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In [A. Maleknejad and M.M. Sheikh-Jabbari, arXiv:1102.1513.] we introduced an inflationary scenario,

non-Abelian gauge field inflation or gauge-flation for short, in which slow-roll inflation is driven by non-

Abelian gauge field minimally coupled to gravity. We present a more detailed analysis, both numerical

and analytical, of the gauge-flation. By studying the phase diagrams of the theory, we show that getting

enough number of e-folds during a slow-roll inflation is fairly robust to the choice of initial gauge field

values. In addition, we present a detailed analysis of the cosmic perturbation theory in gauge-flation which

has many special and interesting features compared the standard scalar-driven inflationary models. The

specific gauge-flation model we study in this paper has two parameters, a cutoff scale � and the gauge

coupling g. Fitting our results with the current cosmological data fixes �� 10H � 1015 GeV (H is the

Hubble parameter) and g� 10�4, which are in the natural range of parameters in generic particle physics

beyond standard models. Our model also predicts a tensor-to-scalar ratio r > 0:05, in the range detectable

by the Planck satellite.

DOI: 10.1103/PhysRevD.84.043515 PACS numbers: 98.80.Cq

I. INTRODUCTION

The idea of inflationary cosmology was originally pro-
posed to provide a possible resolution to some of the
theoretical problems of the big bang model for the early
Universe cosmology [1]. However, with the advancement
of the cosmological observations and most notably the
cosmic microwave background (CMB) observations
[1,2], the inflationary paradigm has received observational
support and inflation is now considered an integral part of
the standard model of cosmology with the following gen-
eral picture. A patch of the early Universe which is a few
Planck lengths in size under the gravitational effects of the
matter present there undergoes a rapid (usually exponen-
tial) expansion, the inflationary period. The inflation ends
while most of the energy content of the Universe is still
concentrated in the field(s) driving inflation, the inflaton
field(s). This energy should now be transferred to the other
fields and particles, the (beyond) standard model particles,
through the (p)reheating process. The rest of the picture is
that of the standard hot big bang scenario, with radiation-
dominated, matter-dominated and finally the dark-energy-
dominated era that we live in.

In the absence of a direct observation for the primordial
gravity waves, one of the main standing issues in inflation
is what is the Hubble parameter during inflation H, or the
energy density of the inflaton field(s). With the current
observations, and within the slow-roll inflation scenario,

the preferred scale is H & 10�5Mpl, where Mpl �
ð8�GNÞ�1=2 ¼ 2:43� 1018 GeV is the reduced Planck
mass. On the other hand, according to the lore in beyond
standard particle physics models, the supersymmetric
grand unified theories (SUSY GUTs) [3], the unification
scale is around 1016 GeV, suggesting that inflationary
model building should be sought for within various corners
of such models. If so, the SUSY GUT setting will also
provide a natural arena for building the (p)reheating
models.
Almost all of inflationarymodels ormodel building ideas

that appear in the literature use one or more scalar fields
with a suitable potential to provide for the matter field
inducing the inflationary expansion of the early Universe.
The choice of scalar fields is made primarily because we
work within the homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) cosmology and that turning on
spinor or gauge fields generically violates these symme-
tries. Another reason is that, from the model building view-
point, turning on potential for the scalar fields is easier than
for other fields, whose interactions are generically fixed
by gauge symmetries or renormalizability conditions.
Building inflationary models within the SUSY GUTs then
amounts to exploring various corners of the theory/model in
search of flat enough potential which supports successful
slow-roll inflation, the flatness of which is respected by the
loop and quantum corrections. Such models usually come
under the D-term or F-term inflationary models [4].
Regardless of the details, non-Abelian gauge field theo-

ries are the widely accepted framework for building parti-
cle physics models, and, in particular, beyond standard
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models and GUTs. In view of the ubiquitous appearance of
non-Abelian gauge fields, one may explore the idea of
using gauge fields as inflaton fields, the fields which get
nonzero background value during inflation and drive the
inflationary dynamics. One of the main obstacles in this
regard is the vector nature of the gauge fields and that
turning them on in the background will spoil the rotation
symmetry.

A related scenario in which this problemwas pointed out
and addressed is ‘‘vector inflation [5].’’ The idea in vector
inflation, unlike ours, is to use vector fields and not gauge
fields, as inflaton. In [5], two possible ways were proposed
to overcome the broken rotational invariance caused by the
vector inflaton fields: (1) introduce a large number of
vectors each assuming a random direction in the 3D space,
such that on the average we recover a rotational invariant
background; or, (2) introduce three orthogonal vector fields
of the same value which act as the triad of the spatial part of
the spacetime, the ‘‘triad method’’ [6,7]. The other impor-
tant obstacle in the way of driving inflation by vector fields
is the exponential, 1=aðtÞ suppression of the massless
vector fields in an inflationary background, causing infla-
tion to end too fast. This problem has been overcome by
adding nonminimal coupling to the gravity, usually a con-
formal mass type term [5,8]. To have a successful inflation,
however, this is not enough and one should add quite
nontrivial potentials for the vector field [5,6,8]. Dealing
with vector fields, and not gauge fields, may bring insta-
bilities in the theory: the longitudinal mode of the vector
field which has a ghost type kinetic term and is not dy-
namical at tree level, in the absence of gauge invariance,
can and will, become dynamical once quantum (loop)
effects are taken into account. This latter will cause ghost
instability, if we were studying the theory on a flat back-
ground. It has been argued that such instabilities can persist
in the inflationary background too [9]; see, however, [10]
for a counter argument. In any case the instability issue of
vector inflationary models seems not to be settled yet.

In order not to face the above issue one should build a
‘‘gauge-invariant vector inflation.’’ One can easily observe
that it is not possible to get a successful inflation with some
number of Uð1Þ gauge fields. The other option is to con-
sider non-Abelian gauge theories. The ‘‘triad method’’
mentioned above is naturally realized within the non-
Abelian gauge symmetry setting, irrespective of the gauge
group in question. We then face the second obstacle, the
1=aðtÞ suppression. This may be achieved by changing the
gravity theory, considering Yang-Mills action coupled to
FðRÞmodified gravity [11], or considering Einstein gravity
coupled to a generic (not necessarily Yang-Mills) gauge
theory action. This latter is the idea we will explore in this
work. We should stress that, as will become clear, our
approach and that of [11] are basically different. Using
non-Abelian gauge fields has another advantage that, due
to the presence of ½A�; A�� term in the gauge field strength

F��, it naturally leads to a ‘‘potential’’ term for the gauge

fields which, upon a suitable choice of the gauge theory
action, can be used to overcome the 1=aðtÞ suppression
problem mentioned above.
In this work, we present a detailed discussion and analy-

sis of gauge-flation, inflation driven by non-Abelian gauge
fields, which we introduced in [12]. In Sec. II, we show
how the rotation symmetry breaking can be compensated
by the SUð2Þ (sub)group of the global part of non-Abelian
gauge symmetry and how one can introduce a combination
of the gauge field components which effectively behaves as
spacetime scalar field (on the FRW background); and that
there is a consistent truncation from the classical phase
space of the non-Abelian gauge theory to the sector which
only involves this scalar field.
Setting the stage, in Sec. III, we choose a specific action

for the gauge theory that is Yang-Mills plus a specific F4

term which can come from specific (one-) loop corrections
to the gauge theory. In this work, however, we adopt a
phenomenological viewpoint and choose this specific F4

term primarily for the purpose of inflationary model build-
ing. The important point of providing field theoretical
justifications for this F4 term will be briefly discussed in
the discussion section and dealt with in more detail in an
upcoming publication. Our model has hence two parame-
ters, the gauge coupling g and the ceofficient of this
specific F4 term �. These two parameters will be deter-
mined only by focusing on the considerations coming from
cosmological observations. In this section we present an
analytic study of the inflationary dynamics of our gauge-
flation model and show that the model allows for a suc-
cessful slow-roll inflationary period which leads to enough
number of e-folds. In Sec. IV, we present the diagrams and
graphs for the numerical analysis of the gauge-flation
model. Our numerical analysis reveals that the classical
slow-roll inflationary trajectory is fairly robust to the
choice of initial conditions.
Having studied the classical inflationary dynamics, in

Sec. V, we turn to the question of cosmic perturbation
theory in the gauge-flation. Because of the existence of
other components of the gauge fields which has been
turned off in the classical inflationary background, the
situation here is considerably different than the standard
cosmic perturbation theory developed in the literature. We
hence first develop the cosmic perturbation theory for our
model, discuss its subtleties and novelties; we discuss the
scalar, vector and tensor perturbations, their power spectra
and the spectral tilts. In Sec. VI, after completing the
analysis of the model, we confront our model with the
available cosmological and CMB data. We show that in-
deed it is possible to get a successful inflationary model
with the gauge-flation setup. In the last section we sum-
marize our results and make concluding remarks. In two
appendices we have gathered some technical details of the
cosmic perturbation theory.
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II. THE SETUP

In this section we first demonstrate how the rotation
symmetry is retained in the gauge-flation and then discuss
truncation to the scalar sector. Here we will consider an
SUð2Þ gauge theory with gauge fields Aa

� where a ¼ 1, 2, 3

label the gauge algebra indices and� ¼ 0; 1; 2; 3the space-
time indices, the temporal components will be denoted by
Aa
0 , and the spatial components by Aa

i . Although we focus

on the SUð2Þ gauge theory, our analysis holds for any non-
Abelian gauge group G, as any non-Abelian group always
has an SUð2Þ subgroup.

We will consider gauge- and Lorentz-invariant theories,
where the gravity part is the usual Einstein-Hilbert action
and the Lagrangian of the gauge theory part, which
is minimally coupled to gravity, is of the form L ¼
LðFa

��;g��Þ, where Fa
�� is the gauge field strength

Fa
�� ¼ @�A

a
� � @�A

a
� � g�abcA

b
�A

c
�: (2.1)

(For a generic gauge group, �abc should be replaced with
the structure constant of that group.) Under the action of
gauge transformation U ¼ expð��aT

aÞ, where Ta are
generators of the suð2Þ algebra,

½Ta; Tb� ¼ i�abcT
c (2.2)

Aa
� transforms as

A� ! UA�U
y � 1

g
U@�U

y: (2.3)

Therefore, out of 12 components of Aa
�, nine are physical

and three are gauge freedoms, which may be removed by a
suitable choice of gauge parameter �a. Since we are inter-
ested in isotropic and homogeneous FRW cosmology, the
temporal gauge

Aa
0 ¼ 0 (2.4)

appears to be a suitable gauge fixing. This fixes the gauge
symmetry (2.3), up to the global, time-independent SUð2Þ
gauge transformations. This global SUð2Þ is the key to
restoring the rotation symmetry in the presence of the
background gauge fields. We identify this SUð2Þ with the
three-dimensional rotations of the FRW background and,
since the physical observables of the gauge fields are
defined up to gauge transformations (or in other words,
only gauge-invariant combinations are physical observ-
ables) the rotation symmetry may be preserved. This latter
is done by turning on a specific gauge field configuration in
which this identification can be made.

In order to see the above in a more technical language,
consider the background FRW metric

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj; (2.5)

where i, j ¼ 1, 2, 3 denote the indices along the spacelike
three-dimensional hypersurface �, whose metric is chosen
to be a2�ij. By choosing the (comoving cosmic) time

direction, metric on � is then defined up to 3D foliation

preserving diffeomorphisms. If we denote the metric on
constant time hypersurfaces � by qij, we can introduce a

set of three vector fields, feai ðpÞg, the triads, spanning the
local Euclidian tangent space T�p to the � at the given

point p. The triads satisfy the following orthonormality
relations

qij ¼ eaie
b
j�ab; �ab ¼ eaie

b
jq

ij: (2.6)

The triads are then defined up to local 3D translations and
rotations, which act on the ‘‘local indices’’a, b. In particu-
lar the triads which are related to each other by local
rotations �a

b 2 SOð3Þ
eai ! ~eai ¼ �a

bðpÞebi; (2.7)

at each point p, lead to the same metric qij. The elements

of this local SOð3Þ may be expressed in terms of suð2Þ
generators Ta as � ¼ expð��aT

aÞ. There are (infinitely)
many possibilities for eai for the FRWmetric (2.5), and one
obvious choice is

eai ¼ aðtÞ�a
i ; (2.8)

which identifies the space coordinate indices i; j; k; � � � ,
with the local frame indices a; b; c; � � � .
We may now readily identify the remaining global

SUð2Þ gauge symmetry with the global part of the 3D
rotation symmetry (2.7). This can be done through the
following ansatz

Aa
i ¼ c ðtÞeai ¼ aðtÞc ðtÞ�a

i ; (2.9)

where under both of 3D diffeomorphisms and gauge trans-
formations, c ðtÞ acts as a genuine scaler field. Technically,
the ansatz (2.9) identifies the combination of the gauge
fields for which the rotation symmetry violation caused by
turning on vector (gauge) fields in the background is com-
pensated for (or undone by) the gauge transformations,
leaving us with rotationally invariant background.
As a result of this identification, the energy-momentum

tensor produced by the gauge field configuration (2.9) takes
the form of a standard homogeneous, isotropic perfect fluid

T�
� ¼ diagð��; P; P; PÞ: (2.10)

To see this, consider a general gauge- and Lorentz-
invariant gauge field Lagrangian density L ¼
LðFa

��;g��Þ. The corresponding energy-momentum ten-

sor is given by

T�� � �2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LÞ

�g�� ¼ 2
�L

�Fa
	
�F

a
	� þg��L: (2.11)

To compute T��, we need to first calculate the field

strength Fa
�� for Aa

� in the temporal gauge Aa
0 ¼ 0, and

for the field configuration of (2.9)

Fa
0i ¼ _
�a

i ; Fa
ij ¼ �g
2�aij; (2.12)
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where dot denotes derivative with respect to the comoving
time t and for the ease of notation we have introduced


 � aðtÞc ðtÞ: (2.13)

(Note that 
, unlike c , is not a scalar.) It is now straight-
forward to calculate energy density � and pressure P, in
terms of 
 and its time derivatives. Plugging (2.12) into
(2.11) yields

� ¼ @Lred:

@ _

_
�Lred:; (2.14)

P ¼ @ða3LredÞ
@a3

; (2.15)

where Lred is the reduced Lagrangian density, which is
obtained from calculating LðFa

��;g��Þ for field strengths

Fa
�� given in (2.12) and FRW metric (2.5).

One can check that Lred is the true reduced Lagrangian
for the reduced phase space of the field configurations in
the ansatz (2.9) (and in the temporal gauge). In order to do
this, one can show that the gauge field equations of motion

D�

@L
@Fa

��

¼ 0; (2.16)

where D� is the gauge covariant derivative, (i) allow for a

solution of the form (2.9) and, (ii) once evaluated on the
ansatz (2.9) become equivalent to the equation of motion

obtained from the reduced Lagrangian Lredð _
;
; aðtÞÞ
d

a3dt

�
a3

@Lred

@ _


�
� @Lred

@

¼ 0: (2.17)

In technical terms, there exists a consistent truncation of
the gauge field theory to the sector specified by the scalar
field c (or 
). In the next section we will study the
cosmology of this reduced Lagrangian, with a specific
choice for the gauge field theory action.

III. A SPECIFIC GAUGE-FLATION MODEL,
ANALYTIC TREATMENT

In the previous section we showed how homogeneity
and isotropy can be preserved in a specific sector of any
non-Abelian gauge field theory. In this section we couple
the gauge theory to gravity and search for gauge field
theories which can lead to a successful inflationary back-
ground. The first obvious choice is Yang-Mills action
minimally coupled to Einstein gravity. This will not lead
to an inflating system because, as a result of scaling invari-
ance of Yang-Mills action, one immediately obtains
P ¼ �=3 and � � 0, and in order to have inflation we
should have �þ 3P< 0. So, we need to consider modifi-
cations to Yang-Mills.

As will become clear momentarily, one such appropriate
choice involving F4 terms is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�R

2
� 1

4
Fa

��Fa
��

þ �

384
ð����	Fa

��F
a
�	Þ2

�
; (3.1)

where we have set 8�G � M�2
pl ¼ 1 and ����	 is the

totally antisymmetric tensor. We stress that this specific
F4 term is chosen only for inflationary model building
purposes and, since the contribution of this term to the
energy-momentum tensor has the equation of state
P ¼ ��, it is perfect for driving inflationary dynamics.
The justification of this term within a more rigorous quan-
tum gauge field theory setting will be briefly discussed in
Sec. VII. (To respect the weak energy condition for the F4

term, we choose � to be positive.)
The reduced (effective) Lagrangian is obtained from

evaluating (3.1) for the ansatz (2.9)

L red ¼ 3

2

� _
2

a2
� g2
4

a4
þ �

g2
4 _
2

a6

�
: (3.2)

The energy density � and pressure P are

� ¼ 3

2

� _
2

a2
þ g2
4

a4
þ �

g2
4 _
2

a6

�
; (3.3)

P ¼ 1

2

� _
2

a2
þ g2
4

a4
� 3�

g2
4 _
2

a6

�
: (3.4)

As we see, � and P have Yang-Mills parts and the F4 parts,
the � terms. If we denote the Yang-Mills contribution to �
by �YM and the F4 contribution by ��, i.e.,

�YM ¼ 3

2

� _
2

a2
þ g2
4

a4

�
; �� ¼ 3

2

�g2
4 _
2

a6
; (3.5)

then

� ¼ �YM þ ��; P ¼ 1

3
�YM � ��: (3.6)

Field equations, the Friedmann equations and 
 equation
of motion, are then obtained as

H2 ¼ 1

2

� _
2

a2
þ g2
4

a4
þ �

g2
4 _
2

a6

�
; (3.7)

_H ¼ �
� _
2

a2
þ g2
4

a4

�
; (3.8)

�
1þ �

g2
4

a4

� €


a
þ

�
1þ �

_
2

a2

�
2g2
3

a3

þ
�
1� 3�

g2
4

a4

�
H _


a
¼ 0: (3.9)
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We start our analysis by exploring the possibility of
slow-roll dynamics. To this end it is useful to introduce
slow-roll parameters1

� � � _H

H2
; � � � €H

2 _HH
; (3.10)

where � is the standard slow-roll parameter and � is related
to the time derivative of � as

� ¼ �� _�

2H�
: (3.11)

Therefore, to have a sensible slow-roll dynamics one
should demand �, � � 1. Using the Friedmann
Eqs. (3.7) and (3.8) and definitions (3.5) we have

� ¼ 2�YM

�YM þ ��

: (3.12)

That is, to have slow-roll the �-term contribution �� should
dominate over the Yang-Mills contributions �YM, or
�� 	 �YM. As we will see, the time evolution will then
increase �YM with respect to ��, and when �YM � ��,
the slow-roll inflation ends. Noting that �þ 3P ¼
2ð�YM � ��Þ, inflation (accelerated expansion phase)
will end when �YM > ��.

For having slow-roll inflation, however, it is not enough
to make sure � � 1. For the latter, time-variations of � and
all the other physical dynamical variables of the problem,
like � and the c field, must also remain small over a
reasonably large period in time (to result in enough number
of e-folds). To measure this latter we define

� � �
_c

Hc
; (3.13)

in terms of which the Eqs. (3.7), (3.8), and (3.9) take the
form

� ¼ 2� �g2c 6ð1� �Þ2; (3.14)

� ¼ �� ð2� �Þ
� _�

Hð1� �Þ�þ
3�

�

�
: (3.15)

Comparing (3.11) and (3.15) we learn that to have a suc-
cessful slow roll, _��H�2 and �� �, we should demand
that �� �2. Explicitly, the equations of motion (3.7), (3.8),
and (3.9) admit the solution2

� ’ c 2ð�þ 1Þ; (3.16)

� ’ c 2 )
�
3þ

_�

H�

�
� ’ �

2ð�þ 1Þ �
2; (3.17)

� ’ ð2� �Þð�þ 1Þ3
g2�3

; (3.18)

where ’ means equality to first order in slow-roll parame-
ter � and3

�¼ g2c 2

H2
; or equivalently H2 ’ g2c 4

�� c 2
¼ g2�

�ð�þ 1Þ :

(3.19)

In the above, � is a positive parameter which is slowly
varying during slow-roll inflation.
Recalling (3.13) and that �� �2, (3.19) implies that

�H2 remains almost a constant during the slow-roll infla-
tion and hence [12]

�

�i
’ �þ 1

�i þ 1
;

�

�i

’ H2
i

H2
; (3.20)

where �i, �i and Hi are the values of these parameters at
the beginning of inflation. As discussed, the (slow-roll)
inflation ends when � ¼ 1, where

�f ’ �i þ 1

�i
;

H2
f

H2
i

’ �i

�i þ 1
�i: (3.21)

Using the above and (3.10) one can compute the number of
e-folds Ne

Ne ¼
Z tf

ti

Hdt ¼ �
Z Hf

Hi

dH

�H
’ �i þ 1

2�i
ln
�i þ 1

�i

: (3.22)

IV. NUMERICAL ANALYSIS

As pointed out, our gauge-flation model has two pa-
rameters, the gauge coupling g and the coefficient of the
F4 term �. The degrees of freedom in the scalar sector of
the model consists of the scalar field c and the scale factor
aðtÞ and hence our solutions are specified by four initial
values for these parameters and their time derivatives.
These were parameterized by Hi, �i and c i and �i (or
_c i). The Friedmann equations, however, provide some
relations between these parameters; assuming slow-roll
dynamics these relations are (3.16), (3.17), and (3.18). As
a result each inflationary trajectory may be specified by the
values of four parameters, ðg; �; c i; _c iÞ. In what follows
we present the results of the numerical analysis of the
equations of motion (3.7), (3.8), and (3.9), for three sets
of values for ðc i; _c i; g; �Þ.

1We note that our definition of slow-roll parameters �, � for
the standard single scalar inflationary theory L ¼ 1

2 _’2 � Vð’Þ
reduces to [1] � ¼ M2

pl

2 ðV0
V Þ2, � ¼ M2

pl
V 00
V .

2Our numerical analysis reveals that even if we start with
_�=ðH�Þ �Oð1Þ, while c 2

i � � � 1, after a short time it be-
comes very small and hence for almost all the inflationary period
we may confidently use � ’ �

6ð�þ1Þ �
2. See Sec. IV for a more

detailed discussion.

3Note that all the dimensionful parameters, i.e.H, c and �, are
measured in units of Mpl; H, c have dimension of energy while
� has dimension of one-over-energy density.
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A. Discussion on diagrams in Fig. 1

The top left figure shows evolution of the effective
inflaton field c as a function of Hit. As we see, there is
a period of slow roll, where c remains almost constant and
� is almost constant and very small. Toward the end of the
slow roll � grows and becomes one (the top right figure),
(slow-roll) inflation ends and c suddenly falls off and
starts oscillating. As we see from the top right figure, the
slow-roll parameter � has an upper limit which is equal to
2. This is understandable, recalling (3.12) and that �� is
positive definite. At the end of slow-roll inflation, �� is
negligible and the system is essentially governed by the
Yang-Mills part �YM. In addition, the top left figure shows
that amplitude of the c field in the oscillatory part is

dropping like t�1=2. (The minima of � is also fit by a t1=2

curve.) This behavior is of course expected, noting (3.5)
and that in the oscillatory regime the dominant term is the
�YM, that is, the system effectively behaves as a g2c 4

chaotic inflation theory. And it is well-known that after
the slow-roll phase c ðtÞ in the g2c 4 theory oscillates as a

Jacobi-cosine function whose amplitude drops like t�1=2

[13]. In other words, the averaged value of � and aðtÞ
behave like a radiation-dominated Universe (recall that
for a radiation-dominated cosmology � ¼ � _H=H2 ¼ 2).

The bottom left figure shows the phase diagram of the
effective inflaton trajectory. Note that this diagram depicts
_
=aðtÞ vs 
=aðtÞ (rather than _c vs c ). The rightmost
vertical line is where we have slow roll, because 
 ¼
aðtÞc and during slow roll c is almost a constant. The
curled up part is when inflation has ended, and when the
system oscillates around a radiation-ominated phase. This
latter may be seen in the figure noting that the amplitudes

of oscillations of both _
=aðtÞ and 
=aðtÞ drop by t�1=2.
The bottom right figure shows number of e-folds as a
function of comoving time. As expected, the number of
e-folds reaches its asymptotic value when � ’ 1.

One can readily check that the behavior of c , �, and the
number of e-folds during slow-roll inflationary period has a
perfect matching with our analytic results of previous
section. We note that, as will be discussed in Sec. VI, the
set of parameters Hi, �i, c i, g corresponds to an infla-
tionary model close to the range of values compatible with
the current cosmological and CMB data.

B. Discussions on diagrams in Figs. 2 and 3

Figure 2 corresponds to a slow-roll trajectory which
starts with a lower value of �, but almost the same value
for H, compared to the case of Fig. 1. For this case we
hence get a larger number of e-folds. The qualitative shape
of all four figures is essentially the same as those of Fig. 1,
and both are compatible with our analytic slow-roll results
of previous section. Our numeric analysis indicates that the
behavior of the phase diagram for c field and � do not
change dramatically when the orders of magnitude of the
initial parameters are within the range given in Figs. 1 or 2.

Figure 3 shows a trajectory with a relatively large _c . As
we see, after a single fast falloff the field falls into usual
slow-roll tracks, similar to what we see in Figs. 1 and 2.
The oscillatory behavior after the inflationary phase, too, is
the same as those of slow-roll inflation. The graph in the
square in the bottom left figure shows, with a higher
resolution, the upper part of the phase diagram which
comes with under brace. This part corresponds to the
dynamics of c field after inflation ends, and as expected
has the same qualitative form as the phase diagrams in the
slow-roll trajectories of Figs. 1 and 2. Our numeric analysis
shows that getting a large enough number of e-folds and
the generic after-inflation behavior of the fields is robust
and does not crucially depend on the initial value of the
fields, c i or _c i, but it is sensitive to the initial value of �.
More precisely, as long as � remains small of order 0.01,
regardless of the value of � we can get arbitrarily large
number of e-foldings. The examples of small and large �
values have been, respectively, given in Figs. 2 and 3.
It is also useful to work out the displacement of the c

field during inflation. To this end, let us start from _c ¼
��Hc and use the value for � given in (3.17). Our
numerical analysis reveals that the dynamics of the system

is such that even if we start with
_�

H� of order 1–10, but

c 2
i � �i, after a short time Hit� 1, _�=ðH�Þ becomes very

small and hence in almost all the inflationary period, ex-
cept for the first one or two e-folds, � ’ �

6ð�þ1Þ �
2. Since

variations of � in this period happens very fast, and after
that it remains almost zero, during this period c does not
change much. Numerical analysis also shows that these
arguments are generically true even if we start with a large
value of �, as in Fig. 3, provided that the other parameters
are such that we get large number of e-folds (about
Ne � 60 or larger). This latter can be easily arranged for.
This is again confirming the robustness of the classical
inflationary trajectories with respect to the choice of the
initial conditions. Therefore, we may confidently compute
roaming of c field using the equation

_c

c 5
’ g2

6

_H

H3
:

Integrating the above equation one can compute the dis-
placement of the scalar field c during inflation. If we
denote the value of c in the beginning and end of inflation,
respectively, by c i and c f we obtain

c 2
f ’

ffiffiffi
3

p
2

c 2
i : (4.1)

Alternatively one could have used (3.18) �g2c 6ð1��Þ2¼
2�� to compute the change in c . If we are in slow-roll
regime where we can drop �-term, then the ratio of c f

(which is computed for �f ¼ 1) to c i is obtained as

c 6
f ¼ 1

2 c
6
i . And up to percent level,

ffiffiffi
3

p
=2 and 2�1=3 are

equal, a confirmation of the validity of the slow-roll
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approximations we have used. Interestingly, at this level of
approximation, the roaming of the c field is independent
of the initial value of the � (or the initial value of Hubble)
parameter and c i and c f have the same orders of

magnitude.

V. COSMIC PERTURBATION THEORY
IN GAUGE-FLATION

So far we have shown that our gauge-flation model can
produce a fairly standard slow-roll inflating Universe with
enough number of e-folds. The main test of any infla-
tionary model, however, appears in the imprints inflation

has left on the CMB data, i.e., the power spectrum of
curvature perturbations and primordial gravity waves,
and the spectral tilt of these spectra. To this end, we should
go beyond the homogeneous (x-independent) background
fields and consider fluctuations around the background.
This is what we will carry out in this section.

A. Gauge-invariant metric and gauge
field perturbations

Although not turned on in the background, all of the
components of metric and the gauge field in all gauge and
spacetime directions will have quantum fluctuations and

50 100 150 200 250 300
H_i t
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20

30

40

50

60

N

FIG. 1 (color online). The classical trajectory for c i ¼ 0:035, _c i ¼ �10�10; g ¼ 2:5� 10�3, � ¼ 1:733� 1014. These values
correspond to a slow-roll trajectory with Hi ¼ 3:4� 10�5, �i ¼ 6:62, �i ¼ 9:3� 10�3, �i ¼ 8:4� 10�5. These are the values very
close to the range for which the gauge-flation is compatible with the current cosmological and CMB data (cf. discussions of Sec. VI).
Note that �, Hi and c i are given in the units of Mpl.
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should be considered. The metric perturbations may be
parameterized in the standard form [1,2]

ds2 ¼ �ð1þ 2AÞdt2 þ 2að@iB� SiÞdxidt
þ a2ðð1� 2CÞ�ij þ 2@ijEþ 2@ðiWjÞ þ hijÞdxidxj;

(5.1)

where @i denotes partial derivative respect to x
i and A, B, C

and E are scalar perturbations, Si, Wi parameterize vector
perturbations (these are divergence-free three-vectors) and
hij, which is symmetric, traceless and divergence-free, is

the tensor mode. The 12 components of the gauge field
fluctuations may be parameterized as

�Aa
0 ¼ �k

a@k _Y þ �j
auj; (5.2)

�Aa
i ¼ �a

i Qþ �ak@ikMþ g
�ai
k@kPþ �j

a@ivj

þ �ai
jwj þ �ajtij; (5.3)

where, as discussed in Sec. II, we have identified the
gauge indices with the local Lorentz indices and the ex-
pansion is done around the background in Aa

0 ¼ 0 temporal

gauge. In the above, as has been made explicit, there are
four scalar perturbations,Q, Y,M and P, three divergence-
free three-vectors ui, vi and wi, and a symmetric traceless
divergence-free tensor tij, adding up to 4þ 3� 2þ 2 ¼
12. Q is the perturbation of the background field 
, which

FIG. 2 (color online). The classical trajectory for c i ¼ 0:025, _c i ¼ �10�10; g ¼ 2:507� 10�3, � ¼ 1:3� 1015. These values
correspond to a slow-roll trajectory with Hi ¼ 3:63� 10�5, �i ¼ 2:98, �i ¼ 2:5� 10�3, �i ¼ 1:1� 10�4. These figures show that it
is possible to get arbitrarily large numbers of e-folds within the slow-roll phase of our gauge-flation model.
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is the only scalar in the perturbed gauge field without

spacial derivative. We are hence dealing with a situation

similar to the multifield inflationary theories, where we

have adiabatic and isocurvature perturbations. If the anal-

ogy held, Q would have then be like the adiabatic mode.

However, as we will see this is not true and the curvature

perturbations are dominated by other scalars and notQ. As

another peculiar and specific feature of the gauge-flation

cosmic perturbation theory, not shared by any other scalar-
driven inflationary model, we note that the gauge field
fluctuations contain a tensor mode tij. As we will show,

the power spectrum of this mode is nonzero, but its effect is
such that the power spectrum of the tensor modes ends up
to be exactly those of usual scalar-driven inflationary mod-
els, with only the hij of the metric contributing to the tensor

power spectrum.
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H_i t
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FIG. 3 (color online). The classical trajectory for c i ¼ 8:0� 10�2, _c i ¼ �10�4; g ¼ 4:004� 10�4, � ¼ 4:73� 1013. These
values correspond to a non-slow-roll trajectory with �� 2, Hi ¼ 6:25� 10�4, �i ¼ 6:4� 10�3. We start far from the slow-roll
regime for which �� �2 � 1. This latter is also seen from the phase diagram (bottom left figure). Despite starting far from slow-roll
regime, as we see from the top left figure, after an abrupt oscillation the field c loses its momentum and falls into the standard slow-
roll trajectory. As shown in the bottom right figure, for this case we get a large number of e-folds. Getting a large enough number of
e-folds seems to be a fairly robust result not depending much on the initial value of �.
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Because of the presence of gauge symmetries not all
10þ 12 metric plus gauge field perturbations are physical.
Altogether there are four diffeomorphisms and three local
gauge symmetries, hence we have 15 physical degrees of
freedom. The four diffeomorphisms remove two scalars
and a divergence-free vector [1], and the three gauge
transformations one scalar and one divergence-free vector.
Therefore, we have five physical scalar perturbations,
three physical divergence-free vector, and two physical
tensor perturbations. (These amount to 5� 1þ 3� 2þ
2� 2 ¼ 15 physical degrees of freedom.) The gauge de-
grees of freedom may be removed by gauge-fixing (work-
ing in a specific gauge) or working with gauge-invariant
combinations of the perturbations. In what follows we
work out the gauge- and diffeomorphism-invariant combi-
nations of these modes.

1. Scalar modes

Let us first focus on the scalar perturbations A, B, C, E,
Q, _Y, M and P. Under infinitesimal scalar coordinate
transformations

t ! ~t ¼ tþ �t; xi ! ~xi ¼ xi þ �ij@j�x; (5.4)

where �t determines the time slicing and �x the spatial
threading, the scalar fluctuations of the gauge field and
metric transform as

Q ! Q� _
�t; _Y ! _Y �
 _�x;

M ! M�
�x; P ! P;

A ! A� _�t; C ! CþH�t;

B ! Bþ �t

a
� a _�x; E ! E� �x:

(5.5)

On the other hand, under an infinitesimal gauge trans-
formation �a, fluctuations of the gauge field transform as

�Aa
� ! �Aa

� � 1

g
@��

a � �abc�
bAc

�: (5.6)

The gauge parameters �a can be decomposed into a scalar
and a divergence-free vector:

�a ¼ �ai@i�þ �a
i �V

i: (5.7)

The scalar part of the gauge field perturbations under the
action of the scalar gauge transformation � transform as

Q ! Q; Y ! Y � 1

g
�;

M ! M� 1

g
�; P ! Pþ 1

g
�:

(5.8)

We note that Q is gauge-invariant and this is a result of
identifying the gauge indices with the local Lorentz indices
and that Q is a scalar.

Equipped with the above, one may construct five inde-
pendent gauge-invariant combinations. One such choice is4

� ¼ Cþ a2H

�
_E� B

a

�
; (5.9)

� ¼ A� d

dt

�
a2
�
_E� B

a

��
; (5.10)

Q ¼ Q� a2 _


�
_E� B

a

�
; (5.11)

M ¼ Mþ P�
E; (5.12)

_Y ¼ _Y þ _P�
 _E: (5.13)

The first two, � and � are the standard Bardeen poten-

tials, while Q, M and _Y are the three gauge- and
diffeomorphism-invariant combinations coming from the
gauge field fluctuations.
Finally, for the later use we also present the first-order

perturbations of the gauge field strength sourced by the
scalar perturbations

�Fa
0i ¼ �a

i
_Qþ �aj@ijð _M� _YÞ � g�aji@jðð
 _PÞ þ
 _YÞ;

(5.14)

�Fa
ij ¼ 2�a

½j@i�ðQþ g2
2PÞ þ 2g
�ak½i@j�kðPþMÞ
� 2g�aijQ
: (5.15)

Note that �Fa
�� are not gauge-invariant, as under gauge

transformations Fa
�� ! Fa

�� � g�abc�
bFc

��.

2. Vector modes

Next, we consider the vector modes Si,Wi, ui, vi andwi.
Under infinitesimal ‘‘vector’’ coordinate transformations

xi ! ~xi ¼ xi þ �xiV; (5.16)

where @i�x
V
i ¼ 0,

Si !Siþa� _xiV; Wi !Wi��xiV;

ui !ui�
 _�xiV; vi !vi�
�xiV; wi !wi:
(5.17)

On the other hand, under the vector part of infinitesimal
gauge transformation (5.6),

4These choices are not unique and one can construct other
gauge-invariant combinations too.
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ui ! ui � 1

g
_�i
V;

vi ! vi � 1

g
�i
V;

wi ! wi þ
�i
V;

(5.18)

and obviously Si, Wi remain invariant.
The three gauge- and diffeomorphism-invariant

divergence-free vector perturbations may be identified as

Z i ¼ a _Wi þ Si; (5.19)

U i ¼ ui � _vi þ _
Wi; (5.20)

V i ¼ wi þ g
ðvi �
WiÞ: (5.21)

The contribution of vector perturbations to the first-
order gauge field strength perturbations are

�Fa
0i ¼ �j

a@ið _vj � ujÞ þ �ai
jð _wj þ g
ujÞ;

�Fa
ij ¼ 2�a½j

k@i�ðwk þ g
vkÞ þ 2g
�a
½iwj�:

(5.22)

3. Tensor modes

One can show that the tensor perturbations hij and tij,

being symmetric, traceless, and divergence-free, are both
gauge- and diffeomorphism-invariant. The contribution of
tij to the first order perturbed Fa

�� corresponding to tij is

�Fa
0i¼�aj _tij; �Fa

0i¼�ak@½itj�k�g
�ak½jti�k: (5.23)

B. Field equations

Having worked out the gauge-invariant combinations of
the field perturbations, we are now ready to study their
dynamics. These first-order perturbations are governed by
perturbed Einstein and gauge field equations

�G�� ¼ �T��; �

�
D�

@L
@Fa

��

�
¼ 0; (5.24)

where by � in the above we mean first order in field
perturbations. Since we are dealing with an isotropic per-
fect fluid in the background, as it is customary in standard
cosmology text books [1], it is useful to decompose
energy-momentum perturbations as

�Tij ¼ P0�gij þ a2ð�ij�Pþ @ij�
s

þ @i�
V
j þ @j�

V
i þ �T

ijÞ; (5.25a)

�Ti0 ¼ P0�gi0 � ðP0 þ �0Þð@i�uþ �uVi Þ; (5.25b)

�T00 ¼ ��0�g00 þ ��; (5.25c)

where subscript 0 denotes a background quantity and �s,
�V

i , �
T
ij represent the anisotropic inertia and characterize

departures from the perfect fluid form of the energy-
momentum tensor;�V

i and�T
ij and the vorticity �u

V
i satisfy

@i�u
V
i ¼ @i�

V
i ¼ 0; �T

ii ¼ 0; @i�
T
ij ¼ 0: (5.26)

Since being a perfect fluid or having irrotational flows are
physical properties, their corresponding conditions are
gauge-invariant.

1. Scalar modes

As is usually done in cosmic perturbation theory, it is
useful to write down the equations of motion in a gauge-
invariant form. In order this we note that �T�� has four

gauge-invariant scalar parts ��g, �Pg, �qg,

��g ¼ ��� _�0a
2

�
_E� B

a

�
; (5.27)

�Pg ¼ �P� _P0a
2

�
_E� B

a

�
; (5.28)

�qg ¼ �qþ ð�0 þ P0Þa2
�
_E� B

a

�
; (5.29)

and �s [1], where �q ¼ ð�0 þ P0Þ�u. Out of the 10 per-
turbed Einstein equations, there are four scalars, two
(divergence-free) vectors, and one massless tensor mode
(gravitons). Among the four scalar perturbed Einstein
equations, one is dynamical and three are constraints.
Therefore, they do not suffice to deal with five gauge-
invariant scalar degrees of freedom and one equation is
missing. This last equation is, of course, provided by the
perturbed gauge field equations of motion. To this end, we
use two observations:
(i) Using (5.14) and after a lengthy algebra (which was

performed by MAPLE codes) one can show that the
anisotropic inertia�s is given by the following linear
combination of the gauge-invariant quantities 5

a2�s ¼ 2
_


a
ða _Y � a _MÞ þ 2

g2
3

a3
aM: (5.30)

We can write _Y in terms of a2�s and the rest of
variables.

(ii) Computing the second-order action for the gauge
field perturbations, we observe that the momentum
conjugate to the new variable a2�s, is identically
zero and hence a2�s is a nondynamical variable; it
is a constant of motion. To see the latter, note that

there is no €Y in the �Fa
�� (cf. (5.14)). In our

analysis we can hence consistently choose the initial
conditions so that �s vanishes.

The above will then provide the last missing equation, and
the perturbed Einstein equations are enough to solve for the
scalar perturbations. The other perturbed gauge field

5Note that in the first-order perturbation theory the tensor and
vector modes do not contribute to the scalar parts of the energy-
momentum perturbations.
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equations of motion do not lead to independent equations.
Studying a generic constant a2�s is an interesting question
we postpone to future works.

With the above argument we have [1,2]

a2�s ¼ 0 ) � ¼ �: (5.31)

We hence remain with three equations for the three varia-
bles. Using (5.14), and after lengthy calculations (con-
firmed by MAPLE codes too), we obtain

��g ¼ 3

�
1þ �g2
4

a4

� _
 _Q
a2

� k2

a2

��
1þ �g2
4

a4

�

þ 2

�
1þ � _
2

a2

��
g2
3

a3
aM

þ 6

�
1þ � _
2

a2

�
g2
4

a4

�
�þQ




�
; (5.32)

�Pg ¼
�
1� 3

�g2
4

a4

� _
 _Q
a2

� k2

3a2

��
1� 3

�g2
4

a4

�

þ 2

�
1� 3

� _
2

a2

��
g2
3

a3
aM

þ 2

�
1� 3

� _
2

a2

�
g2
4

a4

�
�þQ




�
; (5.33)

�qg ¼ 2

�
�

_
Q
a2

� g2
3

a3
a _Mþ g4
6

a5 _

aM

�
: (5.34)

Note that in the above expressions �s ¼ 0 condition and
(5.31) have been employed.

We are now ready to write down the three perturbed
Einstein equations, two of which are constraints and one is
dynamical:

�qg þ 2ð _�þH�Þ ¼ 0; (5.35)

��g � 3H�qg þ 2
k2

a2
� ¼ 0; (5.36)

�Pg þ _�qg þ 3H�qg þ ð�0 þ P0Þ� ¼ 0: (5.37)

In the above we have already used � ¼ � relation. These
relations provide enough number of equations for the
gauge-invariant scalar perturbations to which we return
in the next subsection.

2. Vector modes

To study the vector perturbations, we first work out
vector parts of the perturbed energy-momentum tensor,
�qVi and �V

i , using (5.22):6

�qVi ¼ �2
g
2

a2

�
_wi þ g


a

�
aui þ


a
aSi

��
þ 2

g
 _


a2
wi

þ g
2

a2
ðr � ð _~v� ~uÞÞi �

_


a2
ðr � ð ~wþ g
 ~vÞÞi;

(5.38)

�V
i ¼ g
2

a2

�
wi

a
þg


a
vi �g
2

a2
Wi

�
þ

_


a

�
ui � _vi þ

_


a
Wi

�
;

(5.39)

which as expected, are gauge-invariant and hence can be
written in terms of physical gauge- and diffeomorphism-
invariant variables as

�qVi ¼ � 2g


a

�



a
_V i �

_


a
V i þ g
2

a2
aUi þ g
3

a3
aZi

�

�
�
r�

� _


a

~V
a

þ g
2

a2
~U
��

i
;

(5.40)

�V
i ¼ g
2

a2
V i

a
þ

_


a
Ui: (5.41)

The perturbed Einstein equations have two vector equa-
tions, one constraint and one dynamical equaiton. These
equations are

@i

�
2a2�V

j � 1

a
ða2 _ZjÞ

�
¼ 0; (5.42)

2�qVi þ k2

a2
aZi ¼ 0: (5.43)

To solve for the three gauge-invariant vector perturba-
tions, the two Einstein equations are not enough and we
should use information from the perturbed gauge field
equations. As for the latter, we note that one can use
(5.39) to write ui in terms of a2�V

i and the other variables.
On the other hand, since there is no _ui in (5.22), once we
write down the second-order action for the gauge field
perturbations the momentum conjugate to �V

i is vanishing
and hence this variable is nondynamical; it is a constant of
motion. We may then choose the initial conditions such
that

a2�V
i ¼ 0: (5.44)

This completes the set of equations we need for solving
vector perturbations. Equation (5.42) then implies that

Z i ¼ c

a2
: (5.45)

The above is the usual result of the scalar-driven infla-
tionary models that the vector modes are diluted away by
the (exponential) accelerated expansion of the Universe

6Note that at first order in perturbation theory only the vector
perturbations contribute to the vector part of energy-momentum
tensor perturbations.
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during inflation. In our model, despite having vector gauge
fields as inflaton, we confirm the same result.7

3. Tensor modes

As discussed, there are two gauge- and diffeomorphism-
invariant tensor modes hij and tij, while perturbed Einstein

equations only lead to one equation for hij. This equation,

which is sourced by the contribution of tij to the energy-

momentum tensor, reads as

€h ij þ 3H _hij þ k2

a2
hij ¼ 2�T

ij: (5.46)

The other equation of motion is provided with the per-
turbed gauge field equations of motion. After a tedious but
straightforward calculation, which is also confirmed by the
MAPLE codes, we obtain the following second-order action

for the tensor modes

�Sð2ÞT ’ 1

2

Z
d3xdta3

�
1

2

� _
2

a2
� g2
4

a4

�
h2ij

þ
�
�2

_


a

_tij
a
þ 2

g2
3

a3
tij
a

�
hij

þ 1

a2

�
_t2ij �

k2

a2
t2ij � �

�g2
2

a2

_
2

a2
t2ij

�

þ 1

4

�
_h2ij �

k2

a2
h2ij

��
: (5.47)

Note that in the above we have already used the slow-roll

approximation ð _
 ’ H
Þ. From the above second-order
action one can readily compute �T

ij

�T
ij ¼

�� _
2

a2
� g2
4

a4

�
hij þ 2

�
�

_


a

_tij
a
þ g2
3

a3
tij
a

��
:

(5.48)

Being traceless and divergence-free tij and hij each has

2 degrees of freedom which are usually decomposed into
plus and cross (þ and �) polarization states with the

polarization tensors eþ;�
ij . Since we have no parity-

violating interaction terms in the action the equations for
both of these polarization have the same time evolution and
one may then introduce h and T variables instead

hþ;�
ij ¼ h

a
eþ;�
ij ; tþ;�

ij ¼ Tc eþ;�
ij ; (5.49)

and in the computation of the power spectrum consider
these variables, treating them as scalars, but multiplying
by a factor of 2 to account for the two polarizations. The
second-order action for h and T reads as

�Sð2ÞT ¼ 1

2

Z
d3xd

�
1

2
c 2H 2ð1� xÞh2

þ 2c 2H 2

�
� T0

H
þ xT

�
h

þ c 2

�
T02 � k2T2 �H 2�

�g2
4

a2
T2

�

þ 1

4
ðh02 þ ð2� �ÞH 2h2 � k2h2Þ

�
; (5.50)

where  is the conformal time dt ¼ ad, H ¼ _a and
prime denotes a derivative with respect to the conformal
time.

C. Primordial power spectra and the spectral indices

In the previous part, we provided the complete set of
equations which govern the dynamics of scalar, vector and
tensor modes. In this subsection we set about solving these
equations, quantize their solutions, and compute the power
spectra.

1. Scalar modes

In order to determine the power spectrum of the scalar
perturbations we have to deal with two constraint (5.35)
and (5.36) and one dynamical Eq. (5.37). In contrast to the
case of single scalar field inflationary models which one of
the constraints (a combination of �P and �q equations)
reduces to the equation of motion of the background field,
in our case both of them remain independent and should be
considered. The constraint Eqs. (5.35) and (5.36) in the
slow-roll regime take the form

H
�
�� c

Q
a
þ g2c 3ð�þ 1ÞaM

�
þ ð�� g2c 3ðaMÞÞ0 ¼ 0; (5.51)

H
�
Q
c

þ
�
1þ �� c 2

2

�
a�

�0 þ k2

3

��
1þ �� c 2

2

�
a�

�
�
1þ 2

�
þ c 2

�
1� 1

�

��
g2c 3 a

2M
c 2

�

þH 2ð2þ c 2ð�� 1ÞÞ
�
a�þQ

c

�
¼ 0: (5.52)

where 0 denotes derivative with respect to the conformal
time .
To analyze the dynamical Eq. (5.37), we note that for a

general hydrodynamical fluid with pressure Pð�; SÞ, the
pressure perturbation �P can be decomposed as

7In contrast to standard scalar-driven inflationary models, in
gauge-flation there is the possibility of a nonzero but constant
a2�V

i which leads to

Z i ¼ 2a2�V
i

aH
þ c

a2
:

The above still shows a suppression by a 1=a factor (to be
contrasted with standard 1=a2 suppression), and hence again
the power spectrum of the vector modes are unimportant in
inflationary cosmology.
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�P ¼ c2s��þT �S; (5.53)

where �S is the entropy perturbations, c2s ¼ ð@P@�ÞS is the

speed of sound, and T ¼ ð@P@SÞ�. With this decomposition,

combining (5.36) and (5.37) yields

�00 þ3H ð1þc2sÞ�0 þc2sk
2�þð2H 0 þð1þ3c2sÞH 2Þ�

¼1

2
a2T �S; (5.54)

which upon introducing

�¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

�0þP0

s
; �s¼ a2T �S

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0þP0

p ; u¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0þP0

p ;

(5.55)

where �0 and P0 are background energy density and pres-
sure, simplifies to

u00 þ c2sk
2u� �00

�
u ¼ �s; (5.56)

where c2s ¼ _P0

_�0
. Next, we need to compute �s explicitly.

We will do this in two regions, the asymptotic past
k ! �1 and the superhorizon region k ! 0.

The asymptotic past behavior of �s.—To study the ef-
fects of �s term in the asymptotic past k ! �1
(Minkowski) limit, we note that in this limit constraints
(5.51) and (5.52) take the following forms

Q � 1

H

�
�

c
� g2c 2aM

�0 ¼ 0; (5.57)

Q0 � k2

3H

�
1þ 2

�

�
g2c 2aM

þ c 2 k2

3H

�
�

c
�

�
1� 1

�

�
g2c 2aM

�
¼ 0: (5.58)

We solve (5.58) by considering the following ansatz8

Q 0 � k2

3H

�
1þ 2

�

�
g2c 2aM ¼ W

2
c 2Q0; (5.59)

with W being a constant number of order 1, to be deter-
mined momentarily. In this limit from (5.32), (5.33), and
(5.53) one can read the value of �s

�s ¼ �4

�
�� 1

�þ 2

�
Hc

Q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 þ P0

p : (5.60)

From (5.59), the constraint Eq. (5.58) takes the form�
W � 2

�� 1

�þ 2

�
HcQ0 þ 2k2

3
� ’ 0; (5.61)

and hence

�s ¼ 8

3
k2

�� 1

ð�þ 2ÞW � 2ð�� 1Þ u; (5.62)

c2s ¼
ð�þ 2ÞW þ 2

3 ð�� 1Þ
2ð�� 1Þ � ð�þ 2ÞW : (5.63)

On the other hand, from (5.57), (5.59), and (5.61) we learn
that

c2s ¼ 2

3

�þ 2

W ð�þ 2Þ þ 2
:

Consequently, from equating the above two values for the
speed of sound, we find a quadratic equation forW whose
solutions denoted by W
 are

W þ ¼ 2

3

�� 1

�þ 2
) c2sþ ¼ 1; (5.64)

W � ¼ �2
�þ 1

�þ 2
) c2s� ¼ � 1

3

�þ 2

�
: (5.65)

As we see speed of sound squared for one of the solutions
is 1 and for the other one, recalling that � is positive by
definition, is always negative. We also note that all the
above analysis has been carried out in the slow-roll regime,
and in the Minkowski limit k ! �1.
The superhorizon behavior of �s.—We now turn to the

question of large-scale superhorizon behavior of �s in
k ! 0. In this limit, from (5.32), (5.33), and (5.53) one
can read the value of �s

�s ¼ 2H 2c 2

�
2�

�
uþ Q=a

c ð�0 þ P0Þ1=2
�

þ Q0=a
H c ð�0 þ P0Þ1=2

�
: (5.66)

On the other hand, constraint (5.52) in the k ! 0 can be
written as below�

Q
c

þ a�

�0 þ 2H
�
Q
c

þ a�

�
¼ Oð�Þ; (5.67)

which implies that Q
c þ a� consists of a damping term

proportional to a�2 and a part of the order �. Hence, using
(5.67), ignoring the damping terms and up to the first order
of �, �s takes the form

�s ¼ �2H 2c 2

�
u0

H
þ u

�
; (5.68)

which is a small quantity of the order �.
Upon using (5.64), (5.65), and (5.68), the equation for u

(5.65) leads to two equations for each of the values of speed
of sound c2

s
 :

u00þ þ ðk2 � �H 2Þuþ ’ 0; (5.69)8The validity of the ansatz is proved in Appendix B.
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u00� �
�
1

3

�þ 2

�
k2 þ �H 2

�
u� ’ 0; (5.70)

where, as before, ’ means first order in slow-roll parame-
ters and

� � �00

�
� 2c 2 ’

�
�� 1

�þ 1
þ _�

H�2

�
� ¼ 3�� 1

�þ 1
�: (5.71)

In the first order in slow-roll parameter � one may ignore
the time-dependence of � during slow-roll expansion, and

 ’ � 1

ð1� �ÞH ; (5.72)

and hence

�H 2 ¼ �2
u � 1

4

2
; �u ’ 1

2
þ �: (5.73)

To summarize, �s is of order 1 in the asymptotic past
k ! �1 limit and is of order � in the superhorizon
k ! 0 limit, effecting the spectral tilt (cf. (5.71)).

The general solutions to (5.69) and (5.70) for u
 can be

expressed as a linear combination of Hankel Hð1Þ
� and Hð2Þ

� ,
and modified Bessel functions I� and K�. Recalling (5.55),
this leads to the following solutions for �

�þðk; Þ ’
ffiffiffiffiffiffiffiffiffiffi
�jjp
2k

½bþ1 Hð1Þ
�u
ðkjjÞ þ bþ2 H

ð2Þ
�u
ðkjjÞ�;

��ðk; Þ ’
ffiffiffiffiffiffijjp
ffiffiffiffi
�

p
k

�
b�1 I�u

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

xþ 2

x

s
kjj

�

þ b�2 K�u

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

xþ 2

x

s
kjj

��
: (5.74)

Before moving onto considering Q equations, some
remarks are in order:

(i) It can immediately be seen that �
 given in (5.74),
in the asymptotic past limit k ! �1, indeed re-
produce the solutions to

u00 þ k2c2s
u ’ 0:

As such, we have found solutions which interpolate
between the superhorizon regime k ! 0 and deep
subhorizon regime k ! �1.

(ii) We stress that as we see �s in (5.62) and (5.68), in
both k ! �1 and k ! 0 regimes, only depends
on u, the variable which plays the role of adiabatic
perturbations. Therefore, unlike the multifield infla-
tionary models, �s does not represent an indepen-
dent ‘‘entropy’’ mode. In other words, despite
having two scalar modes Q and M, we do not
have entropy perturbations in our system. This is
due to the fact that, unlike the usual two-field infla-
tionary models, we have two independent con-
straints (5.51) and (5.52), rather than a single
constraint in the usual two-field models [14], relat-
ingQ andM. Therefore, we have a single adiabatic

perturbation, as in the standard single field models.9

Equation (5.74) is not exact in the sense that the
constraint equations, the result of which have been
plugged into the u Eq. (5.56), have only be solved in
the k ! 0 and k ! �1 regimes.

(iii) Equation (5.69) implies that uþ admits two physi-
cal regimes: oscillating regime in the asymptotic
past k ! �1, and the superhorizon limit
k ! 0 ,where uþ freezes out. As given by
(5.70), u� has an exponentially damping regime
in the asymptotic past Minkowski limit k ! �1,
while it freezes out, just like uþ, in the superhor-
izon k ! 0 regime. The other two scalars, Q and
aM, have the same generic behavior.

(iv) Note also that the coefficients b
i , i ¼ 1; 2 are not
completely fixed from the above considerations and
to determine them we need to know Q, explicitly
Qþ, to which we will turn now.

Classical solutions for Q.—To find the equations of
motion forQ, one may use the solutions (5.74), (5.57), and
(5.58). Alternatively, one can work out the second-order
action for the perturbations Q, � and M and insert the
constraint Eqs. (5.57) and (5.58) into the action. The
second-order action computation is indeed very tedious,
lengthy and cumbersome, but that is necessary for quanti-
zation of the perturbations. This is because, for performing
the canonical quantization of the modes, besides the equa-
tions of motion we need to have the canonical (conjugate)
momentum too. In the Appendix A we have presented the
explicit form of the second-order action, after imposing the
gauge-fixing conditions and setting �s ¼ 0.
Appearance of negative c2s modes may cause a concern

about a possibility of ghost instability in our system.
Theoretically, we do not expect finding ghosts in our theory
because, i) we are dealing with a gauge-invariant action
and we respect this gauge symmetry. (To be more precise,
it is spontaneously broken by the choice of classical
inflationary background. However, as is well-established,
spontaneous gauge symmetry breaking does not lead to
a breakdown of Slavnov-Taylor identity which reflects
the gauge symmetry and its consequences about
renormalizability and unitarity.) ii) Although we are deal-
ing with a ‘‘higher derivative’’ action (3.1), the higher
derivative term has a special form: it does not involve
more than time-derivative squared terms. (This fact is
also explicitly seen in (3.9) in that the
 equation of motion
does not involve more than second time derivative.) As
such, we expect not to see ghosts usually present in the
higher derivative theories. Besides the above arguments, to
make sure about the absence of ghosts, we have explicitly
computed the second-order action. The expression for the

9Recall that the situation here is indeed very much like the
single scalar case, where the entropy perturbations, like ours, is
of order slow-roll parameter �.
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second-order action, after implementing the constraints
(5.57) and (5.58), explicitly shows that neither Q nor M
has negative kinetic terms and hence there is no ghost
instability in our system. The explicit expression for the
second-order action is presented in Appendix A and here
we only present the simplified result for the canonical
momenta and for the equations of motion for Q.

The Q equations of motion in the slow-roll approxima-
tion, after using (5.59), (5.64), and (5.65), and some lengthy
algebra is obtained to be

Q00þ þ ðk2 � ð2þ 3� � 4�ÞH 2ÞQþ ’ 0;

Q00� �
�
xþ 2

3x
k2 þ ð2þ 3� � 4�ÞH 2

�
Q� ’ 0;

(5.75)

where Q
 in an obvious notation is related to values of
W
 and c2s
 given in (5.64) and (5.65). Defining �Q as

�2
Q � 1

4
¼ ð2þ 3� � 4�ÞH 22 ’ 2þ 3�; (5.76)

leading to �Q ’ 3
2 þ � , (5.75) takes the form of a standard

Bessel equation with the general solutions

Qþðk; Þ ’
ffiffiffiffiffiffiffiffiffiffi
�jjp
2

eið1þ2�uÞð�=4Þ½dþ1 Hð1Þ
�QðkjjÞ

þ dþ2 H
ð2Þ
�QðkjjÞ�; (5.77)

Q�ðk; Þ ’
ffiffiffiffiffiffijjp
ffiffiffiffi
�

p
�
d�1 I�Q

� ffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2

3x

s
kjj

�

þ d�2 K�Q

� ffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2

3x

s
kjj

��
: (5.78)

Quantization of Q modes.—

As in the standard textbook material in cosmic pertur-
bation theory, the coefficients dþi may be fixed using the
canonical normalization of the modes in the Minkowski,
deep subhorizon k ! �1 regime. As discussed, in this
limit Qþ, which has an oscillatory behavior, is the only
quantum field (Q� has an exponentially damping behavior
and is hence not a quantum mode). We should stress that,
of course, not all coefficients d
i and b
i are fixed by the
quantization normalization condition. To fix them, as we
will do so below, we should impose the constraints (5.57)
and (5.58) in both superhorizon and asymptotic past re-
gimes. Note also that fulfilling these constraints is equiva-
lent to maintaining the diffeomorphism and remainder of
the gauge symmetry of the system; fluctuations both at
classical and quantum levels must respect them.

From the second-order action given in Appendix A,
the discussions alluded to above, and using the constraints
(5.59) and (5.64), after some lengthy straightforward
algebra the momentum conjugate to Qþ mode PQþ is

obtained as

PQþ ¼ 2Q0þ (5.79)

in the k ! �1 limit, and hence canonically normalized

field is
ffiffiffi
2

p
Qþ. Imposing the usual Minkowski vacuum

state for
ffiffiffi
2

p
Qþ

Qþ ’ 1

2
ffiffiffi
k

p e�ik

fixes the dþi coefficients

dþ1 ¼ 1ffiffiffi
2

p ; dþ2 ¼ 0: (5.80)

The constraint Eq. (5.61) can then be used to fix bþi
coefficients in (5.74):

bþ1 ¼ ffiffiffi
2

p
Hc

ð�� 1Þ
ð�þ 2Þ ; bþ2 ¼ 0: (5.81)

We stress that with the above choice for bþi we have
only satisfied the constraint (5.61) in the asymptotic past
k ! �1 limit. As we will show momentarily, the con-
straint (5.61) in the superhorizon k ! 0 limit, whereQ�,
��, as well as Qþ and �þ assume constant values, can
only be satisfied when the nonoscillatory Q� and ��
modes are also taken into account.
The coefficients d�i and b�i , although not fixed by

quantization normalization, are related through the con-
straint Eq. (5.61). Recalling the exponential growth of the
modified Bessel function InðyÞ for large y [15], we learn
that

b�1 ¼ d�1 ¼ 0:

Demanding the constraint Eq. (5.61) to be satisfied in the
asymptotic past k ! �1 then leads to

b�2 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�

�þ 2

s
Hc d�2 : (5.82)

To fix d�2 and b�2 we should now demand the constraint
(5.61) to be satisfied in the superhorizon k ! 0 regime
too. This will, however, also involve the ‘‘oscillatory’’Qþ
and �þ modes. Putting these together and making use of
the behavior of the Bessel functions ZnðyÞ (where Zn is
either H1

n, H
2
n, or Kn) for small argument y ! 0 [15], we

obtain

d�2 ’ � iffiffiffi
2

p
�
�þ 2

3�

�
3=4

: (5.83)

The curvature power spectrum.—Having fixed all the
coefficients b
i and d
i we are now ready to compute the
power spectrum of metric and curvature perturbations.
The power spectrum for the metric perturbations is given
by [1]

P � ¼ 4�k3

ð2�Þ3 j�j2; (5.84)
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which on the large scales (k � aH) is

P � ’ �ð2�þ 1Þ2
2ð�þ 1Þð�þ 2Þ2

�
H

�

�
2
�jkj

2

�
3�2�Q

: (5.85)

As is implicit, we have assumed slow-roll approximation
and the value of � and � essentially remain constant during
slow-roll period. The power spectrum of the comoving

curvature perturbation R, R ¼ �� H�q
�0þP0

, is hence

P R ’ ð2�þ 1Þ2
2�ð�þ 1Þð�þ 2Þ2

�
H

�

�
2
��������k¼aH

; (5.86)

and becomes constant on super-Hubble scales.
The spectral index of the curvature perturbations,

nR � 1 ¼ 3� 2�Q, to the leading order in the slow-roll

parameters is

nR � 1 ’ �2
3�� 1

�þ 1
�; (5.87)

where (5.71) and (5.76) have been used. We note that the
spectral tilt (5.87), depending on the value of �, can be
positive or negative; in order to have a red tilt we should
consider � > 1=3.

2. Tensor modes

To analyze the tensor modes h and T and the action
(5.50), it proves useful to decompose T into h and a new
variable w

T ¼ Ahþ w; (5.88)

where A is a constant (to be determined). In terms of w the
second-order action (5.50) takes the form

�Sð2ÞT ¼ 1

2

Z
d3xd

�
2Ac 2

�
w0h0 þ 1

A
Hwh0 � k2wh

þ ð�þ 1Þ
�
1� 2A

A

�
H 2wh

�

þ 1

4
ð1þ 4A2c 2Þ

�
h02 � k2h2 þ z00

z
h2
�

þ c 2

�
w02 � k2w2 þ # 00

#
w2

��
; (5.89)

where

z00

z
¼ H 2½2þ 2c 2ð1þ 2A� A2 þ ð4A� 1Þ�Þ

� ð1þ 8A2Þ��; (5.90)

#00

#
¼ �H 2ð2� �Þð�þ 1Þ: (5.91)

From the action (5.89) one can read the equations of
motion for h and w

w00 þ
�
k2 � # 00

#

�
w ¼ A

�
�h00 þ 1

A
Hh0

� k2hþ ð�þ 1Þ
�
1� 2A

A

�
H 2h

�
;

h00 þ
�
k2 � z00

z

�
h ¼ � 4A

1þ 4A2c 2

�
w00 þ 1

A
ðHwÞ0

þ k2w� ð�þ 1Þ
�
1� 2A

A

�
H 2w

�
:

(5.92)

(To obtain these results, we have used the fact that c is
almost a constant to first order in �, cf. (3.13) and (3.17).)
The above equations imply that h and w have both oscil-
latory behavior eik in the asymptotic past k ! �1
region. However, since #00=# is negative while z00=z is
positive, they behave differently in superhorizon k ! 0
limit; ha freezes out and

w
a decays. Therefore, in this limit the

leading contribution to the right-hand side of equation
of motion for w, which is of order ðkÞ�3, should vanish.
That is, �

�2þ 1

A

�
ð2þ �ÞH 2h ’ 0; (5.93)

which implies A ¼ 1
2 . This choice for A has an interesting

and natural geometric meaning, recalling the form of our
ansatz for the background gauge field, Aa

i ¼ c eai, where
c is a scalar (effective inflaton field) and eai are the 3D
triads, and that the triads are ‘‘square roots‘‘ of metric.
Perturbing the ansatz and considering only the metric
tensor perturbations hij, we have

�eai ¼
1

2
hij�

aj: (5.94)

Then, recalling (5.3) and the definition of tij, this implies

that A ¼ 1
2 naturally removes the part of the gauge field

tensor perturbations which is coming from the perturbation
in the metric, and hence the ‘‘genuine’’ gauge field tensor
perturbation is parameterized by w.
Inserting T ¼ h

2 þ w into the expression (5.48) and not-

ing the exponential suppression of w in the superhorizon
scales,

a2�T ’ 0; (5.95)

in the leading order in � and in the k ! 0 limit. Therefore,
the equation of motion for h is

h00 þ
�
k2 � a00

a

�
h ’ 0;

a00

a
¼ H 2ð2� �Þ; (5.96)

which is exactly the same as the standard single scalar field
inflation result [2]. The w modes do not contribute to the
tensor mode power spectrum.
In the slow-roll approximation (5.96) is a Bessel

equation, whose solution after imposing the standard
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Minkowski vacuum normalization on the k ! 0 solutions
[2], takes the form

h ¼
ffiffiffiffiffiffiffiffiffiffi
�jjp
2

eið1þ2�T Þ�=4Hð1Þ
�T ðkjjÞ; (5.97)

where �T ’ 3
2 þ �. Thus, the gravitational waves’ power

spectrum to leading order in slow-roll and on super-Hubble
scales is set by

P T ’ 2

�
H

�

�
2
��������k¼aH

: (5.98)

The spectral index of tensor perturbations, nT is given by

nT ’ �2�: (5.99)

To summarize, the gravitational power spectrum and the
tensor spectral index of gauge-flation are just the P T and
nT of the single scalar model and the tensor-to-scalar ratio
r for our model is

r ¼ P T

PR
¼ 4ð�þ 1Þð�þ 2Þ2

ð2�þ 1Þ2 �: (5.100)

This result, which can be written as r ¼ � 2ð�þ1Þð�þ2Þ2
ð2�þ1Þ2 nT ,

may be contrasted with the usual single field consistency
relation r ¼ �8nT [16].

VI. FITTING GAUGE-FLATION RESULTS
WITH THE COSMIC DATA

We are now ready to confront our model with the
observational data. As discussed, our model for a specific
range of its parameters allows for slow-roll inflation and
for comparison with the observational data we use the
results obtained in the slow-roll regime. First, we note
that in order for inflation to solve the flatness and horizon
problems it should have lasted for a minimum number of
e-folds Ne. This amount, of course, depends on the scale of
inflation and somewhat to the details of physics after
inflation ends [1]. However, for a large inflationary scale,
like H � 10�4–10�5Mpl, it is usually demanded that

Ne ’ 60. As a standard benchmark we use Ne ¼ 60.
As for the CMB data, current observations provide

values for power spectrum of curvature perturbations PR
and its spectral tilt nR and impose an upper bound on the
power spectrum of tensor modes P T , or equivalently an
upper bound on tensor-to-scalar ratio r. These values vary
(mildly) depending on the details of how the data analysis
has been carried out. Here we use the best estimation of
Komatsu et al. [17], which is based onWMAP seven years,
combined with other cosmological data. These values are

PR ’ 2:5� 10�9; (6.1a)

nR ¼ 0:968
 0:012; (6.1b)

r < 0:24: (6.1c)

Our model has two parameter g and �, and our results
for physical observables depend also on other parameters,
which are basically related to the initial values of the fields
we have in our model. Out of these parameters we choose
H, the value of Hubble, and c , the value of the effective
inflaton field at the beginning of, or during, slow-roll
inflation. The values of other parameters, �, � and � (initial
velocity of the c field (3.13)), are related to these two
through (3.16), (3.17), (3.18), and (3.19). For convenience
let us recollect all our results:

Ne ¼ �þ 1

2�
ln
�þ 1

�
; (6.2)

nR � 1 ’ � 1

Ne

ð3�� 1Þ ln�þ 1

�
; (6.3)

r ¼ P T

PR
¼ 1

2Ne

�
2ð�þ 1Þð�þ 2Þ

2�þ 1

�
2
ln
�þ 1

�
; (6.4)

P R ’ 1

2�2�

�
H

Mpl

�
2 ð2�þ 1Þ2
ð�þ 2Þ2ð�þ 1Þ

’ g2

2�2

ð2�þ 1Þ2
�ð�þ 1Þ2ð�þ 2Þ2 : (6.5)

Interestingly, the spectral tilt and the number of e-folds
only depend on � and � and hence their values may be
fixed using these two, leading to

0:85<�< 6:35; � ¼ ð0:9–1:2Þ � 10�2: (6.6)

Notice that lower value for � corresponds to � ¼ 6:35. We
may now use these values and the COBE normalization to
read H and c

c ¼ ð3:5–8:0Þ� 10�2Mpl; H ’ 3:5� 10�5Mpl: (6.7)

(We note that the variation in the value of H over the range
(6.6) is about 0.3%.) Finally one may use definition of �
(3.19) to compute g and �

g2

4�
¼ ð0:13–5:0Þ � 10�7; � ¼ ð4:6–17Þ � 1013M�4

pl :

(6.8)

One can easily check that with the above values for
our parameters, our model predicts P T ¼ 2:45� 10�10

corresponding to r ’ 0:1, which is well within the range
to be observed by the Planck satellite.
As mentioned, however, the value ofNe is not exactly 60

and may be smaller or larger. This possibility has been
explored in Fig. 4, considering the current observational
data (6.1b) and (6.1c). The current observational value for
nR � 1 and the bound on r, allows for 40 & Ne < 145 and
0:05< r < 0:24. In other words, r > 0:05 is one of the
predictions of our model, which can be tested by the
Planck. As handy relations to remember, for � ¼ 1,
r ¼ 9:9

Ne
and for � ¼ 10, r ¼ 7:9

Ne
.
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It is also instructive to compare our model with usual
single field inflationary results. For the comparison it is
more convenient to replace � for �. Recalling (3.16) and
(3.17) we learn that

� ’ �� �

�
: (6.9)

In our model by definition � is a positive number and as is
seen from Fig. 4 it is of order 1–10. In terms of � and �

Ne ’ 1

2�
ln

�

�� �
; r ’ �

�
2�ð�þ �Þ
�ð2�� �Þ

�
2
;

�c 2 ¼ c 2
i � c 2

f ’
c 2

i

21=3
’ �

21=3
:

(6.10)

As we see, the field c and its variation during inflation are
both small and proportional to � while, as in the standard
single field models,Ne is inversely proportional to� (or �).
This is to be contrasted with the usual results that leads to
Lyth bound [18] where the inverse of slow-roll parameters
� or � are proportional to ’2 and/or its variation during
(slow-roll) inflation ð�’Þ2, with ’ being the inflaton field.
Therefore, our model can naturally produce large tensor-
to-scalar ratio, r * 0:01, which will be detectable by
Planck satellite, without the need for super-Planckian field
or field variations.

VII. SUMMARY, DISCUSSION AND OUTLOOK

In this work, we have presented a detailed analysis of the
gauge-flation model which we introduced in [12]. We first
showed that non-Abelian gauge field theory can provide
the setting for constructing an isotropic and homogeneous
inflationary background. We did so by using the global part
of the gauge symmetry of the problem and identified the
SUð2Þ subgroup of that with the rotation group. We argued
that this can be done for any non-Abelian gauge group, as
any such group has an SUð2Þ subgroup. Therefore, our
discussions can open a new venue for building inflationary
models, closer to particle physics high-energy models,
where non-Abelian gauge theories have a ubiquitous
appearance.
The Yang-Mills theory cannot serve the job of building

inflationary models, and we have to consider more com-
plicated gauge theory actions. Among the obvious choices,
we have checked non-Abelian version of Born-Infeld ac-
tion10 (with the symmetric trace prescription [20]), which
does not lead to a slow-roll dynamics within its space of
parameters. We have checked F4 terms which appear in
one-loop level effective gauge theory action. If we parame-
terize such F4 terms as Trð�F4 þ �ðF2Þ2Þ, our analysis
shows that it is possible to get slow-roll inflationary back-
ground for specific range of � and � parameters. With the
gauge group SUð2Þ, upon which we have mainly focused in
this work, the TrðF ^ FÞ2 that we have considered here can
be obtained from specific choices of � and �.
As discussed our motivation for considering a

TrðF ^ FÞ2 term was primarily providing an explicit, sim-
ple realization of our gauge-flation scenario, which can
lead to a satisfactory slow-roll inflation; in this work we
were not concerned with explicit derivation or embedding
of this term from particle physics models. At technical
level, this happens because the dependence of this term
on the background metric g�� appears only through detg

and as a result the contribution of this term to the energy-
momentum of the background will take the form of a
perfect fluid with P ¼ �� equation of state, perfectly
suited for driving an almost de Sitter expansion. It is,
however, important to study appearance of this �-term
through a rigorous quantum gauge field theory analysis
and in particle physics settings. From particle physics
model building viewpoint, a TrðF ^ FÞ2 type term can be
argued for, considering axions in a non-Abelian gauge
theory [21] and recalling the axion-gauge field interaction
term Laxion � ’

� TrF ^ F. Then, integrating out the mas-

sive axion field ’ leads to an action of the form we have
considered. If we adopt this point of view, our � parameter
is then related to the cutoff scale � as �

384 ���4 [21], and

hence leading to �� 10�3Mpl � 1015 GeV. In order for

this proposal to work, some points should be

γ
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FIG. 4 (color online). The shaded region specifies the range for
� and Ne allowed by the current observations. The dot-dashed
line corresponds to (6.4) with r ¼ 0:24. The upper solid curve
corresponds to (6.3) with nR ¼ 0:968þ 0:012 and the lower
dashed curve to nR ¼ 0:968� 0:012. As we see, the current
observations allows for Ne as large as 145. One can show using
(6.4) that for the values in the shaded region the tensor-to-scalar
ratio is in the range 0:05< r < 0:24.

10For an analysis of non-Abelian Born-Infeld theory within the
FRW cosmology see [19].
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checked: recalling that H & 1014 GeV, �� 10H. For this
one-loop effective action description to make sense, it is
crucial that the cutoff � becomes larger than H, because
only axion configurations with subhorizon momenta
(k * H) will contribute to (quantum) loop corrections.
The superhorizon modes, as in any quantum field theory
on (almost) de Sitter background, are frozen and have
become classical, and hence do not contribute to quantum
corrections. It is also crucial that we are in a perturbative
regime of the gauge theory with g� 10�3. Therefore, we
need not worry about complications of dealing with a
confining (non-Abelian) gauge theory. In our case, we
are in a weakly coupled regime where the theory is in
deconfined phase. We also remark that, as argued, during
slow-roll inflation regime, the contribution of the �-term to
the energy density of the gauge field configuration should
dominate over that of the Yang-Mills part. In order for the
mechanism for generation of the �-term sketched above to
work, one should argue how the other possible higher-
order terms, at F4 level and higher loops (leading to higher
powers of F in the effective action), are suppressed com-
pared to the �-term. These issues will be discussed in a
later publication [22].

Another interesting feature of our gauge-flation model is
its naturalness; that demanding to have a successful infla-
tionary model compatible with the current data leads to
parameters which are within their natural range: the
Hubble during inflationH is of order 1014 GeV, and cutoff
scale of the theory �� 1015–1016 GeV which are natural
within the (SUSY) GUT models. Moreover, as is required
by the consistency of the theoryH is less than cutoff� (by
1 order of magnitude). The other parameter of the theory,
the gauge coupling g� 10�3–10�4, although a bit lower
than the value expected for the coupling at the gauge
unification scale, is also in a natural range. The field value
c i and its displacement during inflation c i � c f, are both

of order 10�2Mpl, well within the sub-Planckian regime.

Therefore, as discussed, the arguments of standard single

field inflationary models and the Lyth bound [18] do not
apply to our model and we do not face the super-Planckian
field problem, which is a generic feature of large-field
inflation models, such as chaotic inflation, causing con-
cerns about the validity of using classical Einstein gravity.
We also note that the energy density during inflation
3H2M2

pl � ð2� 1016 GeVÞ4, is the same order as the

SUSY GUT scale.
Our other motivation for studying the gauge-flation

scenario, which is at least in spirit close to beyond standard
particle physics model settings, was to provide a setup to
address cosmological questions after inflation. As we dis-
cussed and is also seen from the phase diagram in Fig. 1,
after the slow-roll ends we enter a phase where the dynam-
ics of the effective inflaton field, and gauge fields in
general, is governed by the Yang-Mills term. The effective
inflaton c starts an oscillatory phase and through standard
(p)reheating arguments, e.g., see [13], it can lose its energy
to the gauge fields. If we have an embedding of our gauge-
flation scenario into beyond standard models, the energy of
these gauge fields will then naturally be transferred to all
the other standard model particles via standard gauge
interactions. Therefore, our gauge-flation provides a natu-
ral setting for building (p)reheating models, to which we
hope to return in future works.
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APPENDIX A: SECOND-ORDER ACTION

After a tedious but straightforward calculation, which is
also confirmed by the MAPLE codes, the total action to
second order in perturbations is

�2S ¼
Z

dx4a3
�
3
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4
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þ
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Note that the above action is computed fixing the
Newtonian gauge E ¼ B ¼ 0 and imposing �s ¼ 0.

APPENDIX B: VALIDITY OFANSATZ (5.59)

In this appendix we prove the validity of ansatz (5.59). In
the asymptotic past k ! �1 (Minkowski) limit and dur-
ing the slow-roll inflation, Eq. (5.37) takes the following
form �

Q0 � k2

3H

�
1þ 2

�

�
g2c 2aM

�

’ � c 2

3

�
Q0 þ g2c 2

H
ðaMÞ00

�
; (B1)

which can be rewritten as

�
Q0 � k2

3H

�
1þ 2

�

�
g2c 2aM

�

’ W
2

c 2Q0 � 1

3

g2c 4

H
ðaMsÞ00; (B2)

whereW is a constant. On the other hand, from (5.57) we
learn that c should include a term c s � g2c 3aMs, which
after combining with (5.58), yields

�
1þ 2

�
þ 1

�
c 2

�
Ms ¼ 0; (B3)

and since � > 0, it impliesMs ¼ 0, proving the validity of
the ansatz (5.59).
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