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We present evidence that a special class of gravitationally coupled hidden sectors, in which conformal

invariance is dynamically broken in a controlled way, exhibit the properties of dark energy. Such quantum

field theories may appear while embedding the standard model in a more fundamental high energy theory.

At late times, an effective dark energy field behaves similarly to an exponentially small cosmological

constant while at early times its energy density partly tracks that of matter.
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I. INTRODUCTION

What is the structure of our Universe and what governs
its evolution? Extensive cosmological observations have
shown that the Universe is mostly cold, dark, and accel-
erating (for a review see e.g. [1] and references therein).
A large fraction of its current (and possibly future) energy
density may be modeled by an effective negative-pressure
fluid named ‘‘dark energy.’’ Despite intense investigation,
the fundamental structure and origin of this fluid is, how-
ever, not well understood.

A simple cosmological constant term in Einstein’s equa-
tions provides perhaps the least complicated model of dark
energy. The smallness of the observed cosmological con-
stant poses a theoretical challenge however and no com-
pelling argument for it has been formulated to date.
Dynamical models for dark energy have also been pro-
posed: quintessence, K-essence, fermion condensates,
phantom, tachyonic, coupled dark matter and dark energy
models, to name a few (see [1,2] for recent reviews).
Quintessence models introduce scalar fields and postulate
specific potentials that can track dark matter and lead to
late-time accelerated expansion. K-essence models, origi-
nally proposed in the context of inflation, modify the
kinetic terms of scalar fields and also lead to accelerated
expansion. For some time period, the equation of state of
the modified scalar field is the one expected for dark
energy. In another class of models, the (bosonic) long
wavelength excitations of a fermion condensate play the
role of a dark energy field. These excitations are self-
interacting and at late times relax to an effective cosmo-
logical constant. In phantom field models, a scalar field
exhibits a ‘‘wrong sign’’ kinetic term; even if the classical
dynamics of such a field can be consistent, the fact that the
energy of phantom fields is unbounded below makes their
vacuum unstable and their quantum theory not well defined
unless some mechanism generates a lower bound on their
energy. Coupled dark matter and dark energy models pos-
tulate certain interactions between (dark) matter and the

dark energy field and attempt to explain both the observed
acceleration as well as the observed similarity of the matter
and dark energy densities today. Other possible explana-
tions of late-time acceleration, not relying on additional
(fundamental or effective) scalar fields have also been
proposed—such as infrared modifications of general
relativity.
All these scenarios, proposed as a consequence of the

experimental evidence for dark energy, can be made con-
sistent with observations and constraints; their place in a
more complete theory describing both the evolution of the
universe as well as the known particle physics, remains to
be clarified. The standard model of particle physics ex-
plains successfully all collider and other experimental data;
it nevertheless has many theoretical shortcomings and it is
presently seen only as a good effective theory that requires
a high-energy completion. Many possible extensions of the
standard model have been proposed, addressing its specific
difficulties. Some of these models, while motivated by
particle physics issues, provide good candidates for dark
matter. It seems natural to expect that a compelling solu-
tion to both the cosmological observations and particle
physics issues should exist in the context of a more funda-
mental theory.
One of the proposed ways for embedding the standard

model in string theory is by making it part of a quiver
gauge theory–i.e. a theory with many gauge groups and
fields transforming either in the adjoint representation or in
the bi-fundamental representation of these groups. Such
theories may be realized (either directly or holographi-
cally) [3] in terms of D-branes placed at various types of
singular points. The additional gauge groups are either
broken at a sufficiently high scale or are decoupled from
the standard model by appropriate choices for the relevant
coupling constants or other parameters concerning the de-
tails of the compactification to four dimensions. Such
decoupled sectors nevertheless affect the observable phys-
ics through gravitational interactions—either through
higher-dimension Plank-suppressed operators or by play-
ing the role of dark matter (if the excitations of these
sectors are sufficiently massive) or dark energy (if the
excitations of these sectors are sufficiently light or even
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massless). It is therefore interesting to study such de-
coupled theories from this perspective. All scalar fields
present in these theories transform in nontrivial represen-
tations of the gauge group, making them not directly
suitable for dark matter or dark energy candidates. In this
paper, we will discuss a class of quantum field theories
which may appear in such a scenario. They are confor-
mally invariant at the classical level but no longer so at the
quantum level. Conformal invariance will be broken in an
interesting way which will allow us to gain all-order infor-
mation about the theory and identify the relevant gauge
singlet(s) that can play the role of a dark energy field.

Further motivation for analyzing theories of the type
outlined above is the proposal [4] to embed the standard
model itself in a conformal field theory. In this scenario, at
some (high) energy scale particle physics is governed by a
nonsupersymmetric conformal field theory. Sometimes
such theories have unexpected features (see e.g. [5,6])
whose phenomenological consequences are worthwhile
exploring.

From a string-theory perspective, these theories may
be realized in terms of a stack of D3 branes probing
nonsupersymmetric An�1 orbifold singularities; they are
quiver gauge theories with n nodes. Fields transforming
in the adjoint representation are realized by strings con-
necting branes in the same stack while fields in the
bi-fundamental representation are the lowest lying modes
of strings connecting the images under the action of the
orbifold group. One may extend such construction by add-
ing further D7 branes; apart frommatter in the fundamental
representation of the quiver gauge group (which is realized
by D3–D7 strings), such a construction naturally adds
gravitationally coupled gauge singlets. Regardless whether
the quiver gauge theory is interpreted as a hidden sector
(as we do in this paper) or if it is broken to the standard
model, these additional fields may be suitable dark matter
candidates.

In the next section, we will briefly describe a class of
nonsupersymmetric models in which conformal symmetry
is broken dynamically; due to the special properties of their
renormalization group flow, these theories can reach a
regime in which they simplify dramatically, their entire
dynamics being governed by a simple matrix scalar quan-
tum field theory. In Sec. III, we will describe a curved-
space version of this model and construct an equivalent
model whose fields are singlets under the gauge symmetry
of the original model and thus may play the role of a dark
energy field. The cosmological implications of this model
will be discussed in Sec. IV. We present our conclusions
and further comments in Sec. V.

II. FLAT SPACE MODELS

Quiver gauge theories have long been the subject of
active investigation. If the gauge groups are of SUðNiÞ
type, the action possesses a variety of double-trace terms

required by the absence of the Uð1Þ factors. These double-
trace terms renormalize independently of the single-trace
part of the action. If the coupling constant of the single-
trace part of the action is fixed, the double-trace coupling
runs without bound at low energies implying that, in some
regime, the double-trace operators dominate the dynamics
of the theory.
This scenario is realized in certain nonsupersymmetric

theories in the multicolor limit, such as orbifold theories
and nonsupersymmetric �-deformed theories [5–7]. The
former theories, which will be our main interest in the
following, are obtained from

L0¼�1

2
ðj�jNÞTrfF��F

��þD��
ID��I

þ�2½�I;�J�½�I;�J�þ �� 6D�þ� ���I½�I;��g (1)

by an orbifold projection by a discrete group � � SUð4Þ.
Here, the gauge group is SUðj�jNÞ, the trace is normalized
such that the identity element of the gauge group has trace
equal to j�jN, � ¼ g2YMj�jN is the ’t Hooft coupling
constant, �I are six real scalar fields transforming in the
vector representation of SOð6Þ, and �I are the SOð6Þ Dirac
matrices. As usual, covariant derivatives describe the cou-
pling with the gauge field and are proportional to a single
power of the coupling constant gYM. Four fermions, not
shown in Eq. (1), transforming in the spinor representation
of SOð6Þ and having Yukawa couplings with the scalars,
complete the action. Wewill denote by g the representation
of the elements of � in SUðj�jNÞ, where they act by
conjugation and by rg and Rg the representation of � in

the spinor and vector representation of SOð6Þ, respectively.
Rg and rg are not unrelated; if one presents the vector

representation of SOð6Þ as the 2-index antisymmetric
tensor representation of SUð4Þ, then Rg ¼ rg � rg. The

orbifold projection retains in the action (1) only the
components of the original fields obeying the following
relations:

A�¼gA�g
y �I¼RIJ

g g�
Jgy �i¼ rigjg�

jgy: (2)

Moreover, the overall factor of � disappears and the
’t Hooft coupling of the orbifolded theory is � ¼ g2YMN.
Perhaps the simplest example of this construction is for

� ¼ Z2 (i.e. j�j ¼ 2); its nontrivial element acts as

g ¼ diagð1N;�1NÞ rg ¼ �14 Rg ¼ 16 (3)

inside the original SUð2NÞ gauge group, and on the spinor
and vector representations of SOð6Þ, respectively. The
resulting theory [8] contains two SUðNÞ gauge groups, 6
scalar fields transforming in the adjoint representation of
the first group, 6 scalar fields transforming in the adjoint
representation of the second group, 4 fermions transform-
ing in the bi-fundamental ðN; �NÞ, and 4 fermions trans-
forming in the bi-fundamental ð �N;NÞ.
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The single-trace part of such orbifold theories has been
analyzed in detail in [9,10] where it was shown that these
terms are inherited from the parent theory; in the case of
the action (1) (together with its fermionic completion) they
are finite. As we previously mentioned, however, the action
contains additional double-trace terms [5,6] which receive
nontrivial infinite renormalization. For the simple � ¼ Z2

example, they are

�L0 ¼ �f20O
IJOIJ � f0O

2 (4)

with

OIJ ¼ Tr½g�I�J� � �IJ

6
Tr½g�K�K�

O ¼ Tr½g�I�I�:
(5)

Such double-trace terms are generic in orbifold field
theories and may always be traced to certain twisted aux-
iliary fields; they are not protected from renormalization by
the general arguments of [9,10]. As shown in [5], they are
in fact required by the renormalizability of the theory. The
coupling constant f of a double-trace operator jOj2 runs at
one-loop as

M
@f

@M
¼ �f ¼ vOf

2 þ 2�O�fþ aO�
2; (6)

where � ¼ g2YMN is the ’t Hooft coupling, vO is the 2-point
function coefficient of the operatorO, �O is the anomalous
dimension of O, and aO is the contribution of the single-
trace Lagrangian to the �-function of the double-trace
coupling. If the discriminant

D ¼ �2
O � 4vOaO > 0; (7)

then �f has a nontrivial zero and f will flow to it. Some

supersymmetry appears to be required [5] for such non-
trivial zeroes. If supersymmetry is completely broken, as in
the Z2 model described above, there exists at least one
double-trace coupling whose discriminant D is negative,
leading to the following running coupling:

fðMÞ ¼ ��O�

vO

þ b�

vO

tan

�
b�

vO

ln

�
M

�r

��
: (8)

Here we defined b ¼ ffiffiffiffiffiffiffiffiffi�D
p

and, for simplicity, the chosen
boundary condition is fð�rÞ ¼ �dO�=vO. Thus, at weak
‘t Hooft coupling �, the double-trace parameter f varies
very slowly for a wide range of scales. Still, it reaches

positive infinity in the UVat M ¼ �re
	v0=ðb�Þ and reaches

�1 in the IR at M ¼ �re
�	v0=ðb�Þ.1 This unexpected

runaway behavior of the coupling f was interpreted [5]
in terms of a tachyonic instability of the string theory dual.
This is however not problematic as it has been argued from

several different standpoints [7,11,12] that the energy dy-
namically becomes bounded from below and the theory
may flow to a nontrivial IR fixed point.
Regardless of the value of the ’t Hooft coupling �, the

double-trace coupling f becomes larger than � at some
finite energy scale and thus the double-trace terms will
dominate the dynamics of this theory around those energy
scales. In this regime then, the double-trace deformed
orbifold field theory action effectively simplifies to a bo-
sonic matrix field theory with a quartic double-trace po-
tential. While in general there will be several double-trace
terms that have the features described above, the one
with the largest coupling constant will be most relevant.
Including the other terms may be treated as a perturbation.
The expectation following from this analysis is that

along this flow, the twisted dimension-2 single-trace op-
erators appearing in the double-trace operators that are
generated quantum mechanically as illustrated in Eq. (4)
acquire nontrivial vacuum expectation values. To capture
this effect and describe the consequences of this process, it
is therefore necessary to evaluate the effective potential for
these operators; from the standpoint of the orbifold theory
this is a multitrace effective potential, the dimension-2n
term having n traces. The explicit calculations of [5]
show that the only effect of one-loop corrections in the
orbifold action without double-trace operators is to gener-
ate double-trace operators. All other possible terms are
forbidden either by the analysis of [9,10] or are derivative
terms. The addition of double-trace operators to the tree-
level action renders the theory renormalizable. It is not
difficult to see that in this deformed theory, all n-trace
terms generated at one-loop level receive contributions
solely from the double-trace deformation for all n � 3.
Thus, for the purpose of finding the multitrace effective
potential. we may dispense with the large set of fields of the
orbifold action and capture the dynamics of scalar fields by
considering a much simpler action–that of a purely bosonic
matrix scalar field theory with a specific quartic double-
trace potential. To capture the effects of the ignored gluons
and fermions, all one needs to do is to renormalize the
divergences and use as running coupling that of the orbi-
fold theory (8). It is important to notice that, as a twisted
operator develops a vacuum expectation value, the poten-
tial of the undeformed orbifold theory becomes nonvanish-
ing as well. This constant, which is positive and of the
order of the square of the vacuum expectation value of the
twisted operator, should also be added to the effective
potential.
While in general there will be several double-trace terms

that have the features described above, one may focus on
the one whose coupling constant runs fastest. This is the
case because, as indicated by Eq. (8), the runaway behav-
ior–and therefore the appearance of nontrivial vacuum
expectation value for a twisted operator–sets in first for
this operator. Including the other double-trace terms may

1One may expect that this singular behavior is softened by the
1=N corrections, which introduce a positive beta function for �,
making it approach zero in the IR. We will restrict ourselves to
the large N limit.
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be treated as a perturbation, and the running of their
coupling constant will likely be affected by the emerging
vacuum expectation value of the leading twisted operator.
It is not always clear which orbifold group element gen-
erates the dominant double-trace term; we will generically
denote this element by � 2 � � SUðj�jNÞ as we will not
need its detailed properties. It is however typically the case
[6] that the operator whose coupling constant runs fastest is
constructed out of SOð6Þ singlets. Thus, the action we will
be interested in is

L ¼ �NTr½
��ð@� ��Þð@��Þ� � fðMÞjTr½�� ���j2; (9)

where without loss of generality we kept only two of the
six scalar fields and have organized them into complex
combinations.

While simpler than the original orbifold action, the
action (9) is still complicated mainly due to the existence
of the matrix degrees of freedom. Its vacuum structure and,
as we will see in the next section, its gravitational effects,
may be described in terms of a simpler theory containing a
single scalar field to which it is completely equivalent. This
is a standard approach: we introduce an auxiliary field that
linearizes the quartic interaction

L ¼ �N
��Tr½@� ��@��� þ 1

fðMÞ �’’

� ’Tr½��1� ��� � �’Tr½�� ��� (10)

and construct the one-particle-irreducible effective action
of this field. This action contains the complete quantum
information about the original theory regardless of the size
of the expectation value of the auxiliary field’ (it is, in fact
not clear a priori that such an expectation value is gener-
ated at all).2 All higher-point potential interactions of the
original scalar field � that are generated at the quantum
level are encoded in the higher-point interactions of the
auxiliary field. This construction replaces the scalar field�
carrying gauge degrees of freedom by a single gauge-
invariant effective field which may in principle be observ-
able, albeit only gravitationally coupled with the standard
model in the setup discussed here.

The scalar theory (9) encodes, through the scale depen-
dence of the coupling constant fðMÞ, the effects of the
truncated fields on the dynamics of the scalar field appear-
ing in the twisted operator. As explained previously, for our
purpose–the existence of a nontrivial expectation value of a
twisted operator and its cosmological implications–Eq. (9)
captures all the necessary information. The reverse effects–
i.e. the effects of the scalar field evolution on the gauge
fields, fermions, and the other scalars–are ignored, as the
induced changes in the scalar field expectation value are

much too small. At sufficiently low energies, however,
when the vacuum expectation value of the twisted operator
(or, alternatively, for the auxiliary field ’) becomes com-
parable to the energy scale, this back-reaction can no
longer be ignored. Accounting for it is crucial for the
arguments [7,11,12] that the theory flows to a nontrivial
IR fixed point. Heuristically [7], around this energy scale,
parts of the gauge fields, fermions, and scalars become
sufficiently massive and no longer contribute to the RG
coefficients and a nontrivial beta function for the gauge
coupling is generated. Consequently, the running of the
double-trace coupling (6) will be supplemented by the
running of the gauge coupling and the resulting system is
expected to no longer have a runaway solution. On sym-
metry grounds, the fixed point theory is not expected to
depend on the vacuum expectation value of the twisted
operators, which is therefore irrelevant in a flat space setup.
In curved space however, the vacuum expectation value
sources gravitational field and its gravitational effects will
not change qualitatively along the RG flow of the complete
theory and will continue to drive the cosmological evolu-
tion even after the theory reaches its IR fixed point.
In general, the orbifold field theory (1) and (2) as well as

the reduced model (9) are symmetric under the discrete
transformation � ! !�, where ! is a root of unity of the
appropriate order to keep !� an element of the orbifold
group. Introduction of the auxiliary field does not break
this symmetry which is preserved if the auxiliary field
transforms as ’ ! !’, as may be readily seen from
Eq. (10). This symmetry constrains the 1PI effective action
to be solely a function of ’ �’; in particular, tadpolelike
terms linear in ’ or �’ are forbidden.
The potential for the auxiliary field typically has a non-

trivial minimum [7], which translates into a nontrivial
vacuum expectation value for the twisted operator

Tr½�� ���. This can be translated into a nontrivial expec-
tation value for the scalar fields. Such expectation values
have two distinct effects: (a) they may yield a nonzero
positive value for the tree-level potential and (b) at one-
loop they contribute a positive constant term to the
potential. In flat space both contributions are, of course,
irrelevant. The details of these contributions depend on the
details of the orbifold group.
In the next section, we will place the model discussed

here in curved space. One may find that a finite density of
� quanta is created (in a gauge-invariant configurations);
to account for this possibility we also add a chemical
potential. A systematic way of accounting for this is to
add the number operator to the Hamiltonian which is then
transformed to a Lagrangian framework. Since the auxil-
iary field ’ linearized the quartic interaction, the behavior
of the resulting field theory in the presence of a chemical
potential is quite analogous to the zero temperature limit of
an ideal relativistic Bose gas. Classically, the fields � are
massless with the interaction terms playing the role of an

2It should be mentioned that for the toy model in (9) the 1PI
effective action is one-loop exact. This is, however, not the case
for the orbifold theory which is the motivation for this discussion
and therefore we will not use this fact in the following.
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effective mass. At the quantum level, the auxiliary fields ’
and �’ acquire nontrivial vacuum expectation values, justi-
fying this interpretation.

Unlike systems of fermions, in the zero temperature
limit the chemical potential does not enter explicitly the
expression of the bosonic partition function. Rather, it is
determined separately from the requirement that all parti-
cles are found in the ground state. If �0 is the ground state
energy (i.e. the effective mass of the � particles) then the
chemical potential is determined by the particle-number
density in the ground state3:

n ¼ 1

e�ð�0��Þ � 1
) � ¼ �0 þ kT

n
’ �0: (11)

The standard relation between the grand potential and the
partition function yields then the energy density as

� ¼ lim
T!0

ð�kT lnZÞ þ�n: (12)

One can easily see that the first term is nothing but the
zero-temperature field theory partition function to be
obtained from the action (9). It is also the T00 component
of the auxiliary field stress tensor constructed from the
quantum effective action. Thus, a simple way to include
a finite � density at zero temperature is to add a pressure-
less stress tensor with T00 ¼ �n to the stress tensor of the
auxiliary field ’.

Clearly, such an addition manifestly breaks conformal
invariance. From the standpoint of the orbifold theory, for
which (9) is only a model capturing its essentia features, all
violations of conformal invariance occur only quantum
mechanically and are proportional to the beta-function of

the double-trace operator (in a cosmological setting further
effects proportional to the Hubble constant may also oc-
cur). For this reason, one may expect that the particle-
number density n is small; while we keep it throughout
the general analysis, we will set it to zero when exploring
the cosmological consequences of our model.
In the next section, we will discuss the curved space

version of the quantum field theory detailed above and
compute its partition function. It will turn out that, with a
suitable choice of variables, the curved space calculation
can be easily mapped to a flat space calculation.

III. CURVED SPACE MODEL

The effective model we identified in the previous section
captures the features of a quantum field theory whose only
departure from scale invariance is encoded in the running
of a certain double-trace coupling constant f. In coupling
it to gravity, we would like to preserve this feature; to
this end, apart from the standard covariantization of
index contraction, we will also add a conformal coupling,
 ¼ 1=6, for the scalar fields �.4

L ¼ ffiffiffiffiffiffiffi�g
p ð�Ng��Tr½@� ��@��� � RTr½ ����
� fjTr½�� ���j2Þ; (13)

where, as before, � is an element of the orbifold group
� � SUðNÞ and R is the Ricci scalar.
Similarly to the flat space theory, we proceed by linear-

izing the dependence on � by introducing auxiliary fields:

L ¼ ffiffiffiffiffiffiffi�g
p �

�Ng��Tr½@� ��@��� � RTr½ ����

þ 1

f
�’’� ’Tr½��1� ��� � �’Tr½�� ���

�
: (14)

Scale invariance implies that a rescaling of the metric g��

can be absorbed by a field redefinition. In conformal time,
an FRWmetric is just that of Minkowski space up to a scale
factor að
Þ. The presence of the conformal coupling then
implies that this scale factor can be eliminated by a field
redefinition. Indeed, it is easy to see that in terms of the
new fields

�̂ ¼ að
Þ� ’̂ ¼ að
Þ2’; (15)

the action is exactly that of the original Minkowsky space
theory:

L ¼ �NTr½@� �̂
�@��̂� þ 1

f
�̂’ ’̂�’̂Tr½��1�̂

�̂
��

� �̂’Tr½��̂ �̂
��: (16)

This is a reflection of the scale invariance of (13).

3In general, it is not possible to give different interpretations to
the modes of a field depending on their energy. However, modes
with specified spatial momenta of any one field are a set of
measure zero in the path integral. Because of the contribution of
the integration measure,

R
dE

R
k2dk, modes with vanishing

spatial momenta make vanishing contributions to the one-loop
grand potential in the continuum limit. In a theory placed in
finite volume, one may isolate the contribution of the lowest
energy mode. Its contribution is volume independent and thus
subleading for large/infinite spatial volume which is the case
for a Friedmann-Robertson-Walker (FRW) universe or in
Minkowski space. This is a standard approach which is used
extensively in the treatment of Bose condensation; its advantage
is that it allows particles to dynamically condense to the ground
state or leave the condensate. However, the ground state con-
densate should not, in our case, be described as a classical field.
From Eq. (10), it is clear that the auxiliary field ’ acts as
effective mass for the fields �. As we will see in later sections,
the auxiliary field acquires generically a nontrivial expectation
value thus rendering � effectively massive. This effective mass
is the ground state energy. Any translational momenta for the
ground state quanta will raise their energy and this takes them
out of the ground state. We should also note that, since they have
vanishing momenta, in flat space the ground state particles do
not contribute directly to the effective potential for the auxiliary
field, their contribution being cancelled by the integration
measure.

4Such a coupling is required for the renormalizability of the
theory in a curved background; the value  ¼ 1=6 ensures scale
invariance.
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The scalar fields �̂ appear quadratically. Therefore, the
1PI effective potential may be easily computed by evaluat-
ing the determinant of the operator

KB ¼ �
��@�@� þ 1

N
’̂��1 þ 1

N
�̂’�;

Veff ¼ i lndetKB:
(17)

On general grounds, this determinant has both powerlike
and logarithmic UV divergences. These divergences may
however be traced to the fact that we are focusing on the
dynamics of the fields � and are ignoring the other fields.
If a quadratic divergence were present, it would generate a
tadpole for ’̂; in the complete orbifold theory, such a term
would suggest a perturbative generation of a mass term for
some component of � at two loops. This, however, is not
expected to happen in the large N-limit [9,10], consistent
with the cancellation of terms linear in ’̂. Wewill therefore
discard quadratic divergences from our effective model.

With this clarification, and if there exists a choice of
fields ’̂ and analytic continuation of momenta such thatKB

does not have zero eigenvalues, the loop-induced potential
for the auxiliary fields ’̂ and �̂’ is just

Veff ¼ 1

ð4	Þ2 Tr

�
M2

�
ln
M2

�4
� 1

��
; (18)

with

M ¼ 1

N
ð’̂��1 þ �̂’�Þ: (19)

Here we carried out the trace over momenta; the remaining
trace is only over the gauge group indices. In the complete
theory, the logarithmic divergence present in Eq. (18)
contributes to the running of the coupling constant f
through the coefficient vO in the �-function (6). After
renormalization, the cutoff scale � is replaced with the
renormalization scale �r.

For a Zn orbifold, the Coleman-Weinberg potential (18)
is:

Veff ¼ N2

ð4	Þ2
Xn
k¼0

�
m2

k

�
ln
m2

k

�4
r

� 1

��

mk ¼ 1

N
�k’̂þ 1

N
��
k
�̂’ �n

k ¼ 1 �k�
�
k ¼ 1: (20)

In the calculation above, ’̂ maintains its role as a non-
dynamical field as it was assumed to be constant through-
out the calculation. It is, however, easy to see that
derivative terms are also generated at the quantum level.
They may be organized following the number of fields on
which the derivatives act. To this end, one separates M
into a constant part and a position/momentum-dependent
part and expands in the latter. The terms in which no
derivatives act on the momentum-dependent part of M
may be resummed and lead to a trivial shift of the constant
part of M. This is similar to doing perturbation theory

around an arbitrary value of ’̂. While in general this would
manifest an instability, this is not the case here because at
tree level any value of ’̂ is allowed (alternatively, because
the potential for ’̂ is generated at the same order as the
derivative terms). With the same assumption as before, that
momenta may be analytically continued such that for fixed
fields KB does not have zero eigenvalues, the first correc-
tion, containing two derivatives, is given by5

�LK ¼ 1

2
Tr

�
1

p2 þM
Mð�qÞ 1

ðpþ qÞ2 þM
MðqÞ

�

� 1

2
Tr

�
1

ðp2 þMÞ2
�
Tr½Mð�qÞMðqÞ�: (21)

Certain care is necessary in the identification of the leading
term in the momentum expansion, which depends on the
details of the orbifold group and choice of group element
�. Regardless of its precise expression, the meaning of this
term from the standpoint of the original theory is that of an
effective contribution to the 4-point scalar amplitude.
Following a strategy similar to the above, it is not difficult
to find higher-derivative corrections. We will, however,
refrain from writing general expressions here.

A. An illustrative example

The simplest example illustrating the discussion in
the previous section is the Z2 orbifold theory, i.e. n ¼ 2;
m0 ¼ �m1. The corresponding numerical coefficients �k

are such that �2
0 ¼ 1 ¼ �2

1. In this case, the field ’̂may be

chosen to be real. Repeating the discussion above and
accounting for the fact that in this case M always has a
negative eigenvalue, we find that the effective potential is
given by

VZ2

eff ¼ þ 8�̂2

ð4	Þ2
�
ln

4�̂2

N2�4
r

� 1

�
: (22)

The complete potential is therefore

VZ2 ¼ c0
f
’̂2

0 �
’̂2

f
þ VZ2

eff : (23)

As discussed in the previous section, between Eqs. (8) and
(9) we have added to the effective potential the effects of
the scalar potential of the undeformed orbifold theory at
the critical points ’̂0 of Veff . As discussed there, it is a
constant of the order of the square of the vacuum expecta-
tion value of the double-trace operator–i.e. it must be
proportional to ð’̂0Þ2=f. c0 is a numerical coefficient of
order unity.

5The evaluation of this correction relies on the observation that
½Mð0Þ;MðqÞ� ¼ 0. This holds as both Mð0Þ and MðqÞ are
constructed from mutually commuting matrices.
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For this simple case, the two-derivative term (21) is just:

�LK ¼ � N

6ð4	Þ2 ’̂
�1@�’̂@�’̂: (24)

This will promote the auxiliary field ’̂ to a dynamical field
at the quantum level. Higher-derivative terms have the
structure X

n

cn
’̂nþ1

@�’̂hn@�’̂; (25)

with numerical coefficients cn; further terms, in which
derivatives act on three or more fields, are also generated.
We will neglect all such terms in the following, assuming
that ’̂ varies sufficiently slowly.

To identify the action for the auxiliary field ’ (and
consequently its equation of state), it is necessary to restore
the background FRW metric and also return to the comov-
ing frame. It is therefore important to understand the
behavior of the renormalization scale �2

r under this
transformation. In curved space, any cutoff or other scales
should have a covariant interpretation. Thus, �2

r should be
thought of as a square taken with the (inverse) metric; this
implies that, as we restore the background FRWmetric, we
should also replace

�2
r ! að
Þ2�2

r : (26)

The potential therefore becomes

VZ2 ¼að
Þ4
�
c0
f
’2

0�
’2

f
þ 8

ð4	Þ2’
2

�
ln

4að
Þ4’2

að
Þ4N2�4
r

�1

��

¼ ffiffiffiffiffiffiffi�g
p

Vð’Þ: (27)

Thus, after identifying covariant quantities, the potential
for ’ is

Vð’Þ ¼ c0
f
’2

0 �
’2

f
þ 8

ð4	Þ2 ’
2

�
ln

4’2

N2�4
r

� 1

�
: (28)

Restoring the scale factor in the derivative terms also leads
to the appearance of its derivatives (and thus of powers of
curvature invariants) and of additional potential-like terms.
They turn out to have simple covariant expressions, being
expressible in terms of the Ricci scalar:

�LK ¼ � N

6ð4	Þ2

� ffiffiffiffiffiffiffi�g
p 1

að
Þ4’g��@�ðað
Þ2’Þ@�ðað
Þ2’Þ (29)

¼ � N

6ð4	Þ2
ffiffiffiffiffiffiffi�g

p �
1

’
g��@�’@�’þ 2

3
’R

�
: (30)

The power of ’ multiplying the Ricci scalar is determined
by dimensional analysis; the appearance of the last term is
a direct consequence of the conformal invariance of the
original model.

The derivative term may be brought to standard form by
a simple field redefinition

’ ¼ 3

4N
ð4	Þ2�2; (31)

the new field � has the canonical dimension of a scalar
field. The complete (two-derivative) Lagrangian for this
new field is

�L ¼ � 1

2

�
g��@��@�� þ 1

6
�2R

�
(32)

Vð�Þ ¼ c0
f
’2

0 �
9ð4	Þ4
16N2f

�4 þ 9ð4	Þ2
2N2

�4
�
ln
9ð4	Þ4�4
4N4�4

r

� 1

�

(33)

Leff ¼ 1

2G
Rþ �L� V; (34)

where G is related to Newton’s constant by G ¼ 8	GN.
The scale factor may also be restored in the higher-
derivative terms (25). The Einstein-Hilbert term can be cast
in canonical form by rescaling the metric by ð1�G�2=6Þ.
We will keep the action in its current form.

IV. COSMOLOGICAL CONSEQUENCES

In previous sections, we argued that, if the standard
model is embedded in string theory through a certain class
of quiver gauge theories, then decoupled sectors of that
theory yield effective actions of the type (34) which inter-
act only gravitationally with the usual matter fields. It is
therefore interesting to explore the cosmological implica-
tions of such actions.
While different in details, the model constructed above

exhibits elements of classes of models discussed else-
where. The existence of a field-dependent Newton’s con-
stant makes it similar to modified gravity models.6 As we
will see in the following, the same effective Newton’s
constant (or the conformal coupling of the field �) will
lead to the matter-energy density acting as a source for �
and vice versa.7 Finally, the existence of nontrivial deriva-
tive terms and potential terms for � makes it similar to
K-essence and quintessence models. While, of course, the
field-dependent Newton’s constant may be eliminated by a
suitable Weyl rescaling of the metric, all the other features
of the model survive this transformation.
Let us proceed with analyzing the cosmological impli-

cations of the action (34); as we will see, we will recover
many desirable qualitative properties of cosmological pa-
rameters. We will also see that the effective cosmological
constant will turn out to exhibit an exponential suppression
compared to the renormalization scale. It is not difficult to

6Let us note here that terms containing curvature invariants
and matter fields are generic at higher order in perturbation
theory.

7For similar reasons, such matter-dark energy couplings are
also generic in modified gravity models.
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see that the equation of motion for the field � and Einstein’s
equations are:

h� � 1

6
�R� @V

@�
¼ 0 (35)

E�� ¼ GðT�
�� þ Tc

�� þ �T�
�� þ Tm

��Þ (36)

T�
�� ¼ @��@�� � 1

2
g��ðg��@��@�� þ 2VÞ (37)

Tc
�� ¼ 1

6
�2E�� þ 1

6
½g��hð�2Þ � r�r��

2� (38)

�T�
�� ¼ g�0g�0

ffiffiffiffiffi
2x

p j�j n0
aðtÞ2 ; (39)

whereh stands for the usual covariant Laplacian operator.
In the equations above T� , Tc, �T� , and Tm are the stress
tensor of the � field in the absence of the conformal
coupling, the contribution of the conformal coupling to
the stress tensor, the stress tensor due to a finite density of
� quanta and the matter stress tensor, respectively8,9

The second term in Eq. (35) is also a consequence of the
conformal coupling. It is useful to separate as much as
possible the evolution of � from that of the scale factor a
(or more generally the metric if one were interested in
constructing the perturbation equations). Evaluating the
Ricci scalar from the trace of Einstein’s equations and
replacing it in (35) leads to

h� � 2G

3
�V �

�
1�G

6
�2
�
@V

@�

þG

6
�g��ð�T�

�� þ Tm
��Þ ¼ 0: (40)

We notice here that both the matter density as well as a
finite density of � quanta source the evolution of � . The
coupling between them, polynomial in � , is different from
existing analysis of couplings between (dark) matter and
dark energy, see e.g. [13–15].

These equations simplify substantially for an isotropic
and homogeneous universe with flat spatial slices, for
which the metric takes the standard FRW form10:

ds2 ¼ �dt2 þ aðtÞ2d~x2: (41)

The assumptions of isotropy and homogeneity also imply
that � ¼ �ðtÞ does not have any spatial dependence; then,
the equations above simplify to:

€� þ 3H _� þ 2G

3
�V þ

�
1�G

6
�2
�
@V

@�

þG

6
�

�
� ffiffiffiffiffi

2x
p j�j n0

aðtÞ2 � ~�m þ 3~pm

�
¼ 0 (42)

3H2 ¼ Gð�� þ �mÞ (43)

2
€a

a
¼ �G

3
ð�� þ 3p� þ �m þ 3pmÞ; (44)

where �m ¼ ~�m

ð1�G
6�

2Þ is the effective matter energy density

and pm is the matter pressure, which vanishes for non-
relativistic matter. We have also identified the energy
density and pressure of the � fluid as:

�� ¼ 1

1� G
6 �

2

�
V þ 1

2
_�2 þH� _� þ ffiffiffiffiffi

2x
p j�j n0

aðtÞ2
�

p� ¼ 1

1� G
6 �

2

�
�V þ 1

6
_�2 � 1

3
�ð €� þ 2H _�Þ

�
:

(45)

The equation of state for the � fluid follows immediately:

1þ w ¼ 1

3

2 _�2 � �ð €� �H _�Þ þ 12	
ffiffiffiffiffi
3
2N

q
j�j n0

aðtÞ2

V þ 1
2
_�2 þH� _� þ 12	

ffiffiffiffiffi
3
2N

q
j�j n0

aðtÞ2
: (46)

At very late times in an expanding universe, if � asymp-
totes to a constant, it is easy to see that the equation above
reduces to w ¼ �1. In general, we see however that the

acceleration term €� can help bring the equation of state
close to w ¼ �1 without necessarily requiring a small
kinetic energy (or an extremely small mass for the � field).
This acceleration term is also a consequence of the con-
formal coupling in (34).
It is curious to notice that the dependence of �T� on the

scale factor a—identifiable by the coefficient n0—implies
that a nonzero � density acts from the standpoint of the
Friedman equation like a nontrivial negative spatial curva-
ture. Unlike regular curvature contributions however, this
term does not affect the curvature of spatial slices and is
therefore unconstrained by observations.
In practice, it is convenient to replace the accele-

ration equation with an equation describing the time evo-
lution of the matter energy density. As usual, Einstein’s
equations (43) and (44) encode the time evolution of the
total energy density. The time evolution of the energy
density of the � fluid is, of course, given by Eqs. (45) and
(42). It thus follows that

_�m ¼ � _�� � 3
_a

a
ð�� þ �m þ p� þ pmÞ; (47)

8The Eqs. (36)–(39) receive, in principle, contributions due to
particle production due to the expansion of the universe. There
is, however, no direct contribution to the equation of motion for
the dark energy field � (35) and therefore the contribution of
particle production on the evolution of � is expected to be small.
We will not include the effects of particle production.

9In flat space, the vacuum expectation value of the field � is the
critical point of the effective potential. The curved space analog
is the set of equations above in which one requires � ¼ �0 to be
constant. Unlike the flat-space case discussed in footnote 5, these
equations introduce a correlation between �0 and the density n0
of the ground-state condensate of � quanta. This is, however, a
second-order effect which arises due to the gravitational cou-
pling and is therefore expected to be heavily suppressed.
10Absence of a solution with such an ansatz simply means that
one or more of the assumptions—homogeneity, isotropy, or
flatness—should be relaxed.
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which we will use in place of (44). If � is fixed to a
constant, this equation has the usual solution �m / a�3.
We will see that this behavior naturally occurs at very late
times.

A. A special solution

In general, the equations discussed above yield a non-
trivial time-dependent profile for the field � , which is
sourced by the matter density and by the density of �
quanta populating the ground state. As discussed in Sec. II,
the existence of a finite density of � quanta is a quantum
mechanical effect (proportional to the �-function of the
double-trace operators) and is expected to be small. Thus,
assuming no accidental enhancements, we will set n0 ¼ 0.
In the absence of matter and for n0 ¼ 0, the evolution
equations admit a simple solution with constant value of
� ¼ �0. This solution is deformed nontrivially by a non-
zero matter density, n0 � 0 or even by a choice of initial

conditions that set �ðt ¼ t0Þ � �0 or _�ðt ¼ t0Þ � 0.
Setting � ¼ �0, the equations (42) and (43) becomes

2G

3
�0Vð�0Þ þ

�
1�G

6
�20

�
@V

@�

���������¼�0

¼ 0 (48)

GVð�0Þ
3ð1� G

6 �
2
0 Þ

¼ H2 (49)

and, as discussed before, the matter density has the usual
1=aðtÞ3 behavior. The first term in Eq. (48) is a conse-
quence of the conformal coupling of � ; in the absence of
such a coupling, �0 is simply given by the position of the
minimum of the potential. The second equation requires
that its left-hand side be positive.11 The solution to this
equation is the standard scale factor in the presence of a
cosmological constant and an effective Newton’s constant
Geff ¼ G=ð1�G�20=6Þ. As discussed before, the equation

of state reduces to the usual w ¼ �1.
Because of the nature of the equations (42), (43), and

(47), it is natural to expect that, in the far future, any time-
dependent profile for � will asymptote to the solution
described above. It is therefore interesting to discuss it in
more detail. The solution of the counterpart of Eq. (48) in
the absence of the conformal coupling may be readily
obtained:

�� 0 ¼ � N�r

2	
ffiffiffi
6

p e	
2=2f: (50)

We see that it is exponentially smaller than the renormal-
ization scale �r for small and negative values of the

double-trace coupling f. Such values are allowed by the
special properties of the renormalization group flow
discussed in Sec. II. As mentioned there, f runs very
slowly if the ’t Hooft coupling is small; it is therefore
natural to consider a double-trace coupling that is small
(yet larger than the ’t Hooft coupling) and fixed over a large
range of scales. With this starting point, the solution to (48)
may be found as a series in G ��0:

�0 ¼ ��0

�
1þ X

n	1

dnG
n ��n0

�
: (51)

Evaluating the left-hand side of Eq. (49) we find that the
effective cosmological constant is, up to irrelevant numeri-
cal coefficients,

�eff ¼ Vð�0Þ
ð1� G

6 �
2
0 Þ

/ N4�4
re

�ð2	2=jfjÞ
�
1þ X

n	1

enG
n ��n0

�
;

(52)

i.e. it is exponentially small compared to the energy scale
�r that governs the dynamics of the theory. Clearly, the
smallness of the effective cosmological constant is a con-
sequence of the exponential factor which is independent of
the constant c0 in Eq. (23), making the main qualitative
features of our results independent of the precise value of c0.

B. More general solutions

While simple to analyze, the solutions discussed above
are not generic even in the absence of matter and of a finite
density of � quanta.12 A typical solution has a nontrivial
time-dependence triggered by the initial conditions for the
� field which relaxes in the far future to the solution
discussed in the previous subsection. Perhaps the simplest
way to construct such solutions is to decouple the two
equations (42) and (43) by solving for the Hubble parame-
ter from the latter and replacing it in the former. The
positivity requirement (49) receives derivative corrections
and becomes

_� 2
1þ G

6 �
2

1� G
6 �

2
þ 2V

1� G
6 �

2
	 0: (53)

While decoupled, the resulting equations are lengthy and
nonlinear; finding the complete time-dependence of their
solution requires a numerical approach.
In the presence of a nontrivial matter density, the three

equations (42), (43), and (47) cannot be decoupled; the
system can however be solved numerically with sufficient
accuracy. In Fig. 1, we show such solutions for the field � ,
the scale factor a, the Hubble parameter H, and the equa-
tion of state parameter w as a function of time, both in the

11If the left-hand side of this equation were negative, the FRW
ansatz for the metric no longer yields a solution to Einstein’s
equations; the appropriate solution becomes the anti-de Sitter
space.

12As in the previous section, we will continue to assume that
n0 ¼ 0.
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FIG. 1 (color online). Numerical solutions for � , the scale factor a, the Hubble parameter H, and the equation of state w.
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absence of matter (left panel) and in the presence of a
finite matter density (right panel). While we have not
enforced a physical normalization, these plots allow us
to understand the qualitative behavior of cosmological
evolution in the presence of the � field, governed by the
action (34).

We chose t ¼ 1 to represent the present time13 and show
it by the vertical line in all plots; as initial conditions for the
scale factor we required that að1Þ ¼ 1. When matter den-
sity is included, we normalize it to the observed ratio
�mð1Þ=�� ð1Þ ’ 1=3.

As can be seen from the figure, the field � oscillates at
early times and eventually settles to a very small constant
value. This behavior should indeed hold both in the pres-
ence and in the absence of matter, as the matter energy
density diminishes at late times, implying that in both cases
the solution should asymptote to the constant solution
described in the previous section. Because of their cou-
pling, a nontrivial matter density leads to an increase in
early time amplitude of � oscillations and in their fre-
quency.14 At late times, the behavior of the system is that
of a cosmological constant, with a constant Hubble pa-
rameter, an exponentially growing scale factor, and an
equation of state w ¼ �1. At early times, the equation of
state of the � fluid varies with time and w can reach

positive values. In the presence of matter, the energy
density in the � fluid partially tracks the matter energy
density. This is a direct consequence of the fact that the
matter energy density sources � , as seen in Eq. (42).
As we previously discussed, this is due to the quantum
mechanically generated conformal coupling 1=6R�2 in
(34). Figure 2 shows the energy densities in the � fluid
(upper curve at large t) and in matter (lower curve at large
t). The position of the crossing point, shown in Fig. 2 at

aðtcÞ 
 ð�mð1Þ=�� ð1ÞÞ1=3, is determined by the absolute
values of the matter and � energy density.

V. CONCLUSIONS

In this paper, we discussed a class of models that may
appear if the standard model is embedded in a more
fundamental theory through a quiver gauge theory. We
assumed that, by some mechanism, these models interact
only gravitationally with regular matter and thus have only
cosmological consequences. The flat space properties of
these models were previously considered: due to the spe-
cial properties of their renormalization group flow, their
dynamics are mainly governed by a certain double-trace
operator. Making use of this observation we constructed a
simpler effective matrix bosonic model that captures the
essential features of the original. Its structure is such that it
is completely equivalent to the quantum theory of a single
effective scalar field. We computed the potential of this
field which is one-loop exact. Departing from the standard
treatment of such models, we also evaluated the quantum
mechanically generated kinetic energy of this effective
field and showed that it exhibits a conformal coupling
with gravity.
The example we discussed in detail suggests that, from a

cosmological standpoint, such almost-conformally invari-
ant ‘‘hidden sectors’’ mimic the expected properties of
dark energy at late times, while partially tracking the
matter energy density at early times. Asymptotically, in
the far future we found that the effective field becomes
constant and thus its consequences are similar to those of a
pure cosmological constant which is exponentially smaller
than the renormalization scale of the theory. The exponen-
tial suppression is governed by the coupling constant of the
original double-trace operator. The time evolution of the
effective (or dark energy) field is in general nontrivial and
sources an interesting behavior for the scale factor, Hubble
parameter, and equation of state. The value of the latter at
present times is sufficiently close to w ¼ �1. The confor-
mal coupling plays an important role here, avoiding the
usual extreme limits on the quintessence boson mass. In
fact, the mass of the dark energy field is comparable to that
of the far-future cosmological constant scale.
While the model we discussed in detail predicts an

exponentially small far-future cosmological constant,
we cannot, of course, claim to have solved the cosmologi-
cal constant problem. Indeed, the contribution to the

1 2 3 4 5
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50

100

150

200

t

t

FIG. 2 (color online). The energy density of the � fluid (flat-
tening out at nonzero �ðtÞ and matter (flattening out at vanishing
�ðtÞ as a function of time. At early times, the two curves are
essentially parallel, showing that the � energy density tracks the
matter energy density. Despite the oscillatory behavior of � , the
energy densities are monotonic functions.

13The unit time interval is given by NG1=2
N ¼ N�Plank, implying

that for a realistic cosmology the number of colors N in
the hidden sector has to be very large. This is consistent with
the general discussion in earlier sections, where we kept only the
leading N-dependence in the orbifold theory. This also guaran-
tees that 1=N effects cannot affect the running of the double-
trace coupling, in particular, the fact that it becomes negative
[cf. Eq. (8)].
14While not visible in the figure, it also increases the time
necessary for � to reach its asymptotic value.
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cosmological constant of the zero-point energy of the
standard model fields and perhaps other hidden sectors
remains potentially uncanceled.15 Our discussion should
be thought of as pointing out a yet unexplored source of
dark energy which by itself does not introduce any further
problems at the quantum level.

Since the hidden sector interacts only gravitationally
with regular matter, it needs not be in thermal equilibrium
with it. It is therefore possible to assume that its tempera-
ture vanishes, as we have done. Perturbative inclusion of
a small temperature is not difficult: to leading order it
corrects the effective potential though a temperature-
dependent mass term for the dark energy field � . While
the structure of the special solution discussed in Sec. IV is
unchanged, the effective cosmological constant receives a
temperature-dependent positive shift. It should be possible,
though perhaps not straightforward, to analyze the effects
of nonzero temperature beyond leading order.

Because of the special properties of the model, a finite
density of hidden quanta contributes differently than regu-
lar matter to Einstein’s equations: it is similar to a negative
curvature term without actually changing the curvature of
the spatial slices. It should be interesting to explore the
consequences of such a condensate.
While we formulated our analysis for the special case of

quiver gauge theories which are conformal in the planar
limit, the mechanism proposed here should hold in more
general theories in the presence of double-trace operators.
While we expect the general features to remain the same,
the technical details will likely be different and model-
dependent. In general however, due to absence of confor-
mal invariance, there is no reason to introduce a conformal
coupling for the scalar fields. It would be interesting to
explore such more general models.
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