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When quantum back-reaction by fluctuations, correlations and higher moments of a state becomes

strong, semiclassical quantum mechanics resembles a dynamical system with a high-dimensional phase

space. Here, systematic computational methods to derive the dynamical equations including all quantum

corrections to high order in the moments are introduced, together with a (deparameterized) quantum

cosmological example to illustrate some implications. The results show, for instance, that the Gaussian

form of an initial state is maintained only briefly, but that the evolving state settles down to a new

characteristic shape afterwards. Remarkably, even in the regime of large high-order moments, we observe

a strong convergence within all considered orders that supports the use of this effective approach.
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I. INTRODUCTION

Semiclassical approximations are of importance
throughout physics in order to extract new effects or po-
tentially observable phenomena in regimes in which quan-
tum features are relevant but not dominant. All aspects
of quantum gravity currently considered for potential tests
fall in this class of situations. While deep quantum phases
are crucial for several conceptual problems, the current
developments remain so diverse that reliable conclusions
are difficult to draw. Semiclassical physics, on the other
hand, is already useful for this class of theories in order to
demonstrate their consistency with large-scale properties
of the universe and to approach potential low-energy ob-
servations for instance via details of the cosmic microwave
background. For this reason, the development of system-
atic semiclassical approximations is one of the major re-
quirements in current quantum-gravity research, especially
for approaches such as loop quantum gravity whose under-
lying principles do not make use of a continuum geometry
and perturbations around it.

In loop quantum gravity and cosmology, the main tool
available at a dynamical level is that of effective equations
which describe the evolution of expectation values in a
dynamical state [1]. As in most quantum systems, espe-
cially interacting ones, quantum fluctuations, correlations
and higher moments of the state then back-react on the
evolution of expectation values, described in effective
equations by coupling terms between classical and quan-
tum degrees of freedom. With an infinite number of inde-
pendent moments of a state, there are infinitely many
quantum degrees of freedom, making the general system
of equations difficult to analyze. In semiclassical regimes,
however, the infinite set of equations reduces to finite sets
at any given order of the expansion by powers of ℏ. In this

way, a systematic expansion arises that goes well beyond
other examples such as the WKB approximation. To first
order in ℏ and combined with a second-order adiabatic
approximation, applied to anharmonic oscillators, equa-
tions equivalent to those of the low-energy effective action
are produced when expanding around the ground state
[1,2]. (The more widely applied WKB approximation
does not reproduce the low-energy effective action [3].)
For other systems and different states, on the other hand,
the canonical methods developed in [1] are more general
and apply to quantum cosmology as well, even taking into
account the totally constrained nature of these systems [4].
One should thus expect that an application to quantum
gravity allows comparisons with low-energy effective
quantum gravity [5,6], but can also highlight new effects
related to specific properties of quantum space-time struc-
ture as opposed to just graviton dynamics on a classical
background.
Compared with direct solution procedures of the partial

differential equations that determine the dynamics of wave
functions, the procedure used here has the advantage of
directly yielding expressions for expectation values and
other, in principle observable quantities. The usual, but
often numerically cost-intensive two-step procedure of
first finding expressions for the wave function and then
performing integrations to obtain expectation values is thus
significantly reduced. In this context, the methods used and
described are useful not just for quantum cosmology, the
realm of our examples, but may find wider applicability.
In quantum cosmology, or more generally constrained
systems, other advantages include a possible extension to
systems in which the dynamics is determined by a
Hamiltonian constraint, not a Hamiltonian function
[4,7,8], and a simplification of the problem of time in
semiclassical regimes [9,10].
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The semiclassical approximation allows one to consider
most cases of interest in current quantum-gravity research,
but they do not allow one to tackle all of them. For this
reason it is of interest to analyze the system of equations
obtained as more and more of the moments grow large and
become relevant when a dynamical state turns more highly
quantum. Since such large numbers of variables coupled to
each other by long evolution equations are difficult to
handle analytically (see the Appendix for deterrence), the
main aim of this article is to provide results of efficient
computer-algebra codes designed to derive these equations
automatically and quickly to high orders, which can then
be fed into a numerical solver of the coupled differential
equations. In this way, one can see how much high orders
of the expansions matter and how higher moments can
affect the evolution of expectation values as strong quan-
tum regimes are approached.

An interesting toy example for this is a spatially flat
isotropic universe with a positive cosmological constant,
filled with a homogeneous free and massless scalar field.
The free scalar can play the role of a global internal
time, allowing one to reformulate the constrained system
as ordinary Hamiltonian evolution. In the presence of a
positive cosmological constant, the value of the scalar field

is bounded from above as a function of time; thus, when
using the scalar as internal time, infinite volume is reached
at a finite time �div. As this point is approached, volume
fluctuations and higher moments diverge even though the
regime is supposed to be one of low-curvature nature (see
Fig. 1). The nonsemiclassical appearance is an artifact
of the choice of time, highlighting the toy-nature of the
model. Physical conclusions derived from the model for a
late-time universe with a positive cosmological constant
can thus not be reliable, as interesting as they might be. But
the model is ideal for a mathematical analysis of the
possible roles of large moments. In the present article,
we will use this example mainly to illustrate the usefulness
of the numerical codes; further analysis requires more
sophisticated methods to handle the large parameter space
of all moments.

II. GENERAL FORMALISM

We begin with a brief review of the procedure of effec-
tive equations, followed by a correction of an important
formula of [1] and its accompanying proof.

A. Quantum state space

Classically, the phase space of a system with one degree
of freedom is completely described by the generalized
position V (related to the volume in cosmological models)
and its conjugate momentum P (related to the Hubble
parameter). During the quantization process each classical
phase-space function is promoted to an operator, and ob-
servable information is extracted via expectation values
which can be seen as functionals on the algebra of opera-
tors that characterize states. Since expectation values of
products of operators in general differ from products of
expectation values, the following infinitely many moments
are needed to describe the system completely:

Ga;b :¼ hðP̂� PÞaðV̂ � VÞbiWeyl; (1)

where the subscript Weyl stands for totally symmetric
ordering. Moments cannot be chosen arbitrarily but are
subject to additional conditions such as the uncertainty
relation

G2;0G0;2 � ðG1;1Þ2 � ℏ2

4
: (2)

Moreover, a set of moments satisfying all those conditions
in general corresponds to a mixed rather than pure state.
By considering moments to describe states, mixing (which
is important for generic descriptions of homogeneous
quantum cosmology seen as an averaged description of
microscopic physics, in particular, inhomogeneities) is
automatically included.
The use of moments allows a very general definition

of semiclassical states as those satisfying the hierarchy

Ga;b ¼ OðℏðaþbÞ=2Þ, realized for Gaussian states (see

FIG. 1 (color online). In this plot we show the evolution of
the volume expectation value V for a cosmological constant
� ¼ 9� 107 and initial data to be presented in Sec. IVE,
together with the spread around this trajectory V ��V. This
plot illustrates the growing dispersion of a state evolving to large
volume. The range for � shown, relative to the value �div at
which the classical volume diverges, is the maximal one ob-
tained with numerical stability to tenth order of moments of the
evolving state. As the volume grows, the area swept out by the
wave packet more and more aligns itself with the vertical axis,
such that volume fluctuations (as well as some other moments)
computed at a fixed value of � diverge. This divergence would
happen even if the state remained sharply peaked transversal to
the direction in which it moves, and is thus not a failure of
semiclassicality in this system but rather an artifact of the
parametrization of evolution. Physical implications are thus
difficult to draw, but an interesting test case for back-reaction
issues is obtained.
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below) but also for a much wider class. This characteriza-
tion of semiclassical states (pure or mixed) has two major
advantages: (i) It is a general characterization, as unbiased
as possible. (In more restrictive classes such as Gaussians
the specific form of the wave function may actually matter
for physical effects.) (ii) The infinitely many Ga;b are
decomposed in finite sets to order ℏn. This feature allows
systematic approximations of semiclassical dynamics.

The moments are pure quantum degrees of freedom;
they would all vanish in a classical limit. In a quantized
interacting system they couple to the expectation values

P :¼ hP̂i and V :¼ hV̂i. The state with respect to which
these moments are taken is specified via values for all the
quantum variables, which are all dynamical and satisfy
equations of motion. In order to consider the evolution of
expectation values, the evolution of all moments must be
followed simultaneously. Assuming the moments to be
constant or to take specific values such as, for instance,
those of a Gaussian state at all times cannot provide the
correct dynamics. The dynamics is described by a quantum
Hamiltonian, the expectation value of the Hamiltonian
operator, which is state dependent and thus a function of
expectation values and all the moments. By Taylor expan-
sion, one can write the quantum Hamiltonian as

HQðV; P;Ga;bÞ ¼ hĤi ¼ H þ X1
a¼0

X1
b¼0

1

a!b!

@aþbH

@Pa@Vb
Ga;b;

(3)

with the classical Hamiltonian H. The quantum variables
it contains provide crucial corrections to the classical
dynamics in a state-dependent way. We note that expan-
sions of this form (as also the Feynman or WKB expan-
sions) are expected to be asymptotic, not necessarily
convergent. In the model discussed below, we will never-
theless observe strong convergence properties within a
large range of orders.

The evolution generated by the quantum Hamiltonian
HQ, governed by the equations of motion df=d� ¼
ff;HQg for phase-space functions f, is described with

respect to a time parameter �. This could be an absolute
time parameter or, as in the example used below, an
internal time variable chosen for a deparameterizable con-
strained system. (For the effective treatment of nondepar-
ameterizable constrained systems, lacking a global internal
time, see [9,10].) Effective quantum evolution then pro-
vides an approximation scheme for time-dependent expec-
tation values of operators, starting with some initial state
specified by the initial expectation values and moments. It
is straightforward to find moments corresponding to a
wave-function representation of the initial state in a
Hilbert space, such as the Schrödinger one. Moments
evolved by the quantum Hamiltonian then correspond to
the dynamical state, evolved in the Schrödinger or
Heisenberg picture. We are thus guaranteed that at all
times, as long as the evolved moments remain finite, there

is still a corresponding wave function with those moments
to within the order of approximation considered. It may be
difficult to construct such a wave function explicitly, but
this is not required because the information relevant for
observations is already contained in the expectation values
and moments. (When moments diverge, as in the example
discussed below, the state moves out of the domain of
definition of the operators considered. By our moment
expansions we will only consider the approach to such a
point of divergence, not the point itself.)
In order to obtain all Hamiltonian equations of motion in

the context of this effective approach, we will need to
compute the Poisson brackets between any two moments.
If one defines the Poisson bracket for expectation values of

arbitrary operators X̂ and Ŷ by the relation fhX̂i; hŶig ¼
�iℏ�1h½X̂; Ŷ�i (extended to arbitrary functions of expecta-
tion values using linearity and the Leibniz rule),

Hamiltonian equations of motion generated by HQ ¼ hĤi
are equivalent to the Schrödinger flow of states or the
Heisenberg flow of operators. By applying this relationship
to all powers of the basic operators, the Poisson brackets

between moments is obtained. Since ½V̂; P̂� ¼ iℏ, in the
particular case of the basic operators themselves, the
Poisson bracket reduces to the classical one, fV; Pg ¼ 1.
Moreover, one can easily show that moments have vanish-
ing Poisson brackets with the basic expectation values:

fGa;b; Vg ¼ 0 ¼ fGa;b; Pg: (4)

The general case of Poisson brackets between moments
is more involved. We have the general formula

fGa;b; Gc;dg ¼ adGa�1;bGc;d�1 � bcGa;b�1Gc�1;d

þX
n

�
iℏ
2

�
n�1

Kn
abcdG

aþc�n;bþd�n; (5)

where the sum over n runs over all odd numbers from 1 to
Minðaþ c; bþ d; aþ b; cþ dÞ, which makes the coeffi-
cients real in spite of the presence of the imaginary unit.
We have also defined

Kn
abcd

:¼ Xn
m¼0

ð�1Þmm!ðn�mÞ! a

m

 !
b

n�m

 !

� c

n�m

 !
d

m

 !

¼ 2n
Xn
m¼0

ð�1ÞmCm
adC

n�m
bc ; (6)

where theC-coefficients come from theWeyl ordering (see
also Sec. III) and are defined as

Cd
kn

:¼ n!k!

ðn� dÞ!ðk� dÞ!ð2dÞ!! ¼
d!

2d
n
d

� �
k
d

� �
: (7)
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Note that these coefficients have the permutation property
Kn

abcd ¼ ð�1ÞnKn
cdab. Since the sum in (5) is only over odd

n, this makes the antisymmetry of the Poisson brackets
transparent. (In these formulas,G0;0 ¼ 1,G0;1 ¼ G1;0 ¼ 0,
and Ga;b ¼ 0 for any a or b < 0 are understood.)

A general formula analogous to (5) was obtained in [1],
but since it was not applied to moments of high orders, a
typo remained undiscovered. This typo is corrected in (5),
and since the formula plays an important role for the results
of this article, we provide a detailed proof in the following
subsection.

B. Poisson structure of moments

As in [1], we consider the generating function,

Dð�Þ ¼ he�PðP̂�PÞþ�V ðV̂�VÞi

¼ X1
j¼0

Xj
k¼0

1

j!

j

k

 !
h�j�k

P �k
V½ðP̂� PÞj�kðV̂ � VÞk�Weyli

¼ X1
j¼0

Xj
k¼0

1

k!ðj� kÞ!�
j�k
P �k

VG
j�k;k: (8)

Assuming that the wave function is analytic in the mean
values,Dð�Þ and the Poisson bracket between two of these

functions will also be analytic, which allows us to take the
Taylor expansion to all orders in �,

fDð�Þ; Dð�Þg ¼ X1
w¼0

Xw
x¼0

X1
y¼0

Xy
z¼0

�w�x
P �x

V�
y�z
P �z

V

x!ðw� xÞ!z!ðy� zÞ!
� fGw�x;w; Gy�z;yg: (9)

On the other hand, we use the Baker-Campbell-
Hausdorff formula to get the commutator

½e�PP̂þ�VV̂ ; e�PP̂þ�VV̂� ¼ 2i sin

�
ℏ
2
ð�V�P � �P�VÞ

�

� eð�Pþ�PÞP̂þð�Vþ�V ÞV̂ ; (10)

which gives us the Poisson bracket

fDð�Þ; Dð�Þg ¼ 2

ℏ
sin

�
ℏ
2
ð�V�P � �P�VÞ

�
Dð�þ �Þ

� ð�V�P � �P�VÞDð�ÞDð�Þ: (11)

We then use a Taylor series and the binomial theorem to
expand the right-hand side of the last equation. For the first
term we get the expression,

2

ℏ
sin

�
ℏ
2
ð�V�P � �P�VÞ

�
Dð�þ �Þ

¼ 2

ℏ

�X1
r¼0

�
ℏ
2

�
2rþ1 ð�1Þr

ð2rþ 1Þ!
X2rþ1

s¼0

2rþ 1

s

 !
ð�V�PÞ2rþ1�sð��P�VÞs

�
Dð�þ �Þ

¼ X1
r¼0

X2rþ1

s¼0

X1
j¼0

Xj
k¼0

Xj�k

m¼0

Xk
n¼0

�
ℏ2

4

�
r ð�1Þrþs

s!ð2rþ 1� sÞ!
�sþj�k�m
P �2rþ1�sþk�n

V �2rþ1�sþm
P �sþn

V

m!ðj� k�mÞ!n!ðk� nÞ! Gj�k;k; (12)

whereas, for the second one, the expansion is given by

ð�P�V � �V�PÞDð�ÞDð�Þ

¼ X1
j¼0

Xj
k¼0

X1
m¼0

Xm
n¼0

Gj�k;kGm�n;n

k!ðj� kÞ!n!ðm� nÞ!
� ð�j�kþ1

P �k
V�

m�n
P �nþ1

V � �j�k
P �kþ1

V �m�nþ1
P �n

VÞ:
(13)

Since (11) must be satisfied for all values of �
and � we find that the coefficients in front of each of the
powers of various �’s and �’s must be equal. By direct
comparison we then obtain the Poisson bracket between
our quantum variables. Making the convenient substitu-
tions a ¼ w� x, b ¼ x, c ¼ y� z, and d ¼ z, and com-
bining the factorials into binomial coefficients the result
reads,

fGa;b; Gc;dg ¼ adGa�1;bGc;d�1 � bcGa;b�1Gc�1;d

þ X1
r¼0

X2rþ1

s¼0

2ℏ2rð�1ÞrþsCs
adC

2rþ1�s
bc

�Gaþc�2r�1;bþd�2r�1: (14)

Finally we make the replacement n ¼ 2rþ 1, noting
that in the summation over r the only nonzero terms occur
when 2rþ 1<Minðaþ c; bþ d; aþ b; cþ dÞ, which
gives us (5).

III. ALGEBRAIC IMPLEMENTATION

We have written two different codes in MATHEMATICA in
order to obtain the Poisson brackets between any two
generic moments. The first code works iteratively, whereas
the second one makes use of the general formula (5). The
results agree for all orders checked (up to 14th) but the
second code is much more efficient. This can be clearly
seen in Fig. 2, where we have plotted the timing of both
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codes to compute several Poisson brackets. The timing of
the recursive code increases exponentially with the order of
the considered Poisson bracket, whereas the general code
allows us to obtain high-order results in a very short time.
This fact shows the importance of the general formula (5)
from a practical point of view.

In the following we briefly explain how the recursive
code works. Making use of the binomial identity, the
expression for the moments can be written as,

Ga;b ¼ Xa
k¼0

Xb
n¼0

ð�1Þaþb�k�n a
k

� �
b
n

� �

� Pa�kVb�nhP̂kV̂niWeyl: (15)

On the other hand, we also have found that the Weyl
ordering can be given as a linear combination of expecta-
tion values with a predefined order, for any operators

Â and B̂ with a c-number commutator,

hÂkB̂niWeyl ¼
XMinðk;nÞ

d¼0

½B̂; Â�dCd
knhÂk�dB̂n�di; (16)

where the coefficients Cd
kn have been defined in (7). Hence,

for our case of interest, we can write either

hP̂kV̂niWeyl ¼
XMinðk;nÞ

d¼0

ðiℏÞdCd
knhP̂k�dV̂n�di; (17)

or,

hP̂kV̂niWeyl ¼
XMinðk;nÞ

d¼0

ð�iℏÞdCd
knhV̂n�dP̂k�di: (18)

In order to obtain the Poisson brackets between different
moments iteratively we make use of the definition of the
moments in the form,

Ga;b ¼ Xa
k¼0

Xb
n¼0

XMinðk;nÞ

d¼0

ð�iℏÞdð�1Þaþb�k�n a
k

� �
b
n

� �

� Cd
knP

a�kVb�nhV̂n�dP̂k�di: (19)

For computing fGa;b; Gc;dg we then use the properties of
the Poisson brackets as well as of the commutator until all
operator terms reduce to the simple commutator between

the isolated operators V̂ and P̂.

IV. A MASSLESS SCALAR FIELD WITH
COSMOLOGICAL CONSTANT

As an application of high-order quantum back-reaction
we now introduce a cosmological model with a regime
of large moments: an isotropic spatially flat universe
filled with a free, massless scalar � (with momentum
p�) and a positive cosmological constant �> 0. From

the Friedmann equation

�
a0

a

�
2 ¼ 4�G

3

p2
�

a6
þ�; (20)

we obtain, ignoring constant factors for the sake of com-

pactness, p� ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a02 ��a2

p
where the prime is the de-

rivative with respect to cosmological time. The square root
may take both signs, corresponding to expanding and
contracting cosmological solutions. We will choose the
positive sign in order to analyze expanding universe mod-
els approaching large volume, as they remain in a low-
curvature regime. The opposite sign, if desired, could be
easily included since it would just invert the sign of the
constant of motion p� [which will be the deparameterized

classical Hamiltonian of our system (22)] as well as the
effective Hamiltonian (23) below. Therefore, from the
expanding solutions we show it will be straightforward to
get their contracting counterparts just by performing a
time reversal.
We rewrite p� as

p� ¼ ð1� xÞV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��½ð1� xÞV�ð1þ2xÞ=ð1�xÞ

q
(21)

in terms of canonical gravitational variables V ¼
ð1� xÞ�1a2�2x and P ¼ �a2xa0. The parameter x
characterizes different cases of lattice refinement of an

FIG. 2 (color online). In this figure we compare the timing of
computing the Poisson brackets between any two moments with
the code working iteratively as well as the one that makes use of
the general formula (5). The time, shown in a logarithmic scale
(to base 10), has been measured in seconds. The order plotted in
the graphics corresponding to a bracket fGa;b; Gc;dg has been
defined as the sum of all the indices: aþ bþ cþ d. Note the
exponential increase of the timing for the recursive code,
whereas the computations with the general code are kept in
the order of 10�4 seconds up to the considered order. There are
N � ðnþ 1Þðnþ 2Þ=2� 3 different moments with an order less
or equal to n, where the subtraction of 3 comes from the fact that
the order 0 and 1 moments are trivial; they can be combined into
NðN þ 1Þ=2 different Poisson brackets. In the case of the re-
cursive (general) code, the 33 (228) moments up to order seven
(20) have been considered, and in the plot the timing for their
corresponding 561 (26 106) independent Poisson brackets are
drawn.
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underlying discrete state; see [11,12]. The quantum dy-
namics (Wheeler-DeWitt type) that will be implemented in
this paper is insensitive to the change of this discreteness
parameter. However, some values lead to advantages in
the solution procedure, as we will make use of below.
Moreover, it is useful to keep the parameter in the defini-
tion of canonical variables in order to facilitate possible
applications to loop quantum cosmology in the near future,
where this parameter will become relevant.

The system is simplest to deal with for x ¼ �1=2, in
which case V is proportional to the volume, because p�,

which can be thought of as the Hamiltonian for evolution in
internal time �, is then linear in V. For a negative cosmo-
logical constant, the effective evolution coming from a
quantization of (21) has been solved and analyzed in
[13], some of whose formulas apply here as well. (For
numerical wave-function evolution of this model with
�< 0, see [14].) For �< 0, however, the moments do
not grow large at large volume, and the volume is bounded
by recollapse. These two features are not present for
�> 0, making an analysis of high-order moments neces-
sary, the topic of this article.

From now on we use x ¼ �1=2, which implies

p� ¼ H ¼ 3

2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
(22)

as the Hamiltonian of the deparameterized system. Since
the dependence of the classical Hamiltonian on V is linear,
we will only obtain terms of the form Ga;0 and Ga;1 in the
quantum Hamiltonian and we have the closed expression,

HQ ¼ 3

2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
þ 3

2

ffiffiffiffi
�

p X1
n¼2

��n=2

n!
½VTnðP=

ffiffiffiffi
�

p
ÞGn;0

þ n
ffiffiffiffi
�

p
Tn�1ðP=

ffiffiffiffi
�

p
ÞGn�1;1�; (23)

where we have defined

TnðxÞ :¼ dn

dxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
: (24)

Explicitly, the moments appearing here are

Gn;0 :¼ hðP̂� hP̂iÞni;

Gn�1;1 :¼ 1

n

Xn�1

i¼0

hðP̂� hP̂iÞiðV̂ � hV̂iÞðP̂� hP̂iÞn�1�ii:

Hamiltonian (23) will describe the semiclassical behavior
of the Wheeler-DeWitt quantization of this system.

Equations of motion for V and P are derived as in any
Hamiltonian system, noting that the expectation values
Poisson commute with any quantum variable. This gives

_V ¼ 3

2
V

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p þ 3

2

X1
n¼2

��n=2

n!
½VTnþ1ðP=

ffiffiffiffi
�

p
ÞGn;0

þ n
ffiffiffiffi
�

p
TnðP=

ffiffiffiffi
�

p
ÞGn�1;1�; (25)

_P ¼ � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
� 3

2

ffiffiffiffi
�

p X1
n¼2

��n=2

n!
TnðP=

ffiffiffiffi
�

p
ÞGn;0;

(26)

where dot stands for derivatives with respect to � and we
have made use of the fact that

fV; TnðP=
ffiffiffiffi
�

p
Þg ¼ 1ffiffiffiffi

�
p Tnþ1ðP=

ffiffiffiffi
�

p
Þ: (27)

Equations of motion for the quantum variables can also
be derived from Poisson relations between them

_G r;s ¼ 3

2

ffiffiffiffi
�

p X1
n¼2

��n=2

n!
½VTnðP=

ffiffiffiffi
�

p
ÞfGr;s; Gn;0g

þ n
ffiffiffiffi
�

p
Tn�1ðP=

ffiffiffiffi
�

p
ÞfGr;s; Gn�1;1g�: (28)

In fact, this highly coupled system of infinitely many
variables is extremely complicated to solve, and we will
try to analyze it by means of truncations to finitely many
variables which include the expectation values and only
low order quantum variables.

A. Vanishing �

For � ¼ 0, we obtain the harmonic model of [15] for
which all equations decouple:

_V ¼ 3

2
V; (29)

_P ¼ � 3

2
P; (30)

_Gab ¼ 3

2
ðb� aÞGab: (31)

There is no quantum back-reaction, and all equations can
easily be solved:

Vð�Þ ¼ V0 exp½32ð���0Þ�; (32)

Pð�Þ ¼ P0 exp½�3
2ð���0Þ�; (33)

Gabð�Þ ¼ Gab
0 exp½32ðb� aÞð���0Þ�: (34)

B. Classical equations

To classical order, i.e., assuming all moments to vanish,
we obtain analytical solutions

Pclassicalð�Þ ¼ P0 coshð3ð���0Þ=2Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 ��

q
sinhð3ð���0Þ=2Þ; (35)
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Vclassicalð�Þ

¼V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0��

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0��

q
coshð3ð���0Þ=2Þ�P0 sinhð3ð���0Þ=2Þ

;

(36)

where V0 and P0 are the value of the expectation values

at the initial time �0. At the time when �div :¼
�0 þ 2=3tanh�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 ��

q
=P0Þ the volume Vclassicalð�Þ di-

verges, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pclassicalð�divÞ2 ��

p ¼ 0.

C. Second order

To understand whether quantum effects can be important
in this large-volume regime of small curvature (if � is
small), we will analytically solve (under certain approx-
imations) the equations of motion for second-order
quantum variables, i.e. fluctuations G2;0, G0;2 and the
covariance G1;1. To this order, ignoring higher moments,
we have a quantum Hamiltonian

HQ ¼ 3

2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
� 3

4
�

V

ðP2 ��Þ3=2 G
2;0

þ 3

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p G1;1: (37)

Using the Poisson bracket relations

fG0;2; G1;1g ¼ 2G0;2; fG0;2; G2;0g ¼ 4G1;1;

fG1;1; G2;0g ¼ 2G2;0; (38)

the moments satisfy the equations of motion,

_G 2;0 ¼ �3
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 ��
p G2;0; (39)

_G 1;1 ¼ � 3

2
�

V

ðP2 ��Þ3=2 G
2;0; (40)

_G 0;2 ¼ �3�
V

ðP2 ��Þ3=2 G
1;1 þ 3

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p G0;2: (41)

1. Expectation values as background solutions

As a first approximation, we can use the classical solu-
tions for V and P as some kind of background on which the
quantum variables evolve. From the resulting solutions we
then determine whether quantum back-reaction effects by
quantum variables on expectation values are significant.

The equations for fluctuations to this level of truncation
are not strongly coupled, which allows us to solve for all of
them by integrations. For G2;0, we obtain

G2;0ð�Þ ¼ G2;0ð�0Þðcoshð3ð���0Þ=2Þ
� P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
0 ��

q sinhð3ð���0Þ=2ÞÞ2; (42)

which then allows us to solve forG1;1 and, in turn,G0;2. We
do not present these solutions here (which can be found
from [13] by changing the sign of�), but note that (41) can
be written as

d

d�

�
G0;2

V2
classical

�
¼ �3�

G1;1

VclassicalðP2 ��Þ3=2 : (43)

(Within the second-order approximation, we could replace
Vclassical with V in this equation up to terms of the form
G0;2G2;0 and G0;2G1;1.) This shows that the evolution of
volume fluctuations relative to volume is determined by the
covariance G1;1. For an unsqueezed state, we would have
G1;1 ¼ 0 and squared volume fluctuations would be pro-
portional to the total volume. However, even if we start
with an unsqueezed initial state, squeezing would develop
over time since _G1;1 is nonzero. In this way, the precise
state has to be analyzed to understand the long-term evo-
lution of fluctuations.

2. Coupled equations

The solution (42) for G2;0, compared with (36), shows
that curvature fluctuations to second order vanish where V
diverges. Thus, also G0;2 has to diverge there in order to
respect the uncertainty relation. The approach to zero is the

same for
ffiffiffiffiffiffiffiffiffi
G2;0

p
, 1=V and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
, which we can use to

check whether quantum back-reaction is important.
Writing equations of motion for expectation values to the
order where coupling terms to fluctuations appear, we
obtain

_P ¼ � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
þ 3

4
�

G2;0

ðP2 ��Þ3=2 ; (44)

_V ¼ 3

2

VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p þ 9

4
�

VPG2;0

ðP2 ��Þ5=2 �
3

2
�

G1;1

ðP2 ��Þ3=2 ;
(45)

which now forms a coupled set of five differential equa-
tions if we include G0;2. When V diverges, coupling terms
due to quantum back-reaction cannot be ignored. In _P, for
instance, the coupling term diverges, and in fact dominates
the classical term, since G2;0 vanishes like P2 ��, and
also _V has diverging coupling terms. Even the truncation
used here, which does include some quantum corrections,
is not consistent at this point because one has to expect that
further correction terms by higher moments become large,
too. Nevertheless, in the approach to the divergence of V,
correction terms should become relevant one by one, de-
pending on their moment order. Thus, it is of interest to
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analyze the coupled system written here to second order in
the moments before proceeding to higher orders.

We first focus on the system given by the Eqs. (44) for _P
and (39) for _G2;0 since these two equations are coupled
only with each other. If we divide _P by _G2;0, we obtain the
differential equation

dP

dG2;0
¼ 1

2

P2 ��

PG2;0
� 1

4

�

PðP2 ��Þ ; (46)

for PðG2;0Þ or, in a simpler form,

dðP2 ��Þ
d logG2;0

¼ P2 ��� 1

2

�

P2 ��
G2;0: (47)

This equation of the form

f0ðxÞ ¼ fðxÞ � 1

2
�

ex

fðxÞ
can be solved by

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ce2x þ�ex

p

with an integration constant c. In this way, we derive the
exact second-order relations

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðG2;0Þ2 þ�G2;0

qr
; (48)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðG2;0Þ2 þ�G2;04

q
: (49)

We can use these relations to solve the equations of
motion for Pð�Þ and G2;0ð�Þ, but the resulting differential
equations are complicated. For G2;0, for instance, the dif-
ferential equation is

_G 2;0 ¼ �3
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 ��
p G2;0

¼ �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG2;0Þ2 þ �G2;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ�=G2;0
p

vuut : (50)

Fortunately, as we will see in the next subsection, already
the relation PðG2;0Þ has interesting implications regarding
the quantum back-reaction problem. We will continue us-
ing (50) in the next subsection, but first note that further
analysis, at least numerically, of the truncated second-order
system could be facilitated by an explicit decoupling of the
equations. We have already provided direct equations for P
andG2;0 which we can assume to be solved by integrations.
Further equations are then still coupled amongst each
other, but different combinations are decoupled. First, we
combine _V and _G1;1 to

d

d�

�
G1;1

V

�
¼ � 3

2
�

G2;0

ðP2 ��Þ3=2 �
3

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p G1;1

V

� 9

4
�

P

ðP2 ��Þ5=2 G
2;0 G

1;1

V

þ 3

2
�

1

ðP2 ��Þ3=2
�
G1;1

V

�
2

(51)

which is already decoupled from the rest. OnceG1;1=V has
been solved for, (45) presents an uncoupled differential
equation for V, and we can finally integrate (41) for G0;2.

3. Strength of quantum back-reaction

The term�G2;0 in (49) arises through the quantum back-
reaction in the evolution equation for P (44). If this term is
ignored, we reproduce the previous approximated solution
G2;0 ¼ G2;0ð�0ÞðP2 ��Þ=ðP2

0 ��Þ, which follows from

(35) and (42). Hence, comparison shows that the integra-
tion constant is proportional to c� ðP2

0 ��Þ2=½G2;0ð�0Þ�2
if initial values are imposed where back-reaction is weak.
Starting with a semiclassical initial state, for some time we
will have G2;0ð�Þ �G2;0ð�0Þ and the term �G2;0 can in-
deed be ignored compared to the classical parameter ðP2

0 �
�Þ2 in (49). (The value of P2

0 �� cannot vanish under the

stated assumptions, for we already know that back-reaction
terms would then be large at �0.) But as we approach the
divergence of V, we have seen that G2;0 according to the
lowest order solution (42) would tend to zero. In this
regime, the new term �=G2;0 in (50) will eventually domi-
nate over the constant c. This is another demonstration of
the fact that quantum back-reaction is important at this
place.
For c ¼ 0, i.e. in the strong quantum back-reaction

regime where�=G2;0 dominates, we can find a solution for

(50). The combination hð�Þ :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2;0ð�Þ=�4

p
csc satisfies a

simple differential equation solved by G2;0ð�Þ ¼
�sinh4ð3ð���0Þ=4Þ. The higher power compared to
the solution (42) in the absence of back-reaction again
indicates that quantum back-reaction becomes important
at large volume.
Turning now to V, we can confirm that the quantum

back-reaction term does change its behavior of divergence.
In (45), the dominant back-reaction term involves G2;0

rather than G1;1. Ignoring quantum back-reaction in the
solution for G2;0, we would have

_V

V
� 3

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p þ 9

4

�Pffiffiffi
c

p ðP2 ��Þ3=2 :

The second term is subdominant. Quantum back-reaction
in the solution for G2;0, on the other hand, implies a
stronger divergence as can be seen by using relation (48)
for c ¼ 0, since we now have
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_V

V
� 15

4

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p :

Here, the quantum back-reaction term for V has the same
form as the classical term, which have thus be combined.
The prefactor of the right-hand side becomes larger than
classically once quantum back-reaction is included,
strengthening the divergence of V.

One may conjecture that, with all quantum corrections
from the complete series of moments, the divergence of V
would disappear. This is suggested by the fact that a self-
adjoint Hamiltonian would provide unitary evolution in
which the wave function remains well-defined throughout
the point where the classical V diverges, and even beyond
that point. In the model considered, the Hamiltonian for
�-evolution is not essentially self-adjoint but has several
inequivalent self-adjoint extensions [16]. While subtle is-
sues of self-adjoint extensions of operators usually do not
play a large role in effective equations, provided that
consistent truncations are possible, the point where V
diverges classically requires all moments to be taken into
account. With infinitely many independent variables, cou-
pling terms have to be arranged in a precise manner, which
can reflect issues of self-adjoint extensions. When all mo-
ments are taken into account in a way corresponding to
unitary evolution of the corresponding wave function,
well-defined equations for expectation values and the mo-
ments may result. This supports the conjecture that the
classical divergence might be removed by an interplay of
all moments, but a verification in this highly coupled
system is complicated. (It could, in fact, happen that
wave functions evolve out of the domain of definition of

the unbounded operator V̂, and then directly reenter. Thus,

it is not obvious that equations for expectation values hV̂i
must be well-defined at all times. Another example which
indicates caution against applying arguments of self-
adjointness for the behavior of expectation values is the
upside-down harmonic oscillator. Its Hamiltonian is not
essentially self-adjoint and allows different self-adjoint
extensions, depending on the boundary conditions at in-
finity where wave packets are reflected. However, the
Hamiltonian is also quadratic, and no quantum back-
reaction results. Effective equations are automatically trun-
cated without implementing any approximation; the
evolution of moments to finite order just does not depend
on what self-adjoint extension is used.)

We will probe the divergence of V further by the nu-
merics of high-order moments. For now, conclusions one
can draw already from the analysis presented so far are:

(i) Quantum back-reaction is essential at large volume
in the presence of a positive cosmological constant,
even though onewould expect it to be a semiclassical
regime of small curvature if � is small.

(ii) While a wave packet in a V-representation may not
show large deviations from the classical trajectory,
this is only because volume fluctuations grow and

are larger than deviations from the classical trajec-
tory. Nevertheless, as volume fluctuations diverge,
deviations from the classical trajectory can be large.
Equations including quantum back-reaction clearly
show that correction terms cannot be ignored.
Quantum back-reaction seems to strengthen the di-
vergence of V rather than triggering a recollapse.

(iii) Corrections are more visible for curvature P since
its fluctuations approach zero while also here quan-
tum back-reaction terms in the equations of motion
are relevant. Thus, deviations from the classical
trajectory build up and, unlike for V, are not cov-
ered by a broad wave function if a P-representation
is used.

(iv) All state parameters matter for the spreading be-
havior and for the exact size of quantum correc-
tions. A state may be assumed to be unsqueezed
initially, setting G1;1ð�0Þ ¼ 0, but correlations will
build up over time.

D. Third order

At third or higher orders, the equations of motion not
only become longer; there is also a new feature in the
Poisson relations which we illustrate here. Some examples
of third-order moments are

G3;0 ¼ hP̂3i � 3PG2;0 � P3;

G2;1 ¼ 1

3
hV̂P̂2 þ P̂ V̂ P̂þP̂2V̂i � 2PG1;1 � VG2;0 � P2V;

G1;2 ¼ 1

3
hP̂V̂2 þ V̂ P̂ V̂þV̂2P̂i � 2VG1;1 � PG0;2 � V2P:

The Poisson brackets of second-order with third-order mo-
ments are of third-order form, for instance:

fG0;2; G3;0g ¼ 6G2;1; fG0;2; G2;1g ¼ 4G1;2;

fG1;1; G3;0g ¼ 3G3;0; fG1;1; G2;1g ¼ G2;1;

fG2;0; G2;1g ¼ �2G3;0; fG2;0; G3;0g ¼ 0;

where only the ones needed for evolution in our cosmo-
logical system were written. Two third-order moments in a
Poisson bracket, on the other hand, show a different be-
havior: They produce a term of higher order (fourth) as
well as products of second-order moments, which are to be
considered as being of fourth order in the hierarchy. This
behavior of the Poisson structure has consequences for the
truncation of equations of motion.
Unlike for second order, (38), there is a difference

between expanding the Hamiltonian to third order and
then deriving equations of motion, and expanding the
equations of motion (obtained from an expanded
Hamiltonian or the whole series in ℏ) to third order. In
particular, moments of third order in the Hamiltonian
produce moments of fourth order in the equations of
motion for third-order moments. This would result in a
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complete set if also equations of motion for fourth-order
moments are included. This problem does not arise if one
first computes equations of motion and expands those to
third (or any) order which is anyway more suitable because
it is the equations of motion which we are primarily
interested in. We illustrate this feature by the following
evolution equations, computed from the third-order
Hamiltonian:

_P ¼ � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p
þ 3

4
�

G2;0

ðP2 ��Þ3=2

� 3

4

�P

ðP2 ��Þ5=2 G
3;0; (52)

_V ¼ 3

2

VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p þ 9

4
�2 VPG2;0

ðP2 ��Þ5=2 �
3

2
�2 G1;1

ðP2 ��Þ3=2

� 3

4
�2 Vð4P2 þ�Þ

ðP2 ��Þ7=2 G
3;0 þ 9

4
�2 P

ðP2 ��Þ5=2 G
2;1;

(53)

_G 2;0 ¼ �3
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 ��
p G2;0 þ 9

4

�

ðP2 ��Þ3=2 G
3;0; (54)

_G1;1 ¼ � 3

2

�V

ðP2 ��Þ3=2 G
2;0 þ 9

4

�PV

ðP2 ��Þ5=2 G
3;0

� 3

4

�

ðP2 ��Þ3=2 G
2;1; (55)

_G0;2 ¼ �3
�V

ðP2 ��Þ3=2 G
1;1 þ 3

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p G0;2

þ 9

4

�VP

ðP2 ��Þ5=2 G
3;0 � 3

4

�

ðP2 ��Þ3=2 G
2;1: (56)

If we truncate the Hamiltonian (and hence the equations
of motion) to a given order, the equations of motion for
quantum variables involve higher order moments, as
shown in the following equations to third order in mo-
ments,

_G3;0 ¼�9

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2��

p G3;0þ 9

4

�

ðP2��Þ3=2 ððG
2;0Þ2�G4;0Þ;

(57)

_G2;1¼�3

2
�

V

ðP2��Þ3=2G
3;0þ9

4

�PV

ðP2��Þ5=2 ððG
2;0Þ2�G4;0Þ

þ3

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2��

p G2;1; (58)

_G1;2¼�3�
V

ðP2��Þ3=2G
2;1�9

2

�VP

ðP2��Þ5=2ðG
1;1G2;0�G3;1Þ

þ3

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2��

p G2;1�3

4

�

ðP2��Þ3=2ð�4ðG1;1Þ2

þG2;0G0;2þ3G2;2Þ; (59)

_G0;3 ¼ � 9

2
�

V

ðP2 ��Þ3=2 G
1;2 � 27

4

�VP

ðP2 ��Þ5=2

� ðG0;2G2;0 �G2;2Þ þ 9

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p G0;3

þ 9

2

�

ðP2 ��Þ3=2 ðG
1;1G0;2 �G1;3Þ: (60)

For consistency of the approximation one should eliminate
in this third-order approximation all terms of quartic order,
i.e. fourth-order moments, producing a closed set of equa-
tions. (One may eliminate terms quadratic in second-order
moments as well, but they are anyway subdominant when
the hierarchy is satisfied.) Truncating only the Hamiltonian
to third order is thus not enough because the general
Poisson bracket between two third-order moments pro-
duces terms of fourth order. (In general, the Poisson
bracket of two moments of order n and m, respectively,
produces terms of order nþm� 2 [see Eq. (5)]. Only for
second order does this result in a closed Poisson algebra.)
Consistently truncated equations of motion are produced if
one truncates the Hamiltonian as well as the Poisson
brackets to the order considered. An example to order
five can be found in the Appendix.

E. High-order corrections

Because of the complicated structure of the equations at
higher orders, analyzing them by analytical meanings is
very hard. Hence we need to resort to numerical methods.
In particular, in this subsection we will numerically solve
the evolution equations, derived using computer algebra,
up to 10th order. An important question is then what
values to choose for all the 63 moments involved at initial
time �0 ¼ 0. Here we will simply choose the initial state
corresponding to an unsqueezed Gaussian pulse in the
volume,

�ð�Þ ¼ 1

�1=4
ffiffiffiffi
�

p e�ð��V0Þ2=ð2�2ÞþiP0�=ℏ: (61)

While this state is very special in the space of all semi-
classical moments, it already serves well to demonstrate
several features of quantum evolution. A more detailed
analysis of the large parameter space will appear
elsewhere.
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Using (19), the initial moments are then given by,

Ga;b � XMinða;bÞ

d¼0

ð�iℏÞaCd
ab

Z 1

�1
d���ð�Þð�� V0Þb�d

�
�
d

d�
� i

P0

ℏ

�
a�d

�ð�Þ; (62)

where � denotes complex conjugation. This integral can be
performed and happens to be vanishing except in those
cases for which both a and b are even numbers,

Ga;b¼
�
2�ðaþbÞℏa�b�a a!b!

ða=2Þ!ðb=2Þ! if aand bare even;
0 otherwise:

(63)

This state saturates the uncertainty relation, and we have

that ���V ¼ ffiffiffiffiffiffiffiffiffi
G2;0

p �Oð ffiffiffi
ℏ

p Þ, so the moments satisfy
the semiclassical hierarchy. In our simulations, however,
we have used ℏ ¼ 1 in order to make implications for
the behavior of back-reaction more clearly visible.
Nevertheless, the features we point out have been verified
also for smaller values of ℏ.

By this choice of initial values, the many-parameter
family of all moments up to a given order is thus reduced
to a 1-parameter family labeled by the volume spread �.
From this perspective, choosing a Gaussian initial state
seems rather special and arbitrary; it is distinguished only
by the simplicity of writing down a wave function. As the
system evolves, the state will depart from Gaussian behav-
ior, a property which can easily be seen by following the
behavior of the moments. Before discussing the numerical
results in this direction, we note that the choice of Gaussian
moments as initial values can sometimes be dangerous
also for numerical purposes. A Gaussian state saturates
the uncertainty relations, and numerical errors may easily
move the evolved moments to the wrong side of saturation.
Depending on the dynamical system, the saturation surface
may be unstable such that uncertainty relations may be
violated after some stretch of numerical evolution, which
at that stage could no longer be trusted. (See also [17] for a
discussion of similar issues in small-volume regimes.) In
the numerical evolutions shown here, the fact that uncer-
tainty relations are maintained has explicitly been tested by
monitoring the relevant combinations of the second-order
moments. In particular, the final time of each evolution has
been chosen as the last time where the convergence tests
are obeyed.

Once an unsqueezed Gaussian is chosen as initial state,
the only choice left is the value of �. The system under
consideration has no ground state, and thus there is no
preferred value for � as for instance the harmonic oscil-
lator would suggest. For small initial fluctuations, which
are related to � by ���V � 1=�P, we just require
that 1=P0 	 � 	 V0 is satisfied for the initial values.
Specifically, in all evolutions presented in this paper we
take V0 ¼ 1, P0 ¼ 104 and � ¼ 0:01. This does not

represent a high restriction since we have also performed
numerical simulations for different larger values of the
width (� ¼ 1, 100, 104) and the qualitative picture is not
changed. Even so, the behavior of the system for values of
� & 10�4 is completely different. In this case the correc-
tions to the classical trajectories are very large from the
very beginning and the approximation can not be regarded
as valid. This happens because in the evolution Eqs. (25)
and (26), the moments Gn�1;1 and Gn;0 appear. At the
initial time �0 the former is zero, whereas the latter is of
the order ��n for even n and vanishing for odd n. Hence,
for very small �, the initial time derivatives of V and P
increase much with the considered order. This entails a
completely different trajectory for the classical objects at
each order and thus the approximation breaks down.
Finally, for the classical solutions (35) and (36) to exist,

the cosmological constant must be in the interval ½0; P2
0Þ, so

we have chosen three representative values: small � ¼ 1,
intermediate � ¼ 104, and large � ¼ 9� 107. These val-
ues are much higher than the observed one. Even so, since
the model we adopt as an example is unphysical anyway, it
would not be meaningful to have it clad in a physical guise
by using the observational value for �. We use the men-
tioned values in order to bring out more clearly the prop-
erties we have found about high-order moments.

1. Numerical results

Let us first explain the behavior of the volume V. For the
case of small and intermediate values of the cosmological
constant, the evolution of the volume reproduces the clas-
sical one with small corrections at all orders. However, in
the case of large cosmological constant we find that, at later
times, the classical trajectory of the volume receives large
quantum corrections, which make it diverge faster (see
Fig. 3). In particular, we do not see any indication that
quantum back-reaction may trigger a recollapse; instead,
the classical divergence of the volume is enhanced by
quantum corrections with each order. In Appendix A we
provide a complete analysis of the convergence of our
solutions at different orders by studying the relative cor-
rections that the expectation value of the volume receives
at each order. These results show that our effective analysis
is valid (converges exponentially) at all considered times
with a high precision.
Regarding the evolution of the moments there are two

different behaviors. On the one hand, those Gi;j with
ð�1Þiþj ¼ 1 only show one branch; see the two character-
istic examples shown in Fig. 4. That is, their evolution at
different orders reproduce the same trajectory (for large
values of the cosmological constant with small correc-
tions). On the other hand, the moments with ð�1Þiþj ¼
�1 show two different branches. One of them always
corresponds to the order iþ j and the other one to higher
orders. This curious behavior is due to the fact that, in
the latter case, when truncating the equations of motion
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corresponding to this moment at order iþ j, we neglect the
contribution of certain moments that are initially nonvan-
ishing. In the former case, for Gi;j with ð�1Þiþj ¼ 1, all
neglected moments in its equation of motion at order iþ j
happen to be initially vanishing.

Before commenting on the collective behavior of differ-
ent moments, it will be useful to remember the particular
case with � ¼ 0 where, as shown in Sec. IVA, analytic
solutions for the moments at all orders can be obtained. In
this case the evolution equations for the classical variables
as well as for the quantum corrections are completely
decoupled, and there is no quantum back-reaction. Using
the exact solutions (34), the moments Gab with a > b are
exponentially decreasing, whereas those with a < b in-
crease exponentially. On the other hand, the variables
with a ¼ b are constants of motion. Note also that the

combinations
ffiffiffiffiffiffiffiffiffiffiffijG0;iji

p
=V and

ffiffiffiffiffiffiffiffiffiffiffijGi;0ji
p

=P remain constant
under evolution. In Fig. 5 we show these objects for differ-
ent values of the cosmological constant. It can be clearly
seen how the trajectories depart from the constant behavior
earlier when increasing the value of the cosmological
constant. In this simple system one can easily construct
many other constants of motion, e.g. Ga;b=ðPaVbÞ.

FIG. 3 (color online). The ten different evolutions of the
volume V at each order for � ¼ 9� 107. The lowest trajectory
corresponds to the classical one. The values are increasing with
the considered order in such a way that the largest trajectory is
obtained at 10th order. For a more detailed analysis of the
convergence, see Appendix A.

FIG. 4 (color online). An example with two different moments
with one and two branches, respectively. For every moment Gi;j,
the evolution at every order from iþ j to 10 is shown. The first
two plots correspond to � ¼ 104, whereas the other two repre-
sent the evolution of the same moments for � ¼ 9� 107.
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Even though, for illustration, we will only consider those
mentioned above.
Finally, in Figs. 6–9 we show the collective behavior of

the different moments Gi;j. Essentially they have been
divided in four groups depending on whether both i and j
are even numbers or not and whether i < j or i > j. This
classification is inherited on the one hand from our chosen
initial conditions, where the only nonvanishing moments
are those with both i and j even, and on the other hand from
the case without cosmological constant explained above,
where the increasing or decreasing behavior of different
moments also depends on the sign of i� j.
The increasing behavior of those moments Gi;j with

i < j is obeyed also for nonvanishing values of the cosmo-
logical constant (see Figs. 7 and 9). On the other hand, in
Figs. 6 and 8 the decreasing moments are plotted, but this
behavior is violated as we move to higher values of the
cosmological constant. As a general feature, in these plots
it can also be observed that the evolution of different mo-
ments seems to be ‘‘slowed down,’’ that is, everything
(for example the instant when nearly all moments cross
each other) happens latter as one increases the value of the
cosmological constant. This makes the hierarchy between
different moments be retained for a longer time.
Another interesting issue is shown in the plots corre-

sponding to the initially nonvanishing moments (Figs. 6
and 7): at late times those moments Gi;j with the same

number of P̂, that is with a common index i, accumulate at
a common value.
Finally, we note how the initially vanishing moments

behave at the beginning of the simulations. As can be seen
in Figs. 8 and 9, since the initial state of the system is not
adapted to the equations of motion, these moments are
excited very quickly to a ‘‘natural’’ value which more
closely corresponds to a dynamical coherent state. The
absolute value of a given moment Gi;j immediately after
this excitation, increases with the value of the cosmologi-
cal constant � and approximately also with the difference
i� j. This last dependence can be seen in the equations of
motion. More explicitly, making use of the general formula
(5) and our particular Hamiltonian (23) it can be checked
that the time derivative of a momentGi;j is given as a linear
combination of the following objects fGi;j�1Gk�1;0; Gi�1;j

Gk�1;0; Gi;j�1Gk�2;1; Giþk�n;j�n; Giþk�1�n;jþ1�ng, where k
must be summed from 2 to the order K at which we decide
to truncate the Hamiltonian, and n corresponds to the sum
over odd numbers that appears in Eq. (5). Taking into
account the dependence of these objects on the Gaussian
width � at the initial time, it is straightforward to see that

the initial time derivative of Gi;j behaves like ��ðKþi�jÞ.

2. Implications for state evolution

In Sec. IVC, several questions about the evolution of
states has been suggested by the second-order analysis, but
could not be answered without more general information

FIG. 5 (color online). These figures show, in a logarithmic
scale, objects that are constant in the case of a vanishing �.
The plots correspond to the values � ¼ 1, 104, and 9� 107

respectively. In the first two graphics the moments are constant
throughout evolution until very late times. On the other hand, for
a large cosmological constant this behavior is violated from the
very beginning. As a general feature, in all cases, once the

moments are no longer constant, the quantities
ffiffiffiffiffiffiffiffiffiffiffijG0;iji

p
=V as

well as jGi;ij happen to be increasing functions, whereasffiffiffiffiffiffiffiffiffiffiffijGi;0ji
p

=P are decreasing. The different lines correspond, from
largest to smallest value at the initial time, to the moments G4;4,
G2;2, and then, with an equal initial value by pairs, to
ðG10;0; G0;10Þ, ðG8;0; G0;8Þ, ðG6;0; G0;6Þ, ðG4;0; G0;4Þ, and
ðG2;0; G0;2Þ.
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about the high-order system of quantum back-reaction.
With the numerical results, we can now provide additional
indications regarding quantum evolution, but also new
properties become visible.

FIG. 6 (color online). This figure shows the evolution of the
momentsGi;j with i > j and for both i and j even. Different plots
correspond to the values � ¼ 1, 104, and 9� 107 respectively.
In the first two plots we observe that the exponentially decaying
behavior of these moments is maintained for small and inter-
mediate values of the cosmological constant. On the other hand,
for large cosmological constant, the exponential decay is not
followed anymore and there are even some moments that slightly
increase. Interestingly, at the final time of the evolutions shown
here, different moments Gi;j with the same index i approach a
common value. From largest to smallest values at the accumu-
lation time the presented moments are: G10;0 alone; G8;2 with
G8;0; G6;4 with G6;2 and G6;0; G4;2 with G4;0; and finally G2;0 on
its own. The tendency to this behavior can already be noted in
the second plot, whereas in the first one all moments gather at a
value near 1.

FIG. 7 (color online). This figure corresponds toGi;j with i < j
and both i and j even numbers. The value of the cosmological
constant is again � ¼ 1, 104 and 9� 107 for different plots. As
in the previous case, in the first two plots all moments coincide at
a value near 1 at a given time, whereas in the last plot the
different variables tend to gather in small sets given by those
moments with the same number of P̂. In this last plot, at a final
time and from largest to smallest value: G4;6, then the three G2;i,
and finally the five G0;i. Spikes in this and the following plots
arise from transitions of the moments through zero, shown in
logarithmic form.
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First, the strong increase of some of the moments al-
ready seen at second order is confirmed. The system is thus
necessarily one of strong quantum back-reaction. Results
about self-adjoint extensions of quantum Hamiltonians

have suggested that the evolution can be continued through
the classical divergence of the volume. The only intuitive
semiclassical interpretation would be that quantum correc-
tions become so strong that they can trigger a recollapse.
Our numerical results to the orders specified do not provide
any indication for this; they rather show that the divergence
is enhanced by quantum corrections.

FIG. 8 (color online). This figure corresponds to initially van-
ishing Gi;j with i > j. The same values of � as in previous cases
for each plot apply. Since the initial state we have picked is not
adapted to the equations of motion, at the initial time all these
modes are excited. Their absolute value after this excitation is
approximately ordered by increasing (i� j). That is, the largest
moment is G9;0, then G9;1, G8;1, . . . On the other hand, it is also
interesting to note that this excitation becomes larger with an
increasing �. Finally, in the case with vanishing �, all these
moments are exponentially decreasing. This behavior is quali-
tatively disappearing as one considers a larger cosmological
constant.

FIG. 9 (color online). This figure shows the initially vanishing
moments Gi;j with i 
 j. The same values of � as in previous
cases for each plot apply. As in the previous case, initially all
moments are excited to a given value, which is larger with an
increasing (i� j). In this way, the moments with lowest absolute
value are G0;9, G1;9, G1;8, . . . On the other hand, and contrary to
the previous case, the qualitative behavior of these moments is
kept the same as in the case with � ¼ 0 even for large values of
the cosmological constant.
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The behavior of the moments confirms two expectations
about state evolution. First, several moments grow and
become dominant providing strong quantum back-
reaction. Secondly, the state rapidly departs from the ini-
tially chosen Gaussian moments. While it is difficult to
reconstruct a wave function from the moments, it is clear
from several of their properties that the state cannot remain
Gaussian. A Gaussian state has vanishing moments of odd
order, a property which is immediately violated once the
state is evolved. As the rapid initial increase of the odd-
order moments shown in Figs. 8 and 9 shows, the evolution
quickly adapts the state to one whose moments change less
severely. To some degree, even the special choice of a
Gaussian state may not be much of a restriction since the
evolution soon leads to a more suitable dynamical state.
However, for robust conclusions about quantum evolution
from a fixed set of initial values one must analyze how the
state settled down to depends on the initial moments. If
different sets of initial moments still lead to adapted states,
but ones that differ from the Gaussian adapted state in a
way sensitive to the initial set, the quantum behavior would
be hard to predict without knowledge of what state may be
preferred. Here, much more numerical analysis of the large
parameter space involved is necessary.

Finally, we see from figures such as Figs. 8 and 9 that a
hierarchy of the moments is maintained for a rather long
time even throughout the phase of dynamically adapting
the state. Moments of different orders clearly fall into
distinct classes as for their behavior of decay or increase.
Only when moments of different orders converge, which
interestingly happens in a very narrow time frame for all
orders shown, will the hierarchy be broken. At such a point,
the state can no longer be considered semiclassical, and
truncations of the infinite system of effective equations
(and the asymptotic expansion they represent) become
more difficult to justify in general terms. Nevertheless, in
our specific case, even when the state is no longer of
recognizably semiclassical form, the truncation is still
justified by the convergence analysis we perform in
Appendix A. We have also shown the evolution even after
that time of accumulation because it indicates another
feature. After the accumulation, the moments again sepa-
rate into clearly demarcated sets, indicating that another
hierarchy arises. However, since one has to evolve through
an anhierarchical point, it is not clear whether this feature
is one of the full system or an artifact of the truncation.
Finally and somewhat unexpectedly, the hierarchy is main-
tained longer for larger values of the cosmological con-
stant, even though the deviation from the harmonic model
is then stronger.

V. DISCUSSION

The main contribution of this article is the introduction
of a new computational method to analyze quantum back-
reaction of quantum mechanical or quantum cosmological

systems. We have shown that the use of efficient computer-
algebra tools in combination with the closed formula for
the Poisson brackets of two generic moments has been
essential to push the feasibility of computations to very
high order. In particular, the example we have studied of a
spatially flat, isotropic universe with a positive cosmologi-
cal constant and a free, massless scalar field already in-
dicates the usefulness of these methods.
Our analysis has found several new properties of state

evolution, some of which were quite unexpected. For
example, the state rapidly deviates from the initial
Gaussian form (in the volume), but then settles down to
another shape obeying a hierarchy of the moments. In this
range, truncations used to analyze effective equations re-
main justified. At some point, the moments converge,
interestingly at about the same time. Several properties
found here remain without an analytical explanation,
stimulating further studies. For instance, somewhat coun-
terintuitively, the moments happen to ‘‘slow down’’ their
evolution as the value of the cosmological constant in-
creases. That is, qualitatively they follow the same pattern,
independently of �, but everything happens later for large
values of the cosmological constant. Another interesting
feature comes from the evolution of the initially nonvan-
ishing moments Gi;j: at late times they accumulate at a
common value for each index i.
On the other hand, we have also studied the convergence

of this truncated system of equations with respect to the
order (see Appendix A) by analyzing the relative error in
the trajectory of the expectation value of the volume V.
Remarkably, even though a priori we expect only asymp-
totic rather than convergent expansions, the results con-
verge exponentially for all considered times within a large
range of orders. This means that our results reliably repro-
duce the full quantum behavior of the system even quite
near the divergence.
Finally, details of the numerics remain to be explored,

most importantly those related to the large parameter space
involved. For instance, it is not clear yet how strong the
role of the choice of an initial state is. The shape of the state
changes rapidly in a very brief initial phase, as shown by a
large change in the moments, and then settles down to a
form better conserved by the dynamics. This evolved state
seems adapted to the dynamics, but it is not known at
present whether differently chosen initial states will give
rise to the same kind of dynamically evolving state, nor is it
known whether the initial choice could influence the dy-
namics strongly. For such questions, the parametrization
by moments, rather than wave functions, is important
because it gives full access to the state space. For instance,
one could use a random number generator to construct the
initial moments just by restricting to those sets that obey
the Schwartz inequalities. This will provide a systematic
control to map the whole state space, which would not
be achievable by specifying explicit wave functions.
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(Of course, one could randomize the coefficients of wave
functions in some basis, but the observable meaning of
those variations would be much less clear than changes of
moments.) Probing the large parameter space of the initial
state is the main problem in this context which will benefit
from further numerical support. The results of this paper
thus show that quantum cosmology provides its own set of
problems which are interesting from a numerical perspec-
tive, whose solution will then give feedback for the specific
form of the dynamics realized.
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APPENDIX A: CONVERGENCE OF THE SYSTEM
WITH AN INCREASING NUMBER OF MOMENTS

In this appendix we address the issue of the convergence
of the solution when considering an increasing number of
moments. As we have explained in the main body of the
article, the existence of a hierarchy on the moments define
a semiclassical regime where the truncation of the system
into a finite number of moments makes sense. But, since
we have obtained the numerical solution of the system
of equations at different orders, another method is at our
hand to check whether the ignored moments are indeed
negligible, namely, to analyze if the difference between
the expectation values at different order decreases suffi-
ciently fast.

In order to do so, we define the relative error at order
n as,

�Vn :¼ 1� Vn

Vnþ1

; (A1)

where Vn is the expectation value at order n. If this object
is convergent sufficiently fast with n, it gives an estimate of
the total relative error (1� Vn=V1) committed when trun-
cating the system at a given order n.

Even though we did not write it explicitly, the object
�Vn is time (�) dependent and, in fact, we expect it to
increase (and eventually not to converge) as we approach
the regime of large moments. Hence we have chosen three
different times to perform the convergence tests: 0:4�fin,
0:6�fin, and 0:9�fin, where �fin is the final time of each

FIG. 10 (color online). In these plots we show the relative
change of the volume �Vn at each perturbative order for the
three different values of the cosmological constant in a logarith-
mic scale. The computed results and their linear regressions at
times � ¼ 0:4�fin, � ¼ 0:6�fin, and � ¼ 0:9�fin are plotted,
respectively, in black (dots and dot-dashed line), green (squares
and continuous line) and red (diamonds and dashed line).
In the first plot the points at n ¼ 2 corresponding to � ¼
0:4�fin and � ¼ 0:6�fin are missing because they are exactly
(up to our numerical error) zero. These two points have not been
considered to perform the corresponding linear regression. The
slope of each linear regression gives the convergence order.
The absolute value of the different slopes are, from upper to
the lower plot and line: 1.22, 1.14, 1.02; 1.19, 0.98, 0.92; and
0.59, 0.87, 0.99.
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numerical evolution and takes the value 0:893�div for� ¼
1, 0:807�div for� ¼ 104, and 0:665�div for� ¼ 9� 107.

These convergence tests are shown in Fig. 10 in a natural
logarithmic scale. Firstly, we note that the convergence is
exponential in all the cases and for all considered times.
Therefore, we have performed linear regressions for
all the data.

As expected, the magnitude of the errors increases for
later times in all cases. Even so, surprisingly for the first
two plots, the convergence is faster at those times. The
numerical value of the errors is also increasing with the
value of �. For instance, the relative errors of the classical
solutions (n ¼ 1) are of the order e�6 � e�4 � 10�3–10�2

for large � ¼ 9� 107, whereas for small � ¼ 1 they are
only of order e�16 � e�11 � 10�7–10�5. This gives an
idea of the magnitude of the back-reaction in each case.

On the other hand, we see that our result at 10th order
mimics very accurately the behavior of the whole quantum
system, in the sense of an asymptotic expansion. In par-
ticular, the largest error we find corresponds to the large
cosmological constant case at late times (0:9�fin) and it is
of the order of e�9 � 10�4.

Note that in the last plot of Fig. 10 (and also in the
second one, but less severe so) even and odd orders show
different convergence behaviors. This observation demon-
strates that moments of odd orders continue to contribute
less significantly to the volume expectation value than
moments of even order, even after the state has evolved
away from Gaussian form for which odd-order moments
vanish. [For odd n, the expectation values in the ratio

Vn=Vnþ1 in (A1) differ by even-order moments, and the
errors are seen to be enlarged in the plots.]
This analysis proves that our treatment provides a valid

approximation at all considered times, a result which
strengthens the motivation to study this general approach.

APPENDIX B: HIGH-ORDER EQUATIONS

In order to give a flavor of the increase in complexity of
the equations at high orders, in Fig. 11 we show the average
number of terms per equation at each order. In addition, in
this appendix, we also present explicitly the complete fifth-
order equations of motion (with ℏ ¼ 1).

_P ¼ 3�G2;0

4ðP2 ��Þ3=2 �
3P�G3;0

4ðP2 ��Þ5=2 þ
3�ð4P2 þ�ÞG4;0

16ðP2 ��Þ7=2 � 3P�ð4P2 þ 3�ÞG5;0

16ðP2 ��Þ9=2 � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p

2

_V ¼ 9P�G2;0V

4ðP2 ��Þ5=2 �
3�ð4P2 þ�ÞG3;0V

4ðP2 ��Þ7=2 þ 15P�ð4P2 þ 3�ÞG4;0V

16ðP2 ��Þ9=2 � 9�ð8P4 þ 12�P2 þ�2ÞG5;0V

16ðP2 ��Þ11=2 þ 3PV

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p

� 3�G1;1

2ðP2 ��Þ3=2 þ
9P�G2;1

4ðP2 ��Þ5=2 �
3�ð4P2 þ�ÞG3;1

4ðP2 ��Þ7=2 þ 15P�ð4P2 þ 3�ÞG4;1

16ðP2 ��Þ9=2

_G 0;2 ¼ 3PG0;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p � 3V�G1;1

ðP2 ��Þ3=2 �
3�G1;2

ðP2 ��Þ3=2 þ
9PV�G2;1

2ðP2 ��Þ5=2 þ
9P�G2;2

2ðP2 ��Þ5=2 �
3V�ð4P2 þ�ÞG3;1

2ðP2 ��Þ7=2

� 3�ð4P2 þ�ÞG3;2

2ðP2 ��Þ7=2 þ 15PV�ð4P2 þ 3�ÞG4;1

8ðP2 ��Þ9=2

_G0;3 ¼ � 9VG1;2�

2ðP2 ��Þ3=2 �
9G1;3�

2ðP2 ��Þ3=2 �
45PVð4P2 þ 3�ÞG2;0�

16ðP2 ��Þ9=2 þ 27PVG2;2�

4ðP2 ��Þ5=2 þ
27PG2;3�

4ðP2 ��Þ5=2

� 9Vð4P2 þ�ÞG3;2�

4ðP2 ��Þ7=2 � 9PV�

8ðP2 ��Þ5=2 þ
9PG0;3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p þ
�
9�ð4P2 þ�Þ
8ðP2 ��Þ7=2 þ

9�G0;2

2ðP2 ��Þ3=2
�
G1;1

þG0;2

�
� 27PV�G2;0

4ðP2 ��Þ5=2 �
27P�G2;1

4ðP2 ��Þ5=2 þ
9V�ð4P2 þ�ÞG3;0

4ðP2 ��Þ7=2 þ 9�ð4P2 þ�ÞG3;1

4ðP2 ��Þ7=2 � 45PV�ð4P2 þ 3�ÞG4;0

16ðP2 ��Þ9=2
�
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FIG. 11 (color online). In this plot we show the average
number of terms that appear in each evolution equation with
respect to the order. The dependence is exponential.
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_G 0;4 ¼ � 9P�G0;2

2ðP2 ��Þ5=2 þ
6PG0;4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ��

p þ
�
9V�ð4P2 þ�Þ
2ðP2 ��Þ7=2 þ 6�G0;3

ðP2 ��Þ3=2
�
G1;1 þ 9�ð4P2 þ�ÞG1;2

2ðP2 ��Þ7=2 � 6V�G1;3
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