the mode functions, Rkð�Þ,
satisfy the Mukhanov-Sasaki equation

d2Rk

dx2
�
�
1� f0

f

�
2

x

dRk

dx
þRk ¼ 0; (A2)

where x ¼ k� and f was defined in Eq. (24).
We seek to expand the mode functions in a perturbative

series around their infinitely slow-roll or de Sitter form.
Since the comoving curvatureRk is undefined in that limit,
it is useful to change variables to

yi ¼
ffiffiffiffiffiffiffiffiffi
k3

2�2

s
f

x
Rki : (A3)

This variable yi also carries the interpretation of the in-
flaton field fluctuation in the spatially flat gauge and is well
defined in the de Sitter limit.

With this correspondence it is easy to see that well inside
the horizon yi is more immune to features in the inflaton
potential thanRk as it represents a free field. The converse
is true outside the horizon. The latter is the primary flaw in
GSR that we seek to rectify by enforcing constant curva-
ture outside the horizon.

As an aside, note that similar superhorizon issues arise
even for the computation of the bispectrum with the exact
Rk. Although Rk does not respond significantly to the
feature on such scales, R0

k does and in such a way to

exactly cancel the behavior in the �H, �H sources to
keep the bispectrum constant in Eq. (15).
We then have

d2yi
dx2

þ
�
1� 2

x2

�
yi ¼ gðln�Þ

x2
yi; (A4)

where

g ¼ f00 � 3f0

f
; (A5)

and primes denote derivatives with respect to ln�.
The homogeneous Eq. (A4) corresponds to exact de

Sitter space (H ¼ const) and has solutions

y0ðxÞ ¼
�
1þ i

x

�
eix; (A6)

and y�0ðxÞ which depend in the same way on x ¼ k� for all

k. Given these solutions, we can use the Green function of
the homogeneous operator to invert Eq. (A4),

yiðxÞ ¼ y0ðxÞ þ Lðx; uÞyiðuÞ; (A7)

with

Lðx; uÞyiðuÞ ¼ �
Z 1

x

du

u2
gðln ~�ÞyiðuÞ=½y�0ðuÞy0ðxÞ�; (A8)

where u ¼ k~�. Note that unlike y0, yi is not the same
function of x ¼ k� for all k.
Then, assuming that the new solution is not too different

from the de Sitter space result, we can employ the Born
approximation and to solve the formal solution in Eq. (A7)
iteratively

yiðxÞ ¼ y0ðxÞ þ Lðx; uÞy0ðuÞ þ Lðx; wÞLðw; uÞy0ðuÞ þ . . .

(A9)

We will also use the notation

WðuÞ¼�3

u
=½y0ðuÞ�<½y0ðuÞ�

¼ 3sinð2uÞ
2u3

�3cosð2uÞ
u2

�3sinð2uÞ
2u

;

XðuÞ¼ 3

u
<½y0ðuÞ�<½y0ðuÞ�

¼�3cosð2uÞ
2u3

�3sinð2uÞ
u2

þ3cosð2uÞ
2u

þ 3

2u3
ð1þu2Þ;

(A10)

and
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=½y0ðuÞ�=½y0ðuÞ� ¼ 1þ 1

u2
� u

3
XðuÞ: (A11)

In the limit of small u, these window functions behave as
limu!0WðuÞ ¼ 1 and limu!0XðuÞ ¼ u3=3.

2. Power spectrum expansion

The curvature power spectrum is given by

�2
RðkÞ ¼ lim

x�1

x2

f2
yiðxÞy�i ðxÞ: (A12)

At zeroth order in the mode function correction and first
order g we obtain [3]

lim
x!0

ðxyiÞ ¼ i� i

3

Z 1

x

du

u

x3

u3
gðln�Þ

þ i

3

Z 1

x

du

u
WðuÞgðln�Þ

� 1

3

Z 1

x

du

u
XðuÞgðln�Þ þOðx2Þ; (A13)

(which corrects a sign typo for the third term in Eq. (19)
[4]) where x ¼ k�� and u ¼ k� and so

�2
RðkÞ ¼ 1

f2

�
1þ 2

3

f0

f
þ 1

3

Z 1

��

d�

�
Wðk�Þgðln�Þ

�
;

(A14)

since the X term contributes quadratically.
The problem with this expression is that the power

spectrum depends on the arbitrary end point of the inte-
gration ��. The origin of this problem is that the curvature
computed in the GSR approximation is not guaranteed to
be constant outside the horizon and constancy is only
enforced order by order in g [4]. With large fluctuations,
contributions that are formally higher order in g supply
necessary corrections.

To find these corrections, we can compute all of the first-
order mode function corrections [26] and retain the ones
that contribute on superhorizon scales [4]

ln�2
GSRðkÞ ¼ Gðln��Þ þ

Z 1

��

d�

�
Wðk�ÞG0ðln�Þ; (A15)

where the modified source is

G0ðln�Þ ¼ 2

3

�
g� f02

f2

�
: (A16)

Formally G0 involves a first-order correction to the source
since f0=f ¼ OðgÞ. Note that for superhorizon modes
when the inflaton crosses the feature Wðk�Þ ! 1 and the
power spectrum no longer depends on the arbitrary end
point.

We will follow this procedure to define our zeroth-order
bispectrum formulation in Eq. (21).

3. Bispectrum expansion

In terms of the above notation, the bispectrum in
Eq. (15) takes the form

BRðkiÞ ¼ ð2�Þ4�3�
4k1k2k3f

3
<
�
iy1ðk1��Þy2ðk2��Þy3ðk3��Þ

�
Z 1

��

d�

�
gBðln�ÞD�½y�1ðk1�Þy�2ðk2�Þy�3ðk3�Þ�

�
þ Boundary Terms; (A17)

and the differential operator

D� ¼ d

d ln�
þ 3

�
1� f0

f

�
: (A18)

In the Eq. (A17), ‘‘boundary terms’’ refers to the second
term in Eq. (15). While these terms are physically impor-
tant, they represent a small correction and we defer their
discussion to a subsection.
Here the unmodified source function, which we will

subsequently modify in a similar prescription to g !
3G0=2, is

gBðln�Þ ¼ ð�H � �HÞ0
f

: (A19)

By analogy to the power spectrum window functions, let us
define the window functions

WBðxiÞ 	 <½y1ðx1Þy2ðx2Þy3ðx3Þ�;
XBðxiÞ 	 =½y1ðx1Þy2ðx2Þy3ðx3Þ�:

(A20)

For the zeroth-order mode functions, yi ! y0, WB ! W0
B,

XB ! X0
B

W0
BðxiÞ ¼

1

x1x2x3
½ð�X þ x1x2x3Þ cosX

þ ð1� x2x3 � x1x2 � x1x3Þ sinX�;
X0
BðxiÞ ¼ � 1

x1x2x3
ð1� x2x3 � x1x2 � x1x3Þ cosX

þ ðX� x1x2x3Þ sinX; (A21)

where X ¼ x1 þ x2 þ x3, and is not to be confused with
the window function Xðk�Þ. Note that the trigonometric
functions depend only on the perimeter of the triangle K
and that the prefactors are pure powers of ki. This is a
critical simplification achieved by using zeroth-order mode
functions.
As we shall see, their superhorizon limit will be particu-

larly important

lim
ki!0

W0
Bðki�Þ ¼

k31 þ k32 þ k33
3k1k2k3

þOðk2i �2Þ;

lim
ki!0

X0
Bðki�Þ ¼ � 1

k1k2k3�
3
þ 1

2

k21 þ k22 þ k23
k1k2k3�

þOðki�Þ:

(A22)

To an arbitrary order, the bispectrum can be written
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BRðkiÞ � ð2�Þ4
4k1k2k3

�3�
f3

<
�
i½WBðki��Þ þ iXBðki��Þ� �

Z 1

��

d�

�
gBðln�ÞD�½WBðki�Þ � iXBðki�Þ�

�
: (A23)

Specifically, using this notation we can write the zeroth- and first-order bispectrum as

BRðkiÞ � ð2�Þ4
4k1k2k3

�3�
f3

Z 1

��

d�

�
gBðln�ÞD�fW0

Bðki��ÞX0
Bðki�Þð1�<½Cðki; �Þ � Cðki; ��Þ�Þ

� X0
Bðki��ÞW0

Bðki�Þð1�<½Cðki; �Þ � Cðki; ��Þ�Þ þW0
Bðki��ÞW0

Bðki�Þ=½Cðki; ��Þ � Cðki; �Þ�
þ X0

Bðki��ÞX0
Bðki�Þ=½Cðki; ��Þ � Cðki; �Þ�g; (A24)

where

C ðki;�Þ¼
X3
j¼1

Z 1

�

d~�

~�

gðln ~�Þ
kj ~�

y0ðkj ~�Þ
y0ðkj�Þ=½y

�
0ðkj ~�Þy0ðkj�Þ�:

(A25)

The fact that C depends on the three k’s presents the main
obstacle to simplifying the first-order expressions.

4. Zeroth-order bispectrum

We define the order of our approximation by whether the
mode functions used in the construction are the zeroth-
order de Sitter y0 or an iterative expansion. Thus we allow
ourselves the freedom to add higher-order corrections to
the source function but not the mode function. This opera-
tional definition, rather than order counting in g is moti-
vated by simple form of the bispectrum that results. With
only zeroth-order mode functions, all triangles can be ex-
pressed in terms of single integrals that depend only on the
perimeter of the triangle.

a. Unmodified source

We begin with the zeroth-order approximation using the
original source gB in Eq. (A19). This form is consistently
first order in the deviations from slow roll and of the terms
in Eq. (A24) only the X0

Bðki��ÞW0
Bðki�Þ leading-order term

survives

BRðkiÞ � ð2�Þ4
4k21k

2
2k

2
3

1

f3

�Z 1

��

d�

�
gBðln�ÞðW00

B þ 3W0
BÞ
�
:

(A26)

In Fig. 7, we compare this approximation with the exact
result for squeezed triangles. There are two obvious flaws
in this expression. First, the external f ¼ fðln��Þ factors
depend on the arbitrary end point. Second, in the super-
horizon limit W0

B goes to a constant defined in Eq. (A22).
Thus, analogous to the behavior of the power spectrum in
the same approximation, the feature is imprinted on super-
horizon modes.

b. Source modification

Just as in the power spectrum case, we can fix these
problems by examining the first-order mode function

corrections in the superhorizon limit. We start from the
full first-order expression Eq. (A24) and extract a factor of

1�<½Cðki; ��Þ� ¼ 1þ f0

f
þX

j

Z 1

��

d�

�

gðln�Þ
3

Wðkj�Þ;

(A27)

where we have evaluated the expression in the limit
ki�� � 1. We have also dropped higher-order terms.
Combined with the factors of 1=f we recognize these

factors as the GSR expression (A14) for the power spec-
trum. Our prescription therefore is to replace these terms
with the exact power spectrum

1

f3
ð1�<½Cðki; ��Þ�Þ ¼ �Rðk1Þ�Rðk2Þ�Rðk3Þ: (A28)

This fixes the problem of the external f factors in Eq. (A26).
In Fig. 7, we show the impact of applying this correction.
The low k features, in particular, are modulated and en-
hanced by the external power spectra but the superhorizon
problem remains.

FIG. 7 (color online). Unmodified source with zeroth-order
GSR approximation for squeezed triangles as in Fig. 4. Solid
lines denote unmodified form (A26). Red dashed lines represent
the replacement of the external 1=f with �R in Eq. (A28). Here
�� ¼ 1 Mpc.
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We then look at the superhorizon limit of the rest of the
first-order corrections. SinceWB scales as a constant in the
superhorizon limit, we need only keep the constant parts of
the expansion of <½Cðki; �Þ�

lim
ki!0

<½Cðki; �Þ�

¼ X3
j¼1

�
1

3

Z 1

xj

d~�

~�

�3

~�3
gðln ~�Þ

� 1

3

Z 1

xj

d~�

~�
Wðkj ~�Þgðln ~�Þ þOðk2j�2Þ

�
: (A29)

On the other hand, XB behaves as k�3
i , so we need to keep

up to Oðk3i Þ parts of =½Cðki; �Þ�:
lim
ki!0

=½Cðki; �Þ�

¼ X3
j¼1

�
� 1

3

Z 1

�

d~�

~�
Xðkj ~�Þgðln ~�Þ

þ 2ðkj�Þ3
9

Z 1

�

d~�

~�
Wðkj ~�Þgðln ~�Þ

� ðkj�Þ3
9

Z 1

�

d~�

~�

�3

~�3
gðln ~�Þ þOðk5j�2 ~�3Þ

�
: (A30)

Then, working to order OðgBf0=fÞ

BRðkiÞ � 3ð2�Þ4
4k21k

2
2k

2
3

�Rðk1Þ�Rðk2Þ�Rðk3Þ k
3
1 þ k32 þ k33
3k1k2k3

�
Z 1

��

d�

�
gB

�
1�

Z 1

�

d~�

~�

f0

f

�
: (A31)

Now, to a good approximation,

gB ¼ ð�H � �HÞ0
f

� � 1

f

�
f0

f

�0
: (A32)

With this approximation for the source, integrating the
second line of Eq. (A31) by parts one obtains

�
Z 1

��

d�

�

�
1

f

f0

f

�0 � 1

f

f0

f

Z 1

��

d�

�

f0

f
: (A33)

Dropping the slow-roll suppressed second term, we can
account for this first-order effect on superhorizon scales by
the replacement

gB � � 1

f

�
f0

f

�0 ! �
�
1

f

f0

f

�0 � �
�H � �H

f

�0 	 G0
B:

(A34)

In the superhorizon limit, the contribution of the first term
in Eq. (15) to the bispectrum then reduces to the integral of
a total derivative of slow-roll parameters, which are small
at late times, once the inflaton has settled back onto the
slow-roll attractor.

To summarize, our zeroth-order approximation consists
of the replacement of the source by Eq. (A34) and the

replacement of the external factors using Eq. (A28) while
using the de Sitter mode functions everywhere else. These
replacements lead to the expression in Eq. (21) with the
help of the explicit form for the W0

B window in Eq. (A21).
In particular note that the I0 term arises from the W00

B term
in Eq. (A26).

c. Boundary terms

While small, the boundary term in Eq. (15) hitherto
omitted plays an important role in ensuring that the bis-
pectrum becomes independent of time on superhorizon
scales.
The contribution from the boundary term can be ob-

tained from the results of the previous section with the
replacement

Z 1

��

d�

�
gBðln�Þ ! ð�H � �HÞ

f

���������¼��
; (A35)

together the replacement of all� by ��. Using this replace-
ment on Eq. (A31) yields for the boundary term

BBT
R ðkiÞ ¼ 3ð2�Þ4

4k21k
2
2k

2
3

�Rðk1Þ�Rðk2Þ�Rðk3Þ k
3
1 þ k32 þ k33
3k1k2k3

�
�
�H � �H

f

��
1�

Z 1

��

d�

�

f0

f

�
: (A36)

Notice that, when added to Eq. (A31) using Eq. (A33), one
obtains perfect cancellation leaving a time-independent
result. Since the integral term in Eq. (A36) exactly cancels
the second term in (A33) we choose to omit both in prac-
tice. This brings the net boundary term to the GBðln��Þ
contribution to Eq. (21).
We also point out here that, while for convenience we

have evaluated our expressions at a time when the inflaton
has passed the feature and is back on its slow-roll attractor,
our results are not restricted to this regime. As we pointed
out in Sec. II, the cancellation we are enforcing is exact and
thus truly independent of the time at which the bispectrum
is evaluated, even if this time is chosen to be when the
slow-roll parameters are not small.

5. First-order bispectrum

We can further compute to first order in the mode
function correction on all scales. Note that the first-order
corrections represent a calculation of the bispectrum to
second order in the slow-roll parameters. Additionally,
note that the boundary terms are always suppressed by
slow-roll parameters evaluated at times well after the in-
flaton has traversed the feature which means that they are
computationally irrelevant.
Neglecting boundary terms we obtain at first order in the

GSR approximation, the full bispectrum
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(A38)

where cyc. denotes the two additional cyclic permutations
of the k indices.

In order to fix a small second-order correction to the
superhorizon results we have replaced g ! 3G0=2 in the
first-order expressions and likewise replace the source term

f0

f
! f0

f

�
1� 1

2gB

�
f0

f

�
2
�

(A39)

in U1E. Furthermore for consistency, we use the GSR
power spectrum approximation (A15) for the external
terms.

For the case of the equilateral configurations, this
expression simplifies considerably and are practical to
evaluate

BRðk; k; kÞ ¼ ð2�Þ4�3
GSRðkÞ
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(A41)

We show the result of computing these terms for the
step model of § III B in Fig. 8. Note that most of the error
in the zeroth-order approximation is corrected by the first-
order expression. The dominant correction is fromU

eq
1A and

involves the product of two independent integrals. Since its
computation is no more intensive than the zeroth-order
expression, it may be simultaneously computed as a

monitor of the accuracy of the zeroth-order expression.
Note that the integral of G0X is the same as the one that
monitors the accuracy of the power spectrum approxima-
tion [27].
This first-order mode function correction breaks the pro-

perty that all triangles depend only on integrals involving
the perimeter K. Thus though more accurate it is of more
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limited utility for fast computations in that the six integrals
involved are a function of two variables: the perimeter K
and the wave number of the corrected mode function k3.
Nonetheless it still reduces the complexity of the exact
computation which requires all three ki as well as the exact
mode functions for each individual ki.

APPENDIX B: COMPARISON
TO PREVIOUS WORK

Previous calculations of the step bispectrum employed
the parameters of: fm; c; d;�sg ¼ f3� 10�6; 1:8� 10�3;
0:022; 14:84g [1,2]. There are three important differences
between this model and the one defined in Sec. III B.

First, due to an error in the setting of the initial con-
ditions in Refs. [9,10] the location of the feature �s is

shifted and the corresponding features in the power spec-
trum and bispectrum appear at lower k. Secondly, the
maximum likelihood fit to WMAP5 data prefer a slightly
larger width d compared with WMAP3 data. Since the
bispectrum is particularly sensitive to the width d, its
features appear more prominent and persist to higher k.
Finally Refs. [1,2] arbitrarily set the parameter m whereas
Refs. [9,10] normalized to WMAP3. As a consequence, we

take ~AS ¼ 4:415� 10�10 to be compatible with this
choice.
In Fig. 9 we show our zeroth-order, first-order and exact

calculation of this model. We have verified that the exact
calculation accurately reproduces the results in Ref. [1].
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