
Linear power spectrum of observed source number counts

Anthony Challinor1,2 and Antony Lewis1,3,*
1Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, United Kingdom

2DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
3Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom

(Received 27 May 2011; published 10 August 2011)

We relate the observable number of sources per solid angle and redshift to the underlying proper source

density and velocity, background evolution, and line-of-sight potentials. We give an exact result in the

case of linearized perturbations assuming general relativity. This consistently includes contributions of the

source density perturbations and redshift distortions, magnification, radial displacement, and various

additional linear terms that are small on subhorizon scales. In addition, we calculate the effect on observed

luminosities and hence, the result for sources observed as a function of flux, including magnification bias

and radial-displacement effects. We give the corresponding linear result for a magnitude-limited survey at

low redshift, and discuss the angular power spectrum of the total count distribution. We also calculate the

cross correlation with the CMB polarization and temperature including Doppler source terms, magnifi-

cation, redshift distortions, and other velocity effects for the sources, and discuss why the contribution of

redshift distortions is generally small. Finally, we relate the result for source number counts to that for the

brightness of line radiation, for example, 21 cm radiation, from the sources.
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I. INTRODUCTION

Redshift surveys of galaxies and other sources consist of
a set of source positions along with measured redshifts and
other information. With this information we can hope to
learn much about structure formation and the background
cosmology. However, predictions for cosmological models
are usually calculated as distributions over spatial hyper-
surfaces. To relate these distributions to what we observe,
we have to map our light-cone observables into the under-
lying physical densities, velocities, and other relevant
quantities. The aim of this paper is to derive exactly the
relation between these quantities, and provide a fully self-
consistent calculation for scalar perturbations in the ap-
proximation of linearized general relativity. Relating the
physical densities of sources to underlying cosmological
parameters is then a separate further problem requiring de-
tailed understanding of the source population and the bias.

This work arose from asking the question: when com-
paring observations of the matter power spectrum to
theory, in which gauge should the perturbations be calcu-
lated? For the case of current galaxy surveys, the answer is
that it does not really matter since, for observations well
within our Hubble volume today, gauge effects are small
(we observe wave numbers with k=H � 1), and cosmic
variance is large.1 In practice, what is normally calculated

is the synchronous-gauge dark matter power spectrum
since this is smooth in k as the Hubble scale is crossed,
and then some model is assumed for the bias between
source counts and the dark matter density. However, it is
well known that redshift distortions are important, which
depend on the source velocities, so we are not really
directly observing any single source power spectrum but
a combination of various effects that contribute to the
observed source counts as a function of redshift.
In this paper we calculate self-consistently (under sim-

ple assumptions about bias) all the various nonstochastic
linear effects that enter calculations for the observed an-
gular densities of sources per redshift. The most important
of the additional effects have been calculated separately
before, but for completeness we also include all the veloc-
ity and post-Newtonian effects that appear in a full linear
analysis. We also discuss the result for sources observed as
a function of flux, and give a new result for a magnitude-
limited survey including magnification bias, radial-
displacement, and source-evolution effects. In addition
we calculate the correlation with the cosmic microwave
background temperature, including various velocity and
post-Newtonian effects, as well as a new calculation of
the cross correlation with the CMB polarization. Doing a
self-consistent analysis means we can be sure that no terms
have been prematurely neglected (within the assumptions).
In the Appendix we relate the result for source number
counts to that for line radiation.
Differences between the general-relativistic and

Newtonian predictions are, in most cases, below cosmic
variance (depending on exactly what is compared), though
potentially a source of bias in cross-correlation studies. For
the study of scale-dependent halo bias (as a probe of

*http://cosmologist.info
1Note that the turnover in the matter power spectrum is

determined roughly by the horizon size at matter-radiation
equality; differences in gauge are important on scales approach-
ing the horizon scale at the epoch of the observed sources, which
is a much larger scale than the turnover for observed redshifts
z � 1000.
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primordial non-Gaussianity [1]) using a joint analysis of
multiple biased tracers, small corrections may be more
important since there is only one underlying cosmological
perturbation, and hence, in principle, no cosmic variance
on the difference between source counts [2–4]. In particu-
lar, there is a danger that an incorrect calculation of the
large-scale power spectrum could give spurious evidence
for scale-dependent bias due to the neglect of various non-
negligible effects that are present in the full analysis.

Previous work has examined perturbations to the lumi-
nosity distance in detail [5–9]. Reference [10] considers
the total source count to up to a certain redshift in a specific
cosmological model, but does not give results for counts
as a function of flux or magnitude limit. More recently,
while this work was in progress, Refs [11–13] have given
an analysis more similar to this paper, though our presen-
tation is rather different and our results do not all agree.
In particular our numerical results are quantitatively differ-
ent, in part due to our more consistent treatment of bias.
Our numerical ‘‘CAMB sources’’ code for calculating
source count angular power spectra and cross-correlations
with the CMB and galaxy weak lensing is publicly
available [14].

The outline of this paper is as follows. In Sec. II we give
a general nonperturbative result for the observed source
densities as a function of redshift, then in Sec. III we
calculate the result for linear scalar perturbations. We use
the Newtonian gauge, however, since we are calculating an
observable the final result is gauge invariant. In Sec. IV we
include the source luminosities and derive the observed
source density for a magnitude-limited survey. In Sec. V
we discuss the dominant terms in the full result, explain
how we perform numerical calculations over a source
window function, and present some typical numerical re-
sults. We also discuss evolving source populations, and the
distinction between the selection function and the under-
lying background source redshift distribution. Finally, in
Sec. VI we give results for the cross-correlation of source
counts with the CMB temperature and polarization, includ-
ing all the various effects that can be important for both low
and high redshift sources. In the Appendix we relate the
result for source number counts to that for line radiation
(e.g. 21 cm radiation).

II. PROJECTED NUMBER COUNTS

We first calculate the observable angular source density
count as a function of redshift and angle on the sky in terms
of the physical quantities governing the source density,
velocity, and line-of-sight evolution. Readers not interested
in details of the derivation can skip to the main linearized
result in Eq. (30) or (37) below. Throughout, we use units
with c ¼ 1. Our derivation below, up to, and including
Eq. (26), holds for any metric theory of gravity. How-
ever, all numerical results assume general relativity.

We consider a general population of objects with the
current 4-vector Ja ¼ nsu

a
s where ns is the proper source

number density (i.e. in the rest space of the source
4-velocity uas ). These are observed in projection by an
observer at Awho has 4-velocity uaoA. The observer records
nðn̂; zÞdzd�oA the number of sources in direction n̂ over
solid angle d�oA with redshift z in a range dz. Let ka ¼
dxa=d� be the wave 4-vector of a light ray on the past light
cone through A. If the ray intersects a source at affine
parameter �, the redshift of the source is determined
from the observed frequency and the emitted frequency
in the source rest-frame by

1þ z ¼ ðkauas Þj�
ðkauaoAÞj�A

: (1)

The infinitesimal angular separation ��J of two rays in a
bundle at A, and the ray-orthogonal connecting vector �I

between them at affine parameter � along the rays, are
related by the Jacobi map DIJð�Þ (see Refs. [15–17]):

�Ið�Þ ¼ DIJð�Þ��J; (2)

where the indices here are components in a 2-dimensional
orthonormal basis fEa

I g orthogonal to ka. The Jacobi map is
determined by its evolution equation along the ray,

d2DIJ

d�2
¼ T IKDKJ; (3)

where the optical tidal matrix is defined in terms of the
Riemann tensor by T IJ � �Eb

I E
c
Jk

akdRabcd.
We can now use the Jacobi map to relate observed ray

angles to (invariant) areas on the wave front: a ray bundle
with solid angle d�oA (as seen by uaoA) has invariant area
detDod�oA, where detDo is the determinant of the Jacobi
map in the uaoA frame. Increasing the affine parameter
by d�, the wave front advances by a proper distance
d�kau

a
s in the source rest frame, and so sweeps up

ns detDokau
a
sd�d�oA sources. The general result then

follows:

nðn̂; zÞ ¼ detDokaJ
a

��������
d�

dz

��������; (4)

where the right-hand side is evaluated at redshift z along
the line-of-sight with direction n̂ at the observer.

Under a change of observer, uaoA ! ~uaoA (so that n̂ ! ~̂n
and z ! ~z), conservation of the number of sources gives

~nð~̂n; ~zÞd ~�oAd~z ¼ nðn̂; zÞd�oAdz. It follows that

~nð~̂n;~zÞ¼
�
ka~u

a
oA

kau
a
oA

�
nðn̂;zÞ¼�3ð1þ n̂ �vrelÞ3nðn̂;zÞ; (5)

where vrel is the relative velocity of the observers and � is
the associated Lorentz factor.
The result for the number counts is related in detail to

that for the brightness of diffuse line radiation from the
same sources in the Appendix; in summary, the fraction of
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photons received from a source scales with 1= detDo

(inverse-square law in the background), so the sky bright-
ness is simply / nðn̂; zÞ= detDo.

III. PROJECTED NUMBER COUNTS IN FLAT,
ALMOST–FRIEDMANN-ROBERTSON-WALKER

MODELS

We aim to evaluate Eq. (4) to linear order for a flat,
almost–Friedmann-Robertson-Walker model with scalar
perturbations. For convenience, we work in the conformal-
Newtonian gauge with metric

ds2 ¼ a2ð�Þ½ð1þ 2c Þd�2 � ð1� 2�Þ�ijdx
idxj�: (6)

We take a zero-shear velocity field ua along @� so that

u� ¼ a�1ð1� c Þ��
0 and u� ¼ að1þ c Þ��0. This veloc-

ity field is the zeroth element of an orthonormal tetrad
which we take to be ðX0Þa ¼ ua and Xi � a�1ð1þ�Þ@i.

Decomposing the wave vector ka ¼ dxa=d� into a di-
rection ea and frequency k � u � 	=a relative to ua,
we have

dx

d�
¼ ð1þ�þ c Þe; d�

d�
¼ a�2	ð1� c Þ; (7)

where the three-vector e comprises the spatial components
of the propagation direction on the spatial triad Xi. The
geodesic equation reduces to a simple propagation
equation for e,

de

d�
¼ �r?ð�þ c Þ; (8)

wherer? � r� ee � r, and an equation for the evolution
of the comoving frequency:

d	

d�
¼ �	

dc

d�
þ 	ð _�þ _c Þ: (9)

Combining Eqs. (7) and (8) and solving for the photon path
gives

xðn̂;�Þ ¼ �eAð�A � �Þ þ eA
Z �

�A

ð�þ c Þd�0

�
Z �

�A

ð�� �0Þr?ð�þ c Þd�0: (10)

Note that at the observation point dx=d� ¼ ð1þ�þ
c ÞAeA, so that �eA is the line-of-sight direction for a
Newtonian-gauge observer (uaA). The second term on the
right of Eq. (10) is a radial displacement and corresponds
to the usual (Shapiro) time delay. The third term is the
usual transverse (lensing) displacement.

We shall need the radial displacement and perturbation
to the conformal time at redshift z along the line-of-sight.
Writing the source 4-velocity as uas ¼ ua þ va, we have
u
�
s ¼ a�1½1� c ; vi� where vi are the orthonormal-triad

components of va, and similarly for the observer’s
4-velocity uao ¼ ua þ va

o. It follows that the observed
redshift of a source is

1þ z ¼ aA
a

	

	A
ð1þ n̂ � ½v� voA�Þ; (11)

where n̂ � �eoA is the line-of-sight direction on the ob-
server’s triad formed from Lorentz boosting the ðX0Þa and
the ðXiÞa. At zeroth order, eoA ¼ eA. The ratio of energies
follows from integrating Eq. (9):

	

	A
¼ 1þ c A � c þ

Z �

�A

ð _�þ _c Þd�0; (12)

which has the usual Sachs-Wolfe and integrated Sachs-
Wolfe (ISW) contributions. The redshift at � along the
line-of-sight is therefore

1þ z ¼ aA
að�Þ

�
1þ c A � c þ

Z �

�A

ð _�þ _c Þd�0

þ n̂ � ½v� voA�
�
: (13)

Setting � ¼ �� þ �� for a source at observed redshift z�,
where 1þ z� ¼ aA=að��Þ, we must have

H ð��Þ��¼ c A�c þ
Z ��

�A

ð _�þ _c Þd�0 þ n̂ � ½v�voA�;
(14)

whereH is the conformal Hubble parameter and the terms
on the right are evaluated on the zero-order light cone at
position xA þ n̂ð�A � ��Þ at time ��. The radial position
of a photon at observed source redshift z� then follows
from Eq. (10):


ðn̂; z�Þ ¼ 
� þ �


¼ �A � �� � ���
Z ��

�A

ð�þ c Þd�0: (15)

To determine the perturbed value of detDo ¼
detDd�A=d�oA, we note that the Jacobi map is symmet-
ric for linear scalar perturbations. It thus takes the form

D IJ ¼ D=2� �1 ��2��2 D=2þ �1

� �
; (16)

whereD is the trace of the map and �1 and �2 are the (first-
order) components of the shear. Evaluating the determi-
nant, we find at linear order that detD ¼ ðD=2Þ2. The
trace is given in terms of the convergence � by (see, e.g.,
Ref. [17])

D ðn̂; �Þ=2 ¼ 
ðn̂; �Það�Þ½1��� �ðn̂; �Þ�; (17)

where 
 is the perturbed radial position at time � and2

2Note that other authors (e.g. [12,18]) have defined the con-
vergence differently so that it includes additional terms that we
are including separately.
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2�ðn̂; �Þ � �r2
n̂

Z �

�A

ð�0 � �Þ
ð�A � �Þð�A � �0Þ ð�þ c Þd�0:

(18)

The Laplacian here is on the unit sphere. We actually
require detD at the given observed redshift; this is given by

detDðn̂;z�Þ¼a2ð��Þ
2�
�
1þ2

�



�
þ2H���2��2�

�
;

(19)

and hence,

detDoðn̂;z�Þ
¼detDðn̂;z�Þ d�A

d�oA

¼a2ð��Þ
2�
�
1þ2

�



�
þ2H���2��2�þ2n̂�voA

�
:

(20)

We also require the perturbed value of kaJ
a ¼ nskau

a
s ¼

nsð1þ zÞ	Að1þ n̂ � voAÞ=aA where, recall, ns is the proper
(physical rather than comoving) number density of sources
in their rest frame. Expanding ns into a background part,
�ns, and a perturbed part �ns�n, and evaluating the back-
ground part at the perturbed time for a source at redshift z�,
we have

kaJ
aðn̂;z�Þ¼ð1þz�Þ	A �nsð��Þ

aA

�
1þ _�ns

ns
��þ�nþ n̂ �voA

�
:

(21)

The final term in Eq. (4) is d�=dz. We can evaluate this
by differentiating Eq. (13), noting that

d�=d� ¼ 	ð1� c Þ=a2

¼ 	Að1þ zÞ
aaA

ð1� c � n̂ � ½v� voA�Þ; (22)

we find

��������
d�

dz

��������ðn̂; z�Þ ¼
að��ÞaA

	AH ð��Þð1þ z�Þ2
�
1�

� _H
H

�H
�
��

� 1

H
dc

d�
þ 1

H
ð _�þ _c Þ þ 1

H
n̂ � dv

d�

þ c þ n̂ � ½v� voA�
�
: (23)

Putting these results together, the background result for
the number counts per solid angle and redshift is3

�nðzÞ ¼ ða
Þ2 a2 �ns
aAH

¼ 
2

H ð1þ zÞa
3 �ns; (24)

where all quantities are evaluated at the source redshift z,
with fractional perturbation

�nðn̂;zÞ¼�nþ
_�ns
ns
��þ2

�




þ2H���2��2�

þ3n̂ �voA�
� _H
H

�H
�
��� 1

H
dc

d�

þ 1

H
ð _�þ _c Þþ 1

H
n̂ � dv

d�
þc þ n̂ � ½v�voA�:

(25)

For conserved sources _�ns=ns ¼ �3H , so the terms due
to constant expansion cancel. More generally, we can write
�nðn̂; zÞ in terms of the background comoving density
(a3 �ns) evolution

�nðn̂; zÞ ¼ �n þ 1

H
n̂ � dv

d�
þ 2

�




� 2�þ d lnða3 �nsÞ

d�
��

þ 3n̂ � voA þ n̂ � ½v� voA� �
_H

H
��

� 1

H
dc

d�
þ 1

H
ð _�þ _c Þ þ c � 2�; (26)

where terms have been ordered roughly in order of impor-
tance on sub-Hubble scales. This result holds for any
metric theory of gravity. However, if we assume the
general-relativistic velocity evolution equation for nonin-
teracting cold particles,

_vþH vþrc ¼ 0; (27)

we can simplify further to give

�nðn̂; zÞ ¼ �n � 1

H
n̂ � @v

@

þ 2

�




� 2�

þ
�
d lnða3 �nsÞ

d�
�

_H
H

�
��þ 2n̂ � voA

þ 1

H
_�þ c � 2�: (28)

The considerable simplification here is from a cancellation
between the change in the Doppler shift across the source
volume element due to the time evolution of n̂ � v and the
change in the Sachs-Wolfe effect due to the radial gradient
in c .
There is a dipole contribution to �nðn̂; zÞ from the ob-

server’s velocity voA. Isolating these terms (including those
implicit in �� and �
), their contribution can be written as

�voA
n ðn̂; zÞ ¼ 3n̂ � voA � n̂ � voA 1

H
d ln �n

dz
: (29)

This is consistent with the linearized form of Eq. (5): the
first term on the right is from ð1þ n̂ � vrelÞ3 while the
second term is from correcting the observed redshift to
undo the effect of the observer’s velocity when evaluating

3This is simply the product of the comoving source number
density (a3 �ns) and the differential comoving volume element per
redshift and solid angle.
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the background source counts �nðzÞ. Assuming the non-
kinematic CMB dipole is Oð10�5Þ, the local peculiar
velocity voA can be determined to Oð10�5Þ from measure-
ments of the observed (kinematic plus primordial) CMB
dipole. If we boost to this frame the n̂ � voA terms then
vanish.

Expanding Eq. (28) and dropping local (monopole and
dipole) terms the result is

�nðn̂;zÞ¼�n� 1

H
n̂� @v

@

�2�

þ
�
� 2

H

þdlnða3 �nsÞ

Hd�
�

_H
H 2

�

�
�
�c �

Z �Að _�þ _c Þd�þn̂�v
�

þ 2




Z �Að�þc Þd�þ 1

H
_�þc �2�: (30)

The terms in this equation have a simple interpretation.
The first is the perturbation to the source number
density. The second is the usual redshift-space distortion
due to the effect of source velocities on the differential
volume element. The convergence term arises from the
transverse differential effect of gravitational lensing on
the volume element while the following two terms are
from evaluating the zero-order result, Eq. (24), at the
perturbed position and time appropriate to the observed
redshift (including the radial shift due to lensing). The
remaining potential terms are from the perturbation to
the spatial metric (c ) in converting dz to a proper time
interval at source, the differential of that part of the ISW

effect across the source volume ( _�) that is not cancelled by
velocity evolution (see above), and the effect of the spatial
metric at source (2�) on transverse distances there.

The source number perturbation �n is the Newtonian-
gauge quantity. In the simplest case we might expect the
synchronous-gauge number perturbation �

syn
n to be related

to the matter density perturbation via a constant bias b,
�
syn
n ¼ b�

syn
m , since it is the comoving perturbation (syn-

chronous gauge when perturbations are dominated by
pressure-free matter) that enters directly into the Poisson
equation [19,20]. In this case the Newtonian-gauge number
density perturbation is, in Fourier space,4

�n ¼ b�syn
m þ _�ns

�ns

v

k
¼ b�syn

m þ
�
d lnða3 �nsÞ

d�
� 3H

�
v

k
;

(31)

where v is the Newtonian-gauge velocity of the sources,
assumed to follow the matter velocity (no velocity bias).
The difference between the Newtonian- and synchronous-
gauge matter power spectra is shown in Fig. 1, and

illustrates that it is important to make the distinction on
scales approaching the horizon scale.
Our prescription for the bias differs from that in the

papers by Yoo et al. [12,13], where the assumption is
made that the number density of sources ns ¼ Fð�mÞ is
some function of the local matter density. At the spacetime
point corresponding to the perturbed position of a source
observed at redshift z, they linearize this relation about
the background matter density at redshift z to define a
linear bias relation. This singles out the zero-redshift-
perturbation gauge and gives the local relation �n ¼ b�m

in that gauge. However, it seems clear that the bias is
physically due to the local physics of structure formation,
and nothing to do with how we observe it: hence, in as
much that bias is a reasonable model at all, its definition
cannot depend on the zero-redshift-perturbation observa-
tional gauge. Note further that the synchronous-gauge
density is also what is calculated in Newtonian collapse
andN-body simulations [19,22,23]. For a recent discussion
of bias in the general-relativistic context, see [24].
The fractional perturbation in the counts is not directly

observable since we cannot observe �nðzÞ. Rather, we mea-
sure anisotropy in the counts via nðn̂; zÞ=hnðn̂; zÞin̂ � 1 ¼
�nðn̂; zÞ � h�nðn̂; zÞin̂, where hin̂ denotes the angular av-
erage over the survey area. With full-sky coverage, the
l > 0 multipoles of the observed anisotropy equal those
of �nðn̂; zÞ. More generally, the difference in the obser-
ved fractional counts between two directions equals the

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

z=0

z=3

FIG. 1 (color online). Three-dimensional power spectrum of
the Newtonian-gauge counts source �n (solid) and the
synchronous-gauge source b�

syn
m (dashed) at z ¼ 0 and z ¼ 3

with bias b ¼ 1:5 (relative to the matter perturbation �syn
m )

assuming a constant comoving source density. The dash-dotted
line shows the spectrum for �n rescaled (incorrectly) from z ¼ 3
to z ¼ 0 with the scale-independent growth factor Dð�Þ appro-
priate to �

syn
m . On large scales, �n grows more slowly in time than

�
syn
m due to the velocity term in Eq. (28) which goes as H _D.

Note that neither power spectrum is directly observable, but the
difference between them illustrates the importance of using a full
analysis on scales k � 0:01 Mpc�1.

4Our Fourier conventions follow Ref. [21].
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difference in �nðn̂; zÞ. Note also that the l > 1 moments of
�nðn̂; zÞ are independent of the observer’s velocity in
linear theory.

IV. LUMINOSITIES

The linear-theory results derived in the previous section
can also be applied to calculate observables other than total
source number counts. Of particular interest here is the
luminosity distance: how it affects the flux received from
each source, and the predictions for the observed angular
densities of a magnitude-limited source sample.

If a source with 4-velocity uas is known to radiate an
energy dE ¼ Lsds isotropically in its rest frame in proper
time ds in the form of photons with energy ðkauas Þj�,
the number emitted within solid angle d�s is dN ¼
Lsdsd�s=ð4�ðkauas Þj�Þ. These are collected by an ob-
server at A, with 4-velocity uaoA and equipped with a detec-
tor of collecting area dAA, in time doA with energy
ðkauaoAÞj�. Products of areas and solid angles are related
by reciprocity, ð1þ zÞ2d�sdAs ¼ d�oAdAA (see, e.g.,
Ref. [16]), and the Jacobi map relates areas and angles
via dAs ¼ detDod�oA. The energy received at A is then
given by

dEoA ¼ ðkauaÞj�A
dN ¼ LsdoAdAA

4�ð1þ zÞ4 detDo

; (32)

where we have used doA=ds ¼ 1þ z. If there are well-
understood sources with known Ls we can therefore mea-
sure the luminosity distance, given by

dLðn̂; zÞ ¼ ð1þ zÞ2½detDo�1=2; (33)

for each source. Our results for the linear-theory Jacobimap
at given observed redshift could then be used straightfor-
wardly to work out the observed luminosity distance in a
perturbed universe; see Refs. [5–9].

The source number counts can also be measured as a
function of source flux, F ¼ dEoA=ðdAAdoAÞ, so an ob-
server uaoA sees nðn̂; z; lnFÞd�oAdz sources per logarithmic
flux interval d lnF. If the current of sources per log lumi-
nosity Ls is J

aðlnLsÞ ¼ uasnsðx; �; lnLsÞ, we have the ob-
served density

nðn̂; z; lnFÞ ¼ detDokaJ
aðlnLsÞ

��������
d�

dz

��������; (34)

where

Ls ¼ 4�Fð1þ zÞ4 detDo: (35)

For populations that have smooth distributions in source
luminosity, the linear perturbed result is then the same as
before [Eq. (25)], with some extra terms depending on the
slope of the source luminosity function:

�nðn̂;z; lnFÞ¼�nðn̂;zÞjln �Ls
þ@ln �ns
@lnLs

��������ln �Ls

�
detDo

a2ð��Þ
2�
�1

�

¼�nðn̂;zÞjln �Ls
þ@ln �ns
@lnLs

��������ln �Ls

�
�
2
�



�
þ2H���2��2�þ2n̂ �voA

�
;

(36)

where�nðn̂; zÞjln �Ls
is evaluated for sources with luminosity

�Ls ¼ 4�Fð1þ zÞ4a2ð��Þ
2�, i.e., the luminosity corre-
sponding to flux F in the background.
Apparent magnitudes are defined with conventional fac-

tors so that m ¼ �2:5log10Fþ const. For a magnitude-
limited survey observing all Nðn̂; z; m < m�Þdzd�oA

sources with magnitudes m<m� over redshift interval
dz and in solid angle d�oA, the full result for the fractional
perturbation to N, neglecting only local terms, is

�Nðn̂; z; m < m�Þ ¼ �NðL > �Ls�Þ � 1

H
n̂ � @v

@

þ ð5s� 2Þ

�
�� 1




Z �Að�þ c Þd�
�

þ
�
2� 5s

H

þ 5s� @ ln½a3 �NðL > �Ls�Þ�

H@�
þ

_H
H 2

��
c þ

Z �Að _�þ _c Þd�� n̂ � v
�

þ 1

H
_�þ c þ ð5s� 2Þ�: (37)

Here, �Nð�;L > �Ls�Þ is the background number density of
sources with luminosity exceeding �Ls� and its fractional
perturbation is denoted �Nðx; �; L > �Ls�Þ. The quantity

sðz;m�Þ�@log10 �Nðz;m<m�Þ
@m�

¼ �nsð�;ln �Ls�Þ
2:5 �Nð�;L> �Ls�Þ

; (38)

where the terms in the final expression are evaluated at the
background value of � corresponding to z. Note that we
have assumed no line-of-sight scattering.

V. NUMERICAL AND APPROXIMATE RESULTS

For nonevolving source populations, Eq. (37) can be
approximated on small scales as

�Nðn̂;z;m<m�Þ

	�N� 1

H
n̂ � @v

@

�
�
�þ n̂½v�voA�

H


�
ð2�5sÞ: (39)

The first term is the obvious underlying perturbation and
the second is the usual redshift distortion due to velocity
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gradients [25,26]. The third term has two contributions
from lensing: the first from the effect of lensing magnifi-
cation of the background sources [27], and the second
slope-dependent correction is the well-known magnifica-
tion bias [28–31]. The first of the two contributions pro-
portional to 1=ðH
Þ comes from the change in the number
of background sources per observed solid angle as radial
distances are changed [25,32–35]. The second slope-
dependent term is the effect of source dimming due to
apparent radial displacements caused by source velocities
[5]: a source moving toward us is further away than it
appears from its redshift and hence has to be more lumi-
nous to give the same observed flux. These Oðv=H
Þ
terms may be non-negligible compared to the neglected
terms if the sources are close, 
 � H�1 (roughly z � 1).

For numerical work, results can be Fourier transformed
and expanded into multipoles in k and l space. For ex-
ample, Eq. (35) gives

�N;lðk; zÞ 	 �Njlðk
Þ þ kv

H
j00l ðk
Þ þ ð2� 5sÞ

�
�

v

H

j0lðk
Þ þ

lðlþ 1Þ
2

�
Z 


0
d
0 
� 
0



0 ½�ð
0Þ þ c ð
0Þ�jlðk
0Þ
�

(40)

for l > 1. The full result can be calculated similarly, but for
brevity we do not quote it here. Integrating over an ob-
served redshift window function, WðzÞ, gives a total frac-
tional perturbation in that window

�W
N;lðkÞ ¼

Z 1

0
dzWðzÞ�N;lðk; zÞ

¼
Z �A

0
d�Wð�Þ�N;lðk; z�Þ; (41)

where z� is the redshift at conformal time � in the back-

ground and Wð�Þ ¼ ð1þ zÞHWðzÞ. Note that here WðzÞ
is the normalized total distribution of counts in the window,
rather than a probability distribution for observing sources;
if the number of sources and selection function were
constant then WðzÞ / �nðzÞ ¼ a4
2 �ns=H jz / a
2=H jz.
Defining

W��ð�Þ �
�
2� 5s

H

þ 5s� @ ln½a3 �NðL > �Ls�Þ�

H@�

þ
_H

H 2

�
�
Wð�Þ; (42)

and switching some integration orders, the (full) window-
integrated counts transfer function can be calculated using

�W
N;lðkÞ ¼

Z �A

0
d�

�
Wð�Þ

�
�Njlðk
Þ þ kv

H
j00l ðk
Þ

�
þW��ð�Þ½c jlðk
Þ þ vj0lðk
Þ� þ ð _c þ _�Þjlðk
Þ

Z �

0
W��ð�0Þd�0

þ ð�þ c Þjlðk
Þ
�Z �

0
ð2� 5sÞWð�0Þ


0 d�0 þ lðlþ 1Þ
2

Z �

0


0 � 




0 ð2� 5sÞWð�0Þd�0
�

þWð�Þjlðk
Þ
�
1

H
_�þ c þ ð5s� 2Þ�

��
; (43)

where 
0 ¼ �A � �0 (and similarly for 
). We can further
integrate by parts to obtain an integral of a source against
jlðk
Þ [assuming WðzÞ goes to zero at both ends]. The
linear-theory angular power spectrum can then be calcu-
lated using standard line-of-sight Boltzmann codes, giving
angular power spectra

CWW0
l ¼ 4�

Z
d lnkPRðkÞ�W

N;lðkÞ�W0
N;lðkÞ (44)

for the cross correlation between counts in windows WðzÞ
and W 0ðzÞ. Here PRðkÞ is the dimensionless power spec-
trum of the primordial curvature perturbation and the
transfer function �W

N;lðkÞ is for unit initial curvature per-
turbation. Cross correlations with the CMB, weak lensing,
21 cm, or other sources can be calculated similarly.
Corrections for nonlinear evolution can be accounted for
approximately by an appropriate rescaling inside the k
integral [36].

We first consider the effects of the magnification terms
in the approximate result, Eq. (39). These are generally
small, but do increase the correlation of counts on dif-
ferent redshift slices. Figure 2 shows that the effect can be
significant for widely separated slices on small scales
when the correlation is otherwise small. As discussed by
Ref. [37] the magnification also has a small effect on the
cross correlation with the CMB (see later discussion in
Sec. VI). For sources with bias b the relative importance
of the magnification terms depends on ð2� 5sÞ=b.
Examples for various surveys are given in Ref. [30], and
an example of the large-scale effect is shown in Fig. 3 when
2� 5s ¼ 1.
Now, consider the effect of the 2�
=
	�2n̂�½v�voA�=

ðH
Þ radial-displacement term. This is generally small
for distant sources, but can be more important when the
sources at are low redshift, as discussed in Refs. [32–34].
The effect on the large-scale power spectrum is shown in
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Fig. 3. Having a magnitude limit with small positive s
partly cancels the low-redshift radial-displacement effect:
a radial displacement gives a larger volume per solid angle,
but this is compensated by the fact that the sources appear
dimmer because they are further away, so less sources are

seen. The effect on the power spectrum for single redshift
slices is well below cosmic variance, but may be important
for a full redshift survey. The effect of radial displacements
on the all-sources correlation function is discussed in
Refs. [33,34]. If there are other selection effects in addition
to the magnitude, for example, on galaxy size [38], ori-
entation [39], or dust extinction along the line-of-sight
[40], they should also be included. Compared to the radial
displacement, the effect of the other n̂ � ½v� voA� terms on
the power spectrum is down by a factor ofOðH
Þ�2 
 60
at redshift z ¼ 0:15 (assuming the source population is not
rapidly evolving). At z * 1, the n̂ � ½v� voA� terms are of
equivalent size and all small.
Figure 4 shows the fractional errors that can be made

if various terms are neglected when calculating angular
power spectra for relatively broad redshift window func-
tions. General-relativistic potential terms are only signifi-
cant at very low multipoles for high redshift (i.e. where
the contribution of large-scale modes approaching the
Hubble scale can be important). Radial displacement terms
are important at low redshift, and lensing (being cumula-
tive) at moderate and high redshift. Although the post-
Newtonian effects are generally small compared to cosmic
variance, the additional terms entering the observed counts
of biased density tracers is independent of bias. If multiple
populations tracing the same density field with a different
bias are being used in a joint analysis the cosmic variance
only enters into one eigenvalue of the sample covariance
[2–4], and hence small theory errors can potentially be
rather more important.
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FIG. 2 (color online). Angular power spectra of total number counts, based on the approximation of Eq. (35), for Gaussian window
functionsWðzÞ at z ¼ 0:45 (left; �z ¼ 0:03 and constant bias b ¼ 1:5) and z ¼ 0:6 ( center; �z ¼ 0:05 and b ¼ 1:95), and their cross-
correlation (right) using nonlinear corrections from Halofit [50]. Solid lines have no lensing (2� 5s ¼ 0), dashed lines have lensing
but no magnification bias (s ¼ 0), and dot-dashed lines have s ¼ 0:6. Note that these are barely distinguishable in the autopower
spectra. The window functions are similar to those actually measured using luminous red galaxy surveys [51,52]. Lensing is a
significant source of correlation when the cross-correlation is otherwise small, cf. Ref. [29]. The effect is well below cosmic variance
on an individual l, but above cosmic variance over a range �l 
 100. For s ¼ 0 the effect of magnification is negative since a
magnified area has less sources per solid angle.
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FIG. 3 (color online). Angular power spectra for all sources in
a Gaussian window function at z ¼ 0:1 (�z ¼ 0:01, b ¼ 1), with
(thick solid) and without (dashed) the Oðn̂ � v=H
Þ radial-
displacement term. The dot-dashed line shows the equivalent
result for a magnitude-limited survey with constant 2� 5s ¼ 1,
and the bottom panel shows the fractional differences compared
to the result with no radial-displacement terms.
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A. Total counts distribution

We can calculate the angular power spectrum for any
combination of redshift window functionsWðzÞ. In general
these windows are not directly related to the underlying
physical source distribution �nðzÞ, either because we have
chosen to divide up the data into different redshift bins or
because of observational (selection) issues. However, we
can also consider the special case where we observe all
of the sources, and hence wish to calculate the total
angular counts power spectrum over the entire distribution,
WðzÞ / �nðzÞ ¼ a4
2 �ns=H jz.

Assuming s ¼ 0, the velocity terms in Eq. (30) can be
written

�v
nðn̂; zÞ ¼ � 1

H
n̂ � @v

@

þ d ln½
2a3 �ns=H �

d�

n̂ � v
H

¼ � 1

H
n̂ � @v

@

þ d ln½ð1þ zÞ �nðzÞ�

d�

n̂ � v
H

: (45)

Noting that dv=d�¼ _v�@v=@
 and dz ¼ �ð1þ zÞHd�
in the background, the perturbation to the velocity terms in
the total counts become

Z 1

0
dz �nðzÞ�v

nðn̂; zÞ ¼
Z �A

0
d�

�
d

d�
½ð1þ zÞ �nðzÞn̂ � v�

� ð1þ zÞ �nðzÞn̂ � _v
�
: (46)

Integrating the total derivative and noting that the bound-
ary terms vanish, we find

Z 1

0
dz �nðzÞ�v

nðn̂; zÞ ¼ �
Z �A

0
d�ð1þ zÞ �nðzÞn̂ � _v: (47)

Since all the sources are being observed, the angular
number density is not affected by changes in the apparent
radial distance of each source; the only remaining contri-
butions come from time evolution between the light cone
and the perturbed positions. The result is generally small:
a fractional perturbation of OðvÞ rather than Oðkv=H Þ
from the redshift-distortion term alone. This also means
that when calculating the distribution for all sources it is
important to include not only the @v=@
 term, but also all
the source velocity terms since these nearly cancel.
Alternatively, in many cases the velocity terms can be
neglected entirely, though near cancellation of the velocity
terms is a useful numerical consistency check. Similar
comments apply to the potential contributions to the
change in redshift distance. However, on the largest scales
it is still important to use the correct Newtonian-gauge
density source, �n, rather than approximating it as propor-
tional to the synchronous-gauge density perturbation.

B. Selection function or count distribution?

Given some observed angle-averaged count distribution
PðzÞ, the predicted angular power spectrum for the sample
depends on the interpretation of PðzÞ: if PðzÞ ¼ �nðzÞ (i.e.
we are observing all sources), then we are calculating the
total counts distribution; on the other hand, the shape of
PðzÞ may be mainly due to the observational selection
function, in which case the underlying total physical count
distribution �nðzÞ then needs to be specified separately if the
source-evolution terms in Eqs. (30) and (37) are to be
included correctly. In general, there will be both an obser-
vational selection function and some change to the source
populations with redshift and hence, PðzÞ alone does not
fully specify the problem.
As an example, we follow Ref. [12] by considering a

source distribution for a photometric quasar sample,
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FIG. 4 (color online). Fractional error compared to the full
result for the counts’ angular power spectrum Cl with broad
Gaussian window functions peaking at various redshifts with
�z ¼ 0:3z. The error shown is that obtained when various types
of terms in the full result of Eq. (37) are individually neglected.
The redshift term is for redshift distortions (radial derivative of
velocity), velocity terms are proportional to n̂ � v and include the
radial-displacement effect, lensing is the convergence term, and
potentials includes the effects of gravitational potentials at the
source, time delay, and the ISW. Solid and dashed lines indicate
terms whose neglect reduces and increases the power spectrum,
respectively. The standard result is the approximation given by
Eq. (49) and for this the fractional error compared to the full
result is shown (with solid/dashed lines denoting an excess/
deficit). There is no source evolution and (unrealistically)
b ¼ 1 and s ¼ 0.
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PðzÞ / z� exp

�
�
�
z

z0

�
�
�
; (48)

with ð�;�; z0Þ ¼ ð3; 13; 3:358Þ and hence, mean and the
peak redshifts of 2.66 and 3.0, respectively. We take con-
stant b ¼ 2 and 2� 5s ¼ �0:1. We compare the full
numerical results for the extreme cases of PðzÞ ¼ �nðzÞ /
WðzÞ (i.e. observe all sources) and the limit in which the
source population is not evolving [a3 �ns ¼ const, so PðzÞ ¼
�nðzÞpðzÞ where pðzÞ is the probability of including a given
source at redshift z and, from Eq. (24), �nðzÞ / a
2=H jz].
For reference we compare to the ‘‘standard’’ result (with no
source evolution)

�std � �syn
N � 1

H
n̂ � @v

@

� ð2� 5sÞ�

¼ b�
syn
m � 1

H
n̂ � @v

@

� ð2� 5sÞ�: (49)

Our results, presented in Fig. 5, can be compared with
Fig. 2 of Ref. [12], and show a significantly smaller dif-
ference between the full result and the standard result for
the equivalent cases. The main difference is our alternative
treatment of bias [Eq. (31)] and the explicit treatment (or
not) of source evolution terms (cf. Refs. [11,12]).
Nonetheless, we find that the difference between the full
and standard result is still several percent on the largest
scales, and larger for the CMB cross correlation where

there are additional contributions from correlations be-
tween count velocity terms and the CMB reionization
Doppler signal, and large-mode early-time Sachs-Wolfe
contributions (see Sec. VI). It is also clearly important
that the redshift-distortion/source-evolution terms are
incorporated in a consistent manner or much larger differ-
ences can be obtained.

VI. CMB CROSS CORRELATION

So far we have focused on the correlation function of the
counts with themselves. Another useful cosmological
probe is the correlation with the cosmic microwave back-
ground, primarily due to redshifting of photons as they
propagate through the evolving potentials correlated to the
source densities (the iISW) [41]. There are additional
contributions to the correlation due to Doppler terms
when CMB photons scatter during reionization [42], lens-
ing magnification [37], and also nonlinear effects such as
the Rees-Sciama effect in nonlinearly evolving potentials,
inhomogeneous reionization, and the Sunyaev-Zel’dovich
effect. We focus on the linear effects here, so that the
fractional CMB temperature anisotropy sourced well after
recombination is

�Tðn̂Þ 	
Z �A

d�e�ð _ n̂ �vþ _c þ _�Þ; (50)
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FIG. 5 (color online). The fractional difference in the counts angular power spectrum (left) and CMB temperature cross-correlation
(right), compared with the standard result calculated using Eq. (49) for the distribution given in Eq. (48). Thick lines are our limiting
full results for the case of no source evolution (solid), in which case the source selection function is nontrivial, and the case when all
sources are observed (dashed), so that PðzÞ ¼ �nðzÞ, implying source evolution. The thin red line shows the change in the standard result
from dropping the redshift-distortion term; this modification to the standard result brings it close to the full result when all sources are
observed as expected from the arguments in Sec. VA. The blue dashed-dot line shows the change in the standard result when �

syn
N is

replaced with the Newtonian gauge �N (no source evolution), which is significantly larger than the difference between the standard and
full results.
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where  ¼ ð�Þ is the optical to scattering of CMB pho-
tons between �A and �, and � _e� is the visibility. This
expression neglects small linear contributions from large-
scale perturbations at recombination and quadrupole scat-
tering that can easily be included in a full numerical linear
calculation (as we do here). Cross correlation with Eq. (37)
gives a variety of terms, dominated by the cross correlation
of the source density and the CMB ISW, but, in general,
with additional non-negligible correlations of the veloc-
ities, densities, magnification, and potentials. The most
important contributions have been calculated separately
before, but doing a consistent linear analysis ensures that
no relevant effects are missed. Additional velocity and
magnification terms are relatively most important when
the dominant signal is small, i.e., for sources at high
redshift (when the Universe is close to matter dominated)
so that the direct ISW contribution from that redshift is
small.

Contributions to the cross correlation are shown in
Fig. 6. At high redshift, where the potentials are nearly
constant, the intrinsic correlation is small and the signal is
dominated by lensing unless 2� 5s is small in which case
magnification bias partly cancels the change in angular
density of sources from convergence. At high redshift the
electron density is also higher, giving a significant contri-
bution from the CMB Doppler source [37,42]. At lower
redshifts the correlation of the density and ISW dominates

as expected. In addition to the late-time Doppler and ISW
sources, there is also a correlation with the Sachs-Wolfe
signal from recombination due to very large Hubble-scale
modes; these correlate both with the density and velocity
count sources on very large scales at the & 10% level
(falling rapidly from l ¼ 2).
On all scales the redshift distortion and other velocity

contributions to the count part of the correlation are small,
contrary to the conclusion of Ref. [43]. Redshift distortions
would increase the apparent density of sources over the
peak of a matter overdensity, but lead to redshift-space
underdensities in the tails even though the potentials con-
tributing to the ISW are still large and the same sign
there. Since the redshift-space density averages to zero,
the overall correlation is close to zero. Mathematically,
for a given l and sharp window at 
 ¼ 
�, the oscillating
j00l ðk
�Þ redshift-distortion term in Eq. (36) is inte-

grated over lnk against a smooth source for the ISW

[/ R
d�ð _�þ _c Þjlðk
Þ], giving a result close to zero; see

Fig. 7. However, for numerical work the small few-percent
correction on very large scales can easily be included.
In addition to the correlation between the CMB

temperature and counts, there is also some large-scale
correlation with the E-mode polarization generated by
scattering at reionization. The quadrupole seen by an elec-
tron at reionization is generated by the Sachs-Wolfe
effect on the electron’s last scattering surface; since the
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FIG. 6 (color online). Cross-correlation of the CMB temperature and number counts at z ¼ 0:6, �z ¼ 0:05, b ¼ 1, s ¼ 0 (left) and
z ¼ 3, �z ¼ 0:2, b ¼ 2, s ¼ 0:42 (right) assuming no source evolution. Contributions are density-ISW (dashed black), magnification-
ISW (dot-dashed red; absolute value), density-Doppler (solid blue), radial velocity gradient-ISW (dashed magenta; redshift
distortions), time delay-ISW (thick cyan), total counts-CMB Sachs-Wolfe (thick magenta marked LSS; the CMB contribution is
from recombination), and total (thick solid black). The left figure shows the absolute value of the contributions on a logarithmic scale,
and additionally shows the contribution from terms involving nonintegrated gravitational potentials (dotted green) and velocity-ISW
(lower dot-dashed blue). The lensing contribution with s ¼ 0 is negative; the contribution at z ¼ 3 is low here (right) because 5s�
2 ¼ 0:1.
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Sachs-Wolfe effect is proportional to the gravitational
potential and the horizon size at reionization is large (and
hence the correlation length corresponds to l
 6), the
polarization generated by Thomson scattering is correlated

with the large-scale potentials at significantly lower red-
shift. For further discussion in the context of lensing see
Ref. [44]. For counts at z & 3 the correlation is, in princi-
ple, marginally detectable on the full sky at 
2�, but falls
rapidly on small scales and low redshift as shown in Fig. 8.
However, the correlation is significantly larger than cal-
culated in Ref. [45], where only the much smaller
low-redshift signal from rescattering of the ISW signal
was included. Combining counts at z & 3 with CMB lens-
ing to reconstruct the higher redshift potentials, the corre-
lation with polarization is in principle detectable at over
6�, and hence should be accounted for in any self-
consistent full joint analysis.

VII. CONCLUSIONS

We have shown exactly how observable angular source
densities as a function of redshift relate to the underlying
physical densities, velocities, and potentials. In linear the-
ory we recovered various well-known terms, as well as new
linear terms that are negligible for modes well inside the
Hubble radius. The gauge-invariant observable results in-
clude, in a consistent way, the different terms that can be
described in terms of gravitational lensing, source evolu-
tion, radial-displacement, and other velocity and general-
relativistic effects. Our numerical code is available, (see
Ref. [14]) allowing rapid calculation of the auto and cross
spectra for multiple radial window functions, with cosmic
shear, and with the CMB and the CMB lensing potential.
We have not addressed in detail the more difficult ques-

tion of how the number of sources relates to the underlying
cosmological perturbations and background cosmology.
Nor have we included nonlinear effects. Several of these
are in fact much more important than the small extra
velocity and post-Newtonian terms that we derive here.
Apart from nonlinear evolution effects on the distribution
of the source numbers (and velocities) themselves, there is
also lensing of the perturbations [31,46] and nonlinearities
in the redshift to real-space mapping [47,48], both of which
can have a significant effect on the power spectrum and
correlation functions on small scales.
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(thick solid black) and Doppler (dot-dashed black) contributions
to the CMB temperature, and density (thin dashed red) and
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counts source for a window function peaked at z ¼ 0:6 with
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integrals of the products over lnk against the primordial power
spectrum which is nearly flat. The Doppler and redshift-
distortion contributions mostly cancel. CMB transfer functions
are scaled by 5� 105.
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CE�
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CEE
l C��

l

q
between counts (�) and CMB E-mode polar-

ization for various redshifts, assuming Gaussian redshift bins of
width �z ¼ 0:5, unit bias, and reionization redshift zre ¼ 11.
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APPENDIX: RELATING NUMBER COUNTS
AND LINE RADIATION

Another important observable is the observed brightness
from diffuse line emission (or absorption), especially
21 cm radiation from the spin-flip transition in hydrogen
[49]. A full linear-theory treatment is complicated due to
line-of-sight effects and is discussed in detail in Ref. [21].
Here we make the connection with the differential number
counts discussed in the main text.

In their rest frame, and neglecting the finite line width,
the sources with number density ns emit line radiation
isotropically at frequency E0. In proper time d the number
of photons added per volume within frequency dE is

�̂ns�ðE� E0ÞdEd; (A1)

which defines �̂. We shall assume �̂ is independent of
spacetime position, and neglect scattering and absorption
after emission. For a more detailed discussion see
Ref. [21].

We consider collecting the line photons by an observer
with 4-velocity uaA, equipped with a detector sensitive to
photons in an energy range dE about E and with area dA
that admits photons in solid angle d�. The number of
photons collected in proper time dt for this observer is

dN ¼ fðEÞE2dEd�dAdt; (A2)

in terms of the photon distribution function f. Emitting
material around the affine parameter � on the line-of-sight
is at redshift z. It emits in its rest-frame at energy E0 and

this will contribute to dN for Eð1þ zÞ ¼ E0. The (invari-
ant) area of the wave front associated with rays in the

bundle d� is d ~A ¼ detDð�Þd� at �, and the collecting

area dA subtends a solid angle d ~� in the rest-frame of the
emitter at z. As the ray advances by d�, the wave front

sweeps out a volume d ~Auaskad� and it adds to the photons
that will be detected in dE and dt by an amount

�̂nsð1þ zÞdE�½Eð1þ zÞ � E0�kauasd�d ~Ad ~�

4�

dt

1þ z
:

(A3)

It follows that

dN ¼ �̂dtdE
Z

d�

�
kaJ

a�½Eð1þ zÞ � E0�d ~Ad ~�

4�

�
:

(A4)

The � function allows us to evaluate the integral simply. If
we then compare with Eq. (47) and use the reciprocity

relation, d ~Ad ~� ¼ dAd�=ð1þ zÞ2, we find

EfðE; n̂Þ ¼ �kaJ
a

��������
d�

dz

��������¼ �
nðn̂; zÞ
detD

; (A5)

where Eð1þ zÞ ¼ E0 and � ¼ �̂=ð4�E2
0Þ is another con-

stant. It is straightforward to show that if we use Eqs. (21)
and (23) in the right-hand side of this expression, we
recover the result in Ref. [21] when line-of-sight scattering
and self-absorption is neglected.
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